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Plasma Physics: lecture 4

§ Kinetic description of plasma

§ The Vlasov equation

§ Langmuir waves 

§ Bohm-Gross frequency

§ Landau damping



The distribution function
§ The comprehensive information about the motion 

of individual particles in plasma is included in the 
distribution function

§ Waves will alter the distribution function
§ Maxwell-Boltzmann distribution can be used for 

homogeneous plasma extending over all space:
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The distribution function
§ For 6-dimensional phase space we get 3 velocity and 

3 spatial coordinates for each particle.
§ Number of particles within small volume d3r at 

position r, with velocity within volume element d3v at 
velocity v:

§ Integrate over all real space → distribution function:

§ Integrate whole phase space → total no. of particles:



Continuity equation
§ Particles cannot be created or destroyed
§ Particle density n and flow velocity u are connected 

through conservation of mass:

§ Thus the continuity equation:   ∴
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The Vlasov equation
§ Particles/mass are conserved
§ The distribution function obeys the continuity 

equation:

§ Simplify using the product rule:
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The Vlasov equation
§ Get the collisionless Boltzmann equation:

§ Velocity distribution constantly changed by 
collisions

§ Add collision term for completeness
§ Collisional Boltzmann equation:
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The Vlasov equation
§ Plasmas are subject to the Lorentz force:

§ Substitute to the collisional Boltzmann equation
§ The full Vlasov equation:

§ Ignoring collisions:
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The Vlasov equation
§ The Vlasov equation is used to describe and study 

the kinetic theory of plasmas.
§ The electric and magnetic fields can be:
• External acting on a whole group of particles
• Generated by collective effects in plasma, i.e. waves

§ It is used to model waves in plasma, transport and 
collisions.

§ We will use it to get a complete description of 
Langmuir waves in plasma and recover the Bohm-
Gross frequency.

§ We will also study the damping rate of the Langmuir 
waves (Landau damping).



Langmuir waves
§ Assume static ions (no change in distribution function)
§ Electron distribution function perturbed by f1(r, v, t) 
§ The total distribution function: 

f(r, v, t) = f0(r, v, t) + f1(r, v, t) 

§ Thus, electric field present due to f1 perturbation only, 
no net electric fields

§ Following from the Gauss law:



Langmuir waves
§ Vlasov equation before perturbation:
§ After perturbation:

§ Subtract equations:

§ And linearize (ignore terms E f1 ): E f1  is small



Langmuir waves
§ For wave motion, we assume that the electric field 

and perturbation to the distribution function vary 
periodically: 

§ Substituting into the Vlasov equation:

§ Simplify:



Langmuir waves
§ Gauss law again:

§ Substitute for f1 :



Langmuir waves
§ Assuming plane wave propagating along z-direction
§E and k along z-axis for electrostatic waves:
§ Thus, the velocity component vz also along z and the 

non-zero electric field yields dispersion relation:

§ This leads to a dispersion relation links k and !
§ Note: there is a pole in the integral when the velocity 

of the electron equals the phase velocity of the wave, 
i.e. for vz = !/k (we ignore it for #$ ≫ #&')



Langmuir waves
§ For Maxwell-Boltzmann distribution function:

§ And substitute for f0 :

§ And:
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Langmuir waves
§ And simplify:

§ We make the assumption that vz is large compared to 
the thermal velocity (kBT/m)1/2  and thus !"# ≪ %

→ ignore the pole
§ Binomial expansion:



Langmuir waves

§ Substitute and simplify:

§ Integrate from −∞ to ∞, odd functions go to zero:

→



Langmuir waves
§ Rewrite with thermal velocity ve = (kBT/m)1/2 and 

substitute for the plasma frequency: 

§ Complete result taking in account the pole provides 
the exact solution:
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Langmuir oscillations Effect of temperature The damping term 
(effect of the singularity)



Langmuir waves
§ We assumed a large phase velocity !" compared to 

thermal velocity #$% ≪ '
§ With no damping term, the effect of temperature is 

small and we obtain the approximate solution          
(' ≈ ')%) for the Bohm-Gross frequency:

§ Can only drive longitudinal waves for ' > ')%
§ Electron plasma waves similar to sound waves, carry 

information at roughly the thermal velocity

The dispersion relation 
for electrostatic waves in 
warm plasma'+ = ')%+ + 3#/01 2 #+



Landau damping
§ The correct solution of the Vlasov equation for 

electrostatic waves (electrons moving parallel to the k-
vector) give a rise to a damping term.

§ The pole in the integral occurs when electrons travel 
with a velocity equal to the phase velocity !" of the wave 
→ resonant phenomenon. Electrons with velocity close 
to !" travel with the wave and get trapped in it and 
oscillate (potential well).

§ Trapped electrons thus see an almost static field → they 
can be accelerated (if vz slightly less than #/k) or 
decelerated (if vz slightly more than #/k) by the wave.



Landau damping
§ Trapped particle oscillates within the field of the wave



Landau damping
§ !" ≫ $

% → electron passes through the wave unchanged

§ !" ≪ $
% → electron oscillates with the wave,

but average effect zero

§ !" ≈ $
% → electron travels with the

wave and sees almost 
a steady field

§ Electrons trapped for:
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Landau damping
§ For a Maxwellian distribution function, there are always 

more particles travelling more slowly than the wave, 
than faster than it. 

§ The wave accelerates particles and thus loses energy to 
them → the wave is damped (Landau damping).



Landau damping
§ Electron oscillates in a potential well:
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§ More particles accelerated than 
decelerated (Maxwellian) → wave 
gives up energy to the electrons.

§ Self-limited, once -./0 = 0, 
damping turns off.



Landau damping
§ We explore the physical picture to get an approximate 

expression for the Landau damping rate.
§ The potential associated with the wave !" can be 

estimated as half the field amplitude times its 
wavelength: #$/2

§ We plug in to obtain the velocity range of trapped 
particles:



Landau damping
§ Estimate the excess of trapped particles with initial 

velocities lower than !" :

§ One oscillation period:

Set to the total velocity difference ∆$



Landau damping

§ Estimate the energy density of the electrostatic field as:

§ Thus, the power loss of the wave:

§ Then, for one oscillation period !: 

"# =
1
2 '()

*

+ = ,"#
,-



Landau damping
§ The total power loss then:

§ Substituting for ∆" ≈ $%/'( )/*, we get: 
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Landau damping
§ Assume that the wave is dumped with the rate !:

§ Thus the dumping rate is:

§ Substitute for P:

§ Given that " = $/& ≈ $()/&:



Landau damping
§ Plug in 1D Maxwellian (simple analysis):

§ Get dumping rate:

§ Thus for ! = #/% ≈ #'(/%:
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Landau damping
§ Waves are heavily damped (large !) for wavelength close 

to or shorter than the Debye length (large "#$)
§ Debye length is the distance a typical thermal electron 

travels in an oscillation period. 
§ Original assumption for light damping was that the 

phase velocity of the wave large compared with the 
thermal velocity, i.e. small "%&/(.

§ The process is reversible → can be used to drive plasma 
waves

§ As the wave damps, the electric field associated with it 
reduces and the faster particles eventually have enough 
energy to escape the trapping potential



Plasma accelerators
§ New generation of particle accelerators also works 

by particles ‘surfing’ plasma waves.
§ Inject a 30-fs very intense laser pulse into a plasma.
§ Electrons oscillate in laser field, but due to gradient 

in field, get expelled.
§ This leaves a ‘wake’ behind the pulse, almost devoid 

of electrons, with a huge E field.
§ Any residual electrons 

trapped in this wake are 
accelerated to high energy



Plasma accelerators
§ Length of wake region ~"#
§ The bubble is devoid of electrons, thus field $ ≈ &'"#/)*
§ Need max. 100 fs pulse to get laser field to eject electrons.
§ Cannot have too high density or laser group velocity falls 

too far below c. Use 1023m-1.
§ This leads to fields of 5x1010m-1! i.e. a GeV in a couple of 

centimetres!
§ Acceleration is ~1000 times greater than conventional 

accelerators.



Summary of lecture 4
§ The continuity equation of the distribution function in phase 

space leads to the Vlasov equation:

§ Assuming periodic perturbations to the distribution function we 
recover our dispersion relation for plasma (Langmuir) waves:

§ We find that the pole in the dispersion relation gives a rise to 
famous phenomenon of Landau damping at the rate of:
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