Das neue Astrophysik-Labor im Dresdner Felsenkeller

Privatdozent Dr. Daniel Bemmerer

Von sehr kleinen zu sehr großen Fragen

Mitglied der Helmholtz-Gemeinschaft

Daniel Bemmerer | Das neue Astrophysik-Labor im Dresdner Felsenkeller, 25.06.19 | http://www.hzdr.de

DRESDEN concept

Seltene Prozesse lassen sich nur unter Tage untersuchen

Je tiefer unter Tage, desto geringer ist der Störeffekt durch ionisierende Teilchen aus der kosmischen Strahlung.

Daniel Bemmerer | Das neue Astrophysik-Labor im Dresdner Felsenkeller, 25.06.19 | http://www.hzdr.de

Die Entstehung der chemischen Elemente

Mitglied der Helmholtz-Gemeinschaft

Wasserstoffbrennen in der Sonne: Proton-Proton-Kette

Mitglied der Helmholtz-Gemeinschaft

Der ³He(α,γ)⁷Be - Wirkungsquerschnitt

Messungen sehr geringer Wirkungsquerschnitte, (=sehr geringer Reaktionswahrscheinlichkeiten) sind nötig!

Dafür sind untertägige Experimentiereinrichtungen erforderlich.

Mitalied der Helmholtz-Gemeinschaf

3 He(α , γ)⁷Be – Aktivierungsmessung mit 50 mBq / Probe 50 mBq ⁷Be-Probe

Mitglied der Helmholtz-Gemeinschaft

Das neue Astrophysik-Labor

- System aus neun Stollen, 1856-1859 f
 ür die Felsenkeller-Brauerei angelegt
- Gleichförmige Felsdecke, 45 m Monzonit
- Niederniveaumesslabor des VKTA Dresden seit 1982 in Stollen IV
- Neues Astrophysik-Labor in Stollen VIII und IX

Zwei Partner, ein Projekt

Technische Universität Dresden
Wissenschaftliche Leitung: Prof. Dr. Kai Zuber
Reinstgermaniumdetektor
Kosten für die Errichtung (anteilig)

Betreiber (Mietvertrag, Sicherheit, Umweltschutz)

Daniel Bemmerer | Das neue Astrophysik-Labor im Dresdner Felsenkeller, 25.06.19 | http://www.hzdr.de

5 MV Ionenbeschleuniger in York/England 2012

In Gebrauch von 1999-2012, guter Zustand

Foto: HZDR/B. Rimarzig

concep

Mitglied der Helmholtz-Gemeinschaft

Einbauten in Stollen VIII und IX des Felsenkellers

Gemeinsames Projekt von HZDR und TU Dresden

- HZDR: 5 MV Ionenbeschleuniger mit 50 μA ¹H⁺, ⁴He⁺ (single-ended), ¹²C⁺ (Tandem)
- TU Dresden: 150% Reinstgermaniumdetektor zur Aktivitätsbestimmung

Daniel Bemmerer | Das neue Astrophysik-Labor im Dresdner Felsenkeller, 25.06.19 | http://www.hzdr.de

"Kosmische" Rahmenbedingung: Der Myonenfluss

- Myonen = Elementarteilchen, die in der oberen Atmosphäre durch Beschuss mit kosmischer Strahlung entstehen
- Abschwächung durch viel Fels
- Auslöser einer Vielzahl von Sekundärteilchen
- Messung in mehrmonatiger Kampagne mit REGARD Myonentomograph (MTA Wigner Institut Budapest)

Mitglied der Helmholtz-Gemeinschaft

Daniel Bemmerer | Das neue Astrophysik-Labor im Dresdner Felsenkeller, 25.06.19 | http://www.hzdr.de

Flux in 1/(m² s · sr)

Natürlich vorliegender Neutronenfluss in Stollen IV

- 25-mal bis 180-mal weniger Neutronen unter Tage als über Tage
- Unterschiede je nach lokaler Abschirmung
- Favorit: Steinbunker mit wenig ²³⁸U, ²³²Th in den Bunkerwänden

	BELEN ³ He–Zähler [10 ⁻⁴ cm ⁻² s ⁻¹]
Freier Stollen	2.07 ± 0.07
Pb+Fe Bunker	4.56 ± 0.16
Steinbunker	0.66 ± 0.04
Über Tage	(121)

Nullratenvergleich Erdoberfläche – flach – tief unter Tage

Messungen machen bereits bei 45 m unter Tage Sinn!

Erhoffte Ergebnisse in zehn Jahren

Präziseres Verständnis von:

- Prozessen im Innern der Sonne
- Relativer Häufigkeit von Sauerstoff und Kohlenstoff
- Supernova-Explosionen vom Typ la

