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Motivation for precession dynamo
\

m alternative dynamo concept: mechanical forcing
= efficient flow driving on lab scale
= no propellers or pumps
= “natural” mechanism

m may be relevant for planets/moons
= geodynamo (Malkus 1968)
= ancient lunar dynamo (Weiss 2014)

m precession driven dynamos have been 7,
found in simulations (Tilgner 2005, woq
Wu & Roberts 2009, Nore 2011)

No thermal core convection?
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Characterisation of flow in terms of inertial modes

Navier-Stokes in precessing frame (BC: u = §2. x r)
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m Solutions are inertial waves or Kelvin modes characterized by
azimuthal, axial and “radial” wavenumber m, k, | — j:

in(r) cos(mkz)

v = exp(iwjt + imp) | @, (r)cos(mkz) | +c.c

i(r) sin(rkz)

m Kelvin modes are eigenfunctions of the linearized inviscid
Navier-Stokes equation for rotating fluids in cylindrical
geometry which satisfy free-slip boundary conditions




Structure of Kelvin modes

m frequency w; obtained from dispersion relation:
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Hydrodynamics of precession driven flows

m numerical simulations with SEMTEX (Blackburn & Sherwin 2004)

m flow measurements with UDV at model water experiment (R = 0.163m)

H

Location of
UDV probes

aspect ratio r=H/R=2 precession ratio | Po=|Q,|/|Q| | 0...0.1
precession angle | a = 90° (2, L Q.) | Reynolds number | Re = |Q.|R?/v | 10*..10°

m structure, amplitude, time-dependent features (e.g. free inertial waves)J

m Re = 10* = lower limit of motor = upper limit of simulations




The water precession experiment
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The forced mode in simulations

m structure of forcing F, = —(2,(2.rsin accos({2.t + )

= antisymmetric w.r.t. equatorial plane AD
= inertial modes with m =1 and p
k odd are directly forced (7

m resonance if forcing frequency
(2. is equal to eigenfrequency w;
= mode (m, k,w)=(1,1,1)

is resonant at [ = 1.98982

m non-linear self-interaction
forbidden at 1st order
(Greenspan 1969) but
(m, k,w) — (2m, 2k, 2w)

(m, k,w) — (0,2k,0)

(m, k,w) — (0,0,0)

observed in simulations

and experiments axial Ve|OCity




Flow structure in simulations

uy in trntable system for increasing Po (from Po = 0.001 to Po = 0.2)



Comparison with experiment: Flow structure
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Amplitude [mm/s]
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Comparison with experiment: Amplitudes

m 'projection’ on Kelvin mode o sin(kz) cos(me) at fixed r
= time-independent contributions dominate
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m maximum of forced Kelvin mode around Po ~ 0.09

m emergence of axisymmetric mode with kK = 2
in the range 0.095 < Po < 0.105




Amplitudes for increasing Re (Experiment)
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m abrupt breakdown of m = 1 above critical precession ratio Po®*

with Po™* decreasing when Re increases

m decrease describes a two-stage process with an intermediate
plateau with width APo ~ 0.006




Pattern of axisymmetric flow

m meridional axisym-
metric flow (u,, u;)
with m = 0, k = 2

m double roll structure

similar to mean flow in
VKS dynamo

m toroidal flow (u[;]o) is
composed of boundary
layer and geostrophic ] ]
part with k =0 10 A
(braking of SBR) -50

m comparison with
measurements (black
curve) show good

agreement for time- 10k

averaged flow u, 0 50 100 a1x5i(s)[mlf10]0 250 300
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Evolution for increasing Reynolds number
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m resonant-like appearance of axisymmetric mode
m Po! for appearance of m = 0 mode decreases for increasing Re
m m = 0 mode becomes more important for increasing Re

m width of regime with m = 0 mode only weekly affected




Scaling to the large scale experiment
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m location of regime with m = 0 mode varies linearly until Re ~ 10°
m asymptotic behavior with Po™* ~ 0.066 for Re > 10°




Circulation flow (axisymmetric azimuthal flow)
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The dynamo problem

compute numerical solution of induction equation

%—?:VX(UXB—UVXB)

= growth rates and critical magnetic Reynolds number

= structure of magnetic field close to onset of dynamo action

Numerical approach

m consider kinematic problem with prescribed velocity field
= time-averaged velocity-field from hydro simulations

m impact of largest azimuthal velocity modes (m =0,1,2,3...)

m no backreaction, no time-dependent fluctuations

m pseudo vacuum boundary conditions for magnetic field




Dynamos with time-averaged flow: Impact of m0 flow
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Dynamos with time-averaged flow: Impact of m0 flow
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m no dynamo from axisymmmetric flow or m = 1 flow




mO0

Dynamos with time-averaged flow: Impact of m0 flow

10 mO0+m1

Rm°=559.3

growth rate vy

1 1 1 1
0 200 400 600 800 1000
magnetic Reynolds number Rm

m no dynamo from axisymmmetric flow or m = 1 flow

m combination of axisym. flow and m = 1 gives dynamo at Rm® ~ 560
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Dynamos with time-averaged flow: Impact of m0 flow
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m no dynamo from axisymmmetric flow or m = 1 flow
m combination of axisym. flow and m = 1 gives dynamo at Rm® ~ 560

m contributions that increase parity breaking improve dynamo action
= reduction to Rm® ~ 430 when m = 2 and/or m = 3 are added
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Dynamos with time-averaged flow: Impact of m0 flow
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m no dynamo from axisymmmetric flow or m = 1 flow
m combination of axisym. flow and m = 1 gives dynamo at Rm® ~ 560

m contributions that increase parity breaking improve dynamo action
= reduction to Rm® ~ 430 when m = 2 and/or m = 3 are added
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Dynamos with time-averaged flow: Impact of m0 flow

Rm°=428.0 Rm°=559.3

growth rate vy
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m no dynamo from axisymmmetric flow or m = 1 flow
m combination of axisym. flow and m = 1 gives dynamo at Rm® ~ 560

m contributions that increase parity breaking improve dynamo action
= reduction to Rm® ~ 430 when m = 2 and/or m = 3 are added




Kinematic Dynamos with time-averaged flow Il: total flow
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only flow fields computed from hydrodynamic simulations obove
Po = 0.095 exhibit dynamo action

m without the axisymmetric flow we do not find dynamo action

m Rm sufficiently small (i.e. experimentally accessible) for flow fields
with Po € [0.0975, 0.1075].




Characterization of flow state in the large experiment

m direct flow measurements with UDV will be difficult (not possible?)
m global quantities: power consumption, slip, torque (wish)

m local measurements: pressure (at wall), magnetic fields (future topic)
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Power consumption and torque

Power P is related to torque I via angular velocity {2 according to P = I'{2 J

m simplest assumption (see e.g. VKS, Mordant et al 1997, J. Phys. I
France, 7 (11), 1729-1742, DOI: 0.1051/jp2:1997212):
mean torque scales according to

I = pR%2%f(Re)
with f an unknown function of Re = R2(2/v that depends on the way
energy is injected into the flow

m express torque in terms of internal flow variables I ~ 2 __, to be

estimated from global measurements, e.g., tymns ~ +/Prms

B U characterizes flow behavior in the bulk, whereas p.s is taken from
measurements of the pressure at the wall

m example VKS: laminar regime f(Re) ~ Re™/? whereas in turbulent
regime f(Re) ~ Re™7® (turbulent boundary layers, Schlichting)

m probably different in precession case where power injection occurs
mainly via pressure forces in corners



Estimation of internal losses

m instantaneous power consumption of an equilibrated motor

P(t) = \fU(t)l(t) cos (go(t) + %) - %Rﬂ(rf

m measure U(t), I(t), o(t), Rt

m problem: power consumption of motor P(t) comprises power
dissipated by the flow P¢ (required) and internal mechancial
and electromagnetic losses Py, (unknown)

m estimation of internal losses via measurments of P without
precession show scaling Py, ~ (22



Example for power consumption and wall pressure

m Power consumption vs time and rescaled pressure vs time for decrease
of Po = 0.085 (turbulent regime) to Po = 0.0684 (nonlinear regime) J

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
t [s] t [s]

Power consumptionJ Wall pressure |




Transition from linear to turbulent state

m laminar regime with no variation with Po
m nonlinear regime with rapid increase of Py,

m turbulent regimes with linear increase (at fixed Re)
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Scaling and open questions

250

4
3.5
200 I‘-
’ 3r
150 110 o’ 25
g L & o ©
5 o’ o 2 o o Q O
100 L % 15 o
Q- o
50 . i
e
o087 08
] 0,
10 20 30 40 50 60 2 6 8 10 12
Q Re ©10°
measurements | viscous linear theory | upper bound estimation
P P P
————= ~Po ——— ~ Po’Re ——— ~ const
pRo023 pR>$23 pRo23

m increased internal friction from increasing gyroscoping moments acting
on rotating parts = internal losses are not independent of precession

m power insertion essentially via pressure in corners, boundary layers less
important = different scaling




Pressure in numerical simulations

m simulations with SEMTEX make use of pressure fied to ensure that
after each timestep the velocity field is divergence free
(i.e. V- u =0, incompressibility condition)

m centrifugal pressure is not considered because it doesnt cause any flow

m any constant field can be added to p without changing the results
= callibration not possible without further assumptions
(e.g. minimum pressure = 0)

B pressure equation:
({92 (U,‘Uj)

Ap=—pV - [(uV)u] = —p— ==
10X

= involves flow gradients and motivates relation between p and typs



Pressure evolution in simulations
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Pressure evolution in simulations
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Pressure measurements and tpps

9 10 1.0 T T T T y
S r | 2=-0.90
P [ ! 2= 0.50
S L —~ L 2=-0.50 ]
3 08 v 08 | 2= 0.90
— Is) L ! z= 0.00
5] o [ '
o £ [ '
= 06 > 0.6 ! b
23 o b '
8 £ © b \
= € [ ¥
50 04 £ 04 i E
i) el F !
< a [ ‘\
o £ L I
,o2r a- 02f 1 A B
) ] [ e
£ oo . . . it = 0.0L . . . Hn |
~ 0.02 0.04 0.06 0.08 0.10 0.12 0.02 0.04 0.06 0.08 0.10 0.12
Po Po

m Left: pressure measurements show linear decrease with Po followed by
a “sharp” jump and constant behavior in the turbulent regime

m Right: p.s defined with quadratic deviation from time-averaged
pressure prms = v/ Y. (p(t) — p)? exhibits qualitativ different behavior

m transition can be seen in all measurements of pressure

m best visibility when using p.ms from measurements close to end caps




Comparison of prys and tpms

P.ms (time average)
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UDV at the large precession device

m measurment of axial
velocity from sensor
flanges only possible close
to the side wall (7)

ultrasonic beam

A

m measurement of radial velocity at
sensor flanges (6 in ¢, 5 along z)

m large velocities constrain
applicability (travel time of
ultrasound signals, integration
time, penetration depth,
resolution)

o § &

Figures taken from S. Franke 2015, ~|\H 1
'Report on the specification of the %}///,!'}//\2

the UDV measuring concept for PEMDYN.’



UDV parameters

temperature T = 150°C, ¢ = 2485 m/s

m UDV transducer, flow and measurement parameters for sodium at J

Emission max. penetration | axial lateral res.
frequency velocity | depth res. (z=0.1...0.6m)
1 MHz 1m/s 0.772m 2.5mm 26...153 mm
1 MHz 2m/s 0.386 m 2.5mm 26...153 mm
1 MHz 5m/s 0.154m 2.5mm 26...153 mm
1 MHz 10m/s 0.077m 2.5mm 26...153 mm
2 MHz 1m/s 0.386 m 1.2mm 13...76 mm
2 MHz 2m/s 0.193m 1.2mm 13...76 mm
2 MHz 5m/s 0.077m 1.2mm 13...76 mm

m simulations and water experiments = typical speed in interiour
~ 30% of the rotation velocity at outer rim: u,(R = 1m)

m Ul x1lm/s = f =

27 -1m

3m/s

~ 0.5 Hz (Rm ~ 30) for 77 cm depth




Estimations from naive scaling

timeaveraged flow in equatorial plane (mantle-frame)

= small but 'coherent’ radial m = 0 component u,(m = 0)
= minimal azimuthal/radial m =1 component u, ,(m = 1)
= maximum axial m =1 component u,(m = 1)

= strong azimuthal m = 0 component u,(m = 0) (braking)
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scale to Rm~500(f ~7 Hz)= v5~45

= v ~15m/s, V$0N30’"/57 V70~ 1ms optimization = detection of m =0
= tM~0.0ls=Ax~30-0.01 ~0.3m mode possible in equatorial plane? J




m dynamo observed in small parameter regime in kinematic simulations
using timeaveraged flow; robustness must be checked by considering
impact of boundary conditions and impact of temporal fluctuations

B pressure:

— flow transition should be detectable using prus
— requires calculation of a moving average for pressure

m Ultrasonic Doppler Velocimetry UDV:

— axisymmetric flow mode might be detectable qualitatively measuring
the radial flow in the equatorial plane, but optimization necessary.

— reasonable quantitative flow measurements may be possible up to
f ~ 0.5 Hz (corresponding to Rm ~ 30)

m power input:

— power input constrains available energy for flow driving

— so far measurements are not in accordance with theory (not surprising)

— internal losses are unknown = better calibration?

— better: measurement of torque to rule out impact of internal losses

— alternative: use slip (deviation of real rotation from given rotation)




Further possibilities for measurements

m reduction of effective electrical conductivity
caused by turbulent fluctuations (5-effect))
= Perm-approach: global measurement of phase-shift between induced
and applied magnetic fields including anisotropy of turbulence
(Noskov et al. 2012, Phys.Rev. E 85, 016303)
= Madison approach: local measurements of EMF
(Rahbarnia et al 2012, Astrophys. J 759, 80)
= important because of large Rm achievable
at precession dynamo device (Perm, Madison: Rm<30)

m temperature increase of fluid = how is energy dissipated, model for
viscous disspiation, Joule heating

m 'Seismology’ = calculation of mean circulation from measurements of
propagation of soundwaves

m Magnetic field measurements: coverage, reconstruction, impact of
Earth’s magnetic field, transformation of reference frames, inverse
problems (velocity reconstruction?) = future topic
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