Publications concerning the DYN3D code

2024

NuScale-like SMR Model Development and Applied Safety Analyses with the Code Chain Serpent-DYN3D-ATHLET

Diaz Pescador, E.(1); Bilodid, Y.(2); Jobst, M.(3); Kliem, S.(4)


Analysis of loss of flow without scram test in the FFTF reactor – Part II: System thermal hydraulics with point neutron kinetics

Ponomarev, A.(6); Nikitin, E.(7); Fridman, E.(8)

Related publications


Analysis of loss of flow without scram test in the FFTF reactor – Part I: preparation of neutronics data

Nikitin, E.(15); Fridman, E.(16); Ponomarev, A.(17)

Related publications


2023

Coupled 3D neutronics/thermal-hydraulics analysis of Superphénix start-up tests with DYN3D/ATHLET code system

Ponomarev, A.(21); Nikitin, E.(22); Fridman, E.(23)


Impact of Thermal-Hydraulic Feedback and Differential Thermal Expansion on European SFR Core Power Distribution

Lindley, B.; Álvarez Velarde, F.; Baker, U.; Bodi, J.; Cosgrove, P.; Charles, A.; Fiorina, C.; Fridman, E.(25); Krepel, J.; Lavarenne, J.; Mikityuk, K.; Nikitin, E.(26); Ponomarev, A.; Radman, S.; Shwageraus, E.; Tollit, B.

Related publications


Extension of the DYN3D/ATHLET code system to SFR applications: models description and initial validation

Fridman, E.(29); Nikitin, E.(30); Ponomarev, A.(31); Di Nora, A.; Kliem, S.(32); Mikityuk, K.

Related publications


2022

Verification of the code DYN3D for calculations of neutron flux fluctuations

Viebach, M.; Lange, C.; Kliem, S.(36); Demaziere, C.; Rohde, U.; Hennig, D.; Hurtado, A.


2021

DYN3D and CTF Coupling within a Multiscale and Multiphysics Software Development (Part I)

Davies, S.; Litskevich, D.; Rohde, U.; Detkina, A.; Merk, B.; Bryce, P.; Levers, A.; Ravindra, V.


Optimization of multi-group energy structures for diffusion analyses of sodium-cooled fast reactors assisted by simulated annealing – Part II: methodology application

Di Nora, V. A.; Fridman, E.(39); Nikitin, E.(40); Bilodid, Y.(41); Mikityuk, K.

Related publications


Neutronic Modelling of the FFTF Control Rod Worth Measurements with Diffusion Codes

Nikitin, E.(44); Fridman, E.(45); Mikityuk, K.(46); Radman, S.(47); Fiorina, C.(48)

Related publications


Neutron noise patterns from coupled fuel-assembly vibrations

Viebach, M.; Lange, C.; Seidl, M.; Bilodid, Y.(51); Hurtado, A.


CTF and FLOCAL Thermal Hydraulics Validations and Verifications within a Multiscale and Multiphysics Software Development

Davies, S.; Rohde, U.; Litskevich, D.; Merk, B.; Bryce, P.; Levers, A.; Detkina, A.; Atkinson, S.; Ravindra, V.


Optimization of multi-group energy structures for diffusion analyses of sodium-cooled fast reactors assisted by simulated annealing – Part I: methodology demonstration

Di Nora, V. A.; Fridman, E.(54); Nikitin, E.; Bilodid, Y.(55); Mikityuk, K.

Related publications


Modelling ASTRID-Like Sodium-Cooled Fast Reactor with Serpent DYN3D Code Sequence

Rydlewicz, W.; Fridman, E.(58); Shwageraus, E.

Related publications

  • Contribution to proceedings
    Physics of Reactors PHYSOR 2020, 29.03.-02.04.2020, Cambridge, United Kingdom, 978-1-5272-6447-2
  • Open Access Logo European Physical Journal Web of Conferences 247(2021), 02028
    DOI: 10.1051/epjconf/202124702028(60)

2020

Detailed Simulation of the Nominal Flow and Temperature Conditions in a Pre-Konvoi PWR Using Coupled CFD and Neutron Kinetics

Höhne, T.(61); Kliem, S.(62)

  • Contribution to proceedings
    CFD4NRS-8 : Computational Fluid Dynamics for Nuclear Reactor Safety - OECD/NEA Workshop, 25.-27.11.2020, Palaiseau, Frankreich
  • Lecture (Conference)
    CFD4NRS-8 : Computational Fluid Dynamics for Nuclear Reactor Safety - OECD/NEA Workshop, 25.-27.11.2020, Palaiseau, Frankreich
  • Open Access Logo Fluids 5(2020)3, 161
    DOI: 10.3390/fluids5030161(63)

2019

Modeling of the FFTF isothermal physics tests with the Serpent and DYN3D codes

Nikitin, E.; Fridman, E.(64)


A realistic approach for the assessment of the consequences of heterogeneous boron dilution events in pressurized water reactors

Kliem, S.(66); Grahn, A.; Bilodid, Y.(67); Höhne, T.


Applying the Serpent-DYN3D Code Sequence for the Decay Heat Analysis of Metallic Fuel Sodium Fast Reactor

Pereira, G.; Johnson, A. E.; Bilodid, Y.; Fridman, E.(69); Kotlyar, D.


2018

Explicit decay heat calculation in the nodal diffusion code DYN3D

Bilodid, Y.(71); Fridman, E.(72); Kotlyar, D.(73); Shwageraus, E.(74)


Extension of the reactor dynamics code DYN3D to SFR applications – Part III: validation against the initial phase of the Phenix EOL natural convection test

Nikitin, E.; Fridman, E.


Extension of the reactor dynamics code DYN3D to SFR applications – Part II: validation against the Phenix EOL control rod withdrawal tests

Nikitin, E.; Fridman, E.


Extension of the reactor dynamics code DYN3D to SFR applications – Part I: thermal expansion models

Nikitin, E.; Fridman, E.


The HEXNEM3 nodal flux expansion method for the hexagonal geometry in the code DYN3D

Bilodid, Y.; Grundmann, U.; Kliem, S.


Validation of the DYN3D-Serpent code system for SFR cores using selected BFS experiments. Part II: DYN3D calculations.

Rachamin, R.; Kliem, S.


Neutron Noise Observations in German KWU Built PWR and Analyses with the Reactor Dynamics Code DYN3D

Rohde, U.; Seidl, M.; Kliem, S.(81); Bilodid, Y.


2017

Simulation of an MSLB scenario using the 3D neutron kinetic core model Dyn3D coupled with the CFD software Trio U

Grahn, A.; Gommlich, A.; Kliem, S.; Bilodid, Y.; Kozmenkov, Y.


Validation of the DYN3D-Serpent code system for SFR cores using selected BFS experiments. Part I: Serpent calculations.

Rachamin, R.; Kliem, S.


2016

The reactor Dynamics code DYN3D – models, Validation and applications

Rohde, U.; Kliem, S.; Grundmann, U.; Baier, S.; Bilodid, Y.; Duerigen, S.; Fridman, E.; Gommlich, A.; Holt, L.; Grahn, A.; Kozmenkov, Y.; Mittag, S.


Hybrid microscopic depletion model in nodal code DYN3D

Bilodid, Y.; Kotlyar, D.; Shwageraus, E.; Fridman, E.; Kliem, S.


Investigation of Feedback on Neutron Kinetics and Thermal Hydraulics from Detailed Online Fuel Behavior Modelling during a Boron Dilution Transient in a PWR with the Two-way Coupled Code System DYN3D-TRANSURANUS

Holt, L.; Rohde, U.; Kliem, S.; Baier, S.; Seidl, M.; Macían-Juan, R.


2015

On the use of the SPH method in nodal diffusion analyses of SFR cores

Nikitin, E.; Fridman, E.; Mikityuk, K.


Spectral history model in DYN3D: Verification against coupled Monte-Carlo thermal-hydraulic code BGCore

Bilodid, Y.; Kotlyar, D.; Margulis, M.; Fridman, E.; Shwageraus, E.


Validation and verification of the coupled neutron kinetic/thermalhydraulic system code DYN3D/ATHLET

Kozmenkov, Y.; Kliem, S.; Rohde, U.


Boron dilution transient simulation analyses in a PWR with neutronics/thermal-hydraulics coupled codes in the NURISP project

Jimenez, G.; Herrero, J.; Gommlich, A.; Kliem, S.; Cuervo, D.; Jimenez, J.


Solution of the OECD/NEA neutronic SFR benchmark with Serpent-DYN3D and Serpent-PARCS code systems

Nikitin, E.; Fridman, E.; Mikityuk, K.


Coupling of the 3D neutron kinetic core model DYN3D with the CFD software ANSYS CFX

Grahn, A.; Kliem, S.; Rohde, U.

  • Contribution to proceedings
    ASME 2014 22nd International Conference on Nuclear Engineering (ICONE22), 07.-11.07.2014, Prag, Tschechische Republik
    Proceedings of ICONE22
  • Lecture (Conference)
    ASME 2014 22nd International Conference on Nuclear Engineering (ICONE22), 07.-11.07.2014, Prag, Tschechische Republik
  • Annals of Nuclear Energy 84(2015), 197-203
    DOI: 10.1016/j.anucene.2014.12.015(93)
    Cited 26 times in Scopus

Development of a general coupling interface for the fuel performance code TRANSURANUS tested with the reactor dynamics code DYN3D

Holt, L.; Rohde, U.; Seidl, M.; Schubert, A.; van Uffelen, P.


2014

Implementation of a fast running full core pin power reconstruction method in DYN3D

Gomez, A.; Sanchez Espinosa, V. H.; Kliem, S.; Gommlich, A.


Fuel cycle advantages and dynamics features of liquid fueled MSR

Krepel, J.; Hombourger, B.; Fiorina, C.; Mikityuk, K.; Rohde, U.; Kliem, S.; Pautz, A.


Extension and application of the reactor dynamics code DYN3D for Block-type High Temperature Reactors

Baier, S.; Fridman, E.; Kliem, S.; Rohde, U.


2013

Axial discontinuity factors for the nodal diffusion analysis of high conversion BWR cores

Fridman, E.; Duerigen, S.; Bilodid, Y.; Kotlyar, D.; Shwageraus, E.


The reactor dynamics code DYN3D and its trigonal-geometry nodal diffusion model

Duerigen, S.; Rohde, U.; Bilodid, Y.; Mittag, S.

  • Kerntechnik 78(2013)4, 310-318

Neutronic analysis of SFR core with HELIOS-2, SERPENT, and DYN3D codes

Rachamin, R.; Wemple, C.; Fridman, E.


Modeling of SFR cores with Serpent-DYN3D codes sequence

Fridman, E.; Shwageraus, E.


Overview of major HZDR developments for fast reactor analysis

Merk, B.; Glivici-Cotruţă, V.; Duerigen, S.; Rohde, U.; Kliem, S.


2012

Simulation of RUTA-70 reactor with CERMET fuel using DYN3D/ATHLET and DYN3D/RELAP5 coupled codes

Kozmenkov, Y.; Rohde, U.; Baranaev, Y.; Glebov, A.

  • Kerntechnik 77(2012)4, 249-257

Assessment of spectral history influence on PWR and WWER core

Bilodid, Y.; Ovdiienko, I.; Mittag, S.; Kuchin, A.; Khalimonchuk, V.; Leremenko, M.

  • Kerntechnik 77(2012)4, 278-285
    ISSN: 0932-3902

The simplified P3 approach on a trigonal geometry of the nodal reactor code DYN3D

Duerigen, S.; Fridman, E.

  • Kerntechnik 4(2012), 226-229

Studies on Boiling Water Reactor design with reduced moderation and analysis of reactivity accidents using the code DYN3D-MG

Rohde, U.; Pivovarov, V. A.; Matveev, Y. A.

  • Kerntechnik 77(2012)4, 240-248
    ISSN: 0932-3902

Development and verification of the coupled 3D neutron kinetics/thermal-hydraulics code DYN3D-HTR for the simulation of transients in block-type HTGR

Rohde, U.; Baier, S.; Duerigen, S.; Fridman, E.; Kliem, S.; Merk, B.


2011

Coupled neutronic thermo-hydraulic analysis of full PWR core with Monte-Carlo based BGCore system

Kotlyar, D.; Shaposhnik, Y.; Fridman, E.; Shwageraus, E.


Development of the coupled 3D neutron kinetics/thermal-hydraulics code DYN3D-HTR for the simulation of transients in block-type HTGR

Rohde, U.; Baier, S.; Duerigen, S.; Fridman, E.; Kliem, S.; Merk, B.

  • Kerntechnik 76(2011)3, 166-173

Super-homogenisation factors in pinwise calculations by the reactor dynamics code DYN3D

Grundmann, U.; Mittag, S.

  • Annals of Nuclear Energy 38(2011), 2111-2119

On the use of the Serpent Monte Carlo code for few-group cross section generation

Fridman, E.; Leppänen, J.


Development of Multi-Physics Code Systems based on the Reactor Dynamics Code DYN3D

Kliem, S.; Gommlich, A.; Grahn, A.; Rohde, U.; Schütze, J.; Frank, T.; Gomez, A.; Sanchez, V.

  • Invited lecture (Conferences)
    Fachtag der KTG: "Aktuelle Themen der Reaktorsicherheitsforschung in Deutschland", 07.-08.10.2010, Dresden, Deutschland
  • Contribution to proceedings
    Fachtag der KTG: "Aktuelle Themen der Reaktorsicherheitsforschung in Deutschland", 07.-08.10.2010, Dresden, Deutschland
    Tagungsband des Fachtages der KTG: "Aktuelle Themen der Reaktorsicherheitsforschung in Deutschland", CDROM: FZ Dresden-Rossendorf
  • Kerntechnik 76(2011)3, KT100569

2010

Use of the local Pu-239 concentration as an indicator of burnup spectral history in DYN3D

Bilodid, I.; Mittag, S.


2009

ATWS analysis for PWR using the coupled code system DYN3D/ATHLET

Kliem, S.; Mittag, S.; Rohde, U.; Weiß, F.-P.


Simulation von ATWS-Transienten in Druckwasserreaktoren

Kliem, S.; Mittag, S.; Rohde, U.; Grundmann, U.; Weiß, F.-P.

  • Contribution to proceedings
    Jahrestagung Kerntechnik 2008, 27.-29.05.2008, Hamburg, Germany
    Tagungsband der Jahrestagung Kerntechnik 2008, CDROM, Berlin: INFORUM GmbH
  • Invited lecture (Conferences)
    Jahrestagung Kerntechnik 2008, 27.-29.05.2008, Hamburg, Germany
  • atw - International Journal for Nuclear Power 54(2009)2, 100-110
    ISSN: 1431-5254

2008

Dynamics of Molten Salt Reactors

Krepel, J.; Grundmann, U.; Rohde, U.; Weiss, F.-P.

  • Nuclear Technology 164(2008), 34-44

Development and verification of a nodal approach for solving the multigroup SP3 equations

Beckert, C.; Grundmann, U.

  • Annals of Nuclear Energy 35(2008)1, 75-86

2007

DYN3D - Advanced Reactor Simulations in 3D

Rohde, U.; Grundmann, U.; Kliem, S.

  • Nuclear Energy Review 2(2007), 28-30
    ISSN: 1753-3910

Multigroup Diffusion and SP3 Solutions for a PWR MOX/UO2 Benchmark with the Code DYN3D

Beckert, C.; Grundmann, U.; Mittag, S.

  • Transactions of the American Nuclear Society and the European Nuclear Society 97(2007)
  • Lecture (Conference)
    2007 ANS/ENS International Meeting, 11.-15.11.2007, Washington D.C., United States

DYN3D-MSR spatial dynamics code for Molten Salt Reactors

Krepel, J.; Rohde, U.; Grundmann, U.; Weiß, F.-P.

  • Annals of Nuclear Energy 34(2007), 449-462

Calculation of the VVER-1000 Coolant Transient Benchmark using the Coupled Code Systems DYN3D/RELAP5 and DYN3D/ATHLET

Kozmenkov, Y.; Kliem, S.; Grundmann, U.; Rohde, U.; Weiss, F.-P.


2006

Analyses of the V1000CT-1 benchmark with the DYN3D/ATHLET and DYN3D/RELAP coupled code systems including a coolant mixing model validated against CFD calculations

Kliem, S.; Kozmenkov, Y.; Höhne, T.; Rohde, U.


2005

DYN1D-MSR dynamics code for molten salt reactors

Krepel, J.; Rohde, U.; Grundmann, U.; Weiss, F.-P.


Validation of coupled codes using VVER plant measurements

Vanttola, T.; Hämäläinen, A.; Kliem, S.; Kozmenkov, Y.; Weiß, F.-P.; Kereszturi, A.; Hadek, J.; Strmensky, C.; Stefanova, S.; Kuchin, A.

  • Nuclear Engineering and Design 235(2005), 507-519 (2005)

2004

Core response of a PWR to a slug of under-borated water

Kliem, S.; Rohde, U.; Weiß, F.-P.


Analysis of the Boiling Water Reactor Turbine Trip Benchmark with the Codes DYN3D and ATHLET/DYN3D

Grundmann, U.; Kliem, S.(111); Rohde, U.

  • Nuclear Science and Engineering 148(2004), 226-234

2003

Discontinuity factors for non-multiplying material in two-dimensional hexagonal reactor geometry

Mittag, S.; Petkov, P.; Grundmann, U.

  • Annals of Nuclear Energy 30/13 (2003) pp. 1347-1364

Analyses of the OECD Main Steam Line Break Benchmark with the Codes DYN3D and ATHLET

Grundmann, U.; Kliem, S.

  • Nuclear Technology 142(2003) 146-153

2001

The Modeling of Fuel Rod Behaviour under RIA Conditions in the Code DYN3D

Rohde, U.

  • Annals of Nuclear Energy 28 (2001), Vol. 13, pp. 1343-1363

2000

Experimental Investigations on the Four-Loop Test Facility ROCOM

Höhne, T.; Grunwald, G.; Prasser, H.-M.

  • Kerntechnik 65/5-6, S. 212-215

1999

Comparative Study of a Boron Dilution Scenario in VVER Reactors

Ivanov, K. N.; Grundmann, U.; Mittag, S.; Rohde, U.

  • Annals of Nuclear Energy 26 (1999) 1331-1339

A Two-Dimensional Intranodal Flux Expansion Method for Hexagonal Geometry

Grundmann, U.; Hollstein, F.

  • Nuclear Science and Engineering 133 (1999) 201-212

1997

Analysis of a boron dilution accident for WWER-440 combining the use of the codes DYN3D and SiTAP

Rohde, U.; Elkin, I.; Kalinenko, V.

  • Nuclear Engineering and Design 170 (1997), pp. 95 - 99

Neutron Flux Reconstruction ina Hexagonal Cassete - Theory and Implementation into the Code DYN3D/H1.1

Hadek, J.; Grundmann, U.

  • Nucleon No. 3, (1997), pp. 8 - 14


Content from Sidebar

Contact

Dr. Sören Kliem

Head
Reactor Safety
s.kliemAthzdr.de
Phone: +49 351 260 2318


URL of this article
https://www.hzdr.de/db/Cms?pOid=58192


Links of the content

(1) https://orcid.org/0000-0001-5362-1925
(2) https://orcid.org/0000-0002-7810-1245
(3) https://orcid.org/0000-0002-0151-3137
(4) https://orcid.org/0000-0001-6654-6434
(5) https://doi.org/10.1016%2Fj.nucengdes.2024.112909
(6) https://orcid.org/0000-0001-7146-1777
(7) https://orcid.org/0000-0002-5695-4220
(8) https://orcid.org/0000-0002-4468-5238
(9) https://www.hzdr.de/publications/Publ-37345
(10) https://www.hzdr.de/publications/Publ-38370
(11) https://www.hzdr.de/publications/Publ-38758
(12) https://doi.org/10.14278/rodare.2640
(13) https://doi.org/10.14278/rodare.2741
(14) https://doi.org/10.1016%2Fj.pnucene.2024.105130
(15) https://orcid.org/0000-0002-5695-4220
(16) https://orcid.org/0000-0002-4468-5238
(17) https://orcid.org/0000-0001-7146-1777
(18) https://www.hzdr.de/publications/Publ-37346
(19) https://www.hzdr.de/publications/Publ-38370
(20) https://doi.org/10.1016%2Fj.pnucene.2023.105018
(21) https://orcid.org/0000-0001-7146-1777
(22) https://orcid.org/0000-0002-5695-4220
(23) https://orcid.org/0000-0002-4468-5238
(24) https://doi.org/10.1016%2Fj.nucengdes.2023.112456
(25) https://orcid.org/0000-0002-4468-5238
(26) https://orcid.org/0000-0002-5695-4220
(27) https://www.hzdr.de/publications/Publ-36609
(28) https://doi.org/10.1115%2F1.4056930
(29) https://orcid.org/0000-0002-4468-5238
(30) https://orcid.org/0000-0002-5695-4220
(31) https://orcid.org/0000-0001-7146-1777
(32) https://orcid.org/0000-0001-6654-6434
(33) https://www.hzdr.de/publications/Publ-35779
(34) https://doi.org/10.14278/rodare.2007
(35) https://doi.org/10.1016%2Fj.anucene.2022.109619
(36) https://orcid.org/0000-0001-6654-6434
(37) https://doi.org/10.1016%2Fj.anucene.2021.108735
(38) https://doi.org/10.3390%2Fen14165060
(39) https://orcid.org/0000-0002-4468-5238
(40) https://orcid.org/0000-0002-5695-4220
(41) https://orcid.org/0000-0002-7810-1245
(42) https://www.hzdr.de/publications/Publ-31706
(43) https://doi.org/10.1016%2Fj.anucene.2021.108541
(44) https://orcid.org/0000-0002-5695-4220
(45) https://orcid.org/0000-0002-4468-5238
(46) https://orcid.org/0000-0002-4101-9221
(47) https://orcid.org/0000-0001-7613-9808
(48) https://orcid.org/0000-0001-9857-5037
(49) https://www.hzdr.de/publications/Publ-32446
(50) https://doi.org/10.1051%2Fepjconf%2F202124710017
(51) https://orcid.org/0000-0002-7810-1245
(52) https://doi.org/10.1051%2Fepjconf%2F202124702015
(53) https://doi.org/10.3390%2Fen14051220
(54) https://orcid.org/0000-0002-4468-5238
(55) https://orcid.org/0000-0002-7810-1245
(56) https://www.hzdr.de/publications/Publ-31706
(57) https://doi.org/10.1016%2Fj.anucene.2021.108183
(58) https://orcid.org/0000-0002-4468-5238
(59) https://www.hzdr.de/publications/Publ-32353
(60) https://doi.org/10.1051%2Fepjconf%2F202124702028
(61) https://orcid.org/0000-0002-7816-297X
(62) https://orcid.org/0000-0001-6654-6434
(63) https://doi.org/10.3390%2Ffluids5030161
(64) https://orcid.org/0000-0002-4468-5238
(65) https://doi.org/10.1016%2Fj.anucene.2019.06.058
(66) https://orcid.org/0000-0001-6654-6434
(67) https://orcid.org/0000-0002-7810-1245
(68) https://doi.org/10.1016%2Fj.nucengdes.2019.04.038
(69) https://orcid.org/0000-0002-4468-5238
(70) https://doi.org/10.1016%2Fj.anucene.2018.11.020
(71) https://orcid.org/0000-0002-7810-1245
(72) https://orcid.org/0000-0002-4468-5238
(73) https://orcid.org/0000-0002-5581-7400
(74) https://orcid.org/0000-0002-7309-4920
(75) https://doi.org/10.1016%2Fj.anucene.2018.07.045
(76) https://doi.org/10.1016%2Fj.anucene.2018.05.017
(77) https://doi.org/10.1016%2Fj.anucene.2018.05.016
(78) https://doi.org/10.1016%2Fj.anucene.2018.05.015
(79) https://doi.org/10.1016%2Fj.anucene.2018.02.037
(80) https://doi.org/10.1016%2Fj.anucene.2017.12.036
(81) https://orcid.org/0000-0001-6654-6434
(82) https://doi.org/10.1016%2Fj.anucene.2017.10.033
(83) https://doi.org/10.1016%2Fj.nucengdes.2017.02.002
(84) https://doi.org/10.1016%2Fj.anucene.2016.12.023
(85) https://doi.org/10.1016%2Fj.pnucene.2016.02.013
(86) https://doi.org/10.1016%2Fj.anucene.2016.02.012
(87) https://doi.org/10.1016%2Fj.nucengdes.2015.11.005
(88) https://doi.org/10.1016%2Fj.anucene.2015.06.007
(89) https://doi.org/10.1016%2Fj.anucene.2015.03.030
(90) https://doi.org/10.1016%2Fj.anucene.2014.12.012
(91) https://doi.org/10.1016%2Fj.anucene.2014.11.002
(92) https://doi.org/10.1016%2Fj.anucene.2014.08.054
(93) https://doi.org/10.1016%2Fj.anucene.2014.12.015
(94) https://doi.org/10.1016%2Fj.anucene.2014.10.040
(95) https://doi.org/10.1016%2Fj.nucengdes.2014.04.028
(96) https://doi.org/10.1016%2Fj.anucene.2013.08.007
(97) https://doi.org/10.1016%2Fj.nucengdes.2013.12.013
(98) https://doi.org/10.1016%2Fj.anucene.2013.06.006
(99) https://doi.org/10.1016%2Fj.anucene.2012.11.030
(100) https://doi.org/10.1016%2Fj.anucene.2012.08.006
(101) https://doi.org/10.1016%2Fj.nucengdes.2013.07.026
(102) https://doi.org/10.1016%2Fj.nucengdes.2011.09.051
(103) https://doi.org/10.1016%2Fj.nucengdes.2011.07.028
(104) https://doi.org/10.1016%2Fj.anucene.2011.01.032
(105) https://doi.org/10.1016%2Fj.anucene.2010.04.019
(106) https://doi.org/10.1016%2Fj.anucene.2009.04.001
(107) https://doi.org/10.1016%2Fj.nucengdes.2007.02.021
(108) https://doi.org/10.1016%2Fj.pnucene.2006.06.008
(109) https://doi.org/10.1016%2Fj.anucene.2005.07.007
(110) https://doi.org/10.1016%2Fj.nucengdes.2003.11.021
(111) https://orcid.org/0000-0001-6654-6434