Simulations of Laser Plasma Interaction

Michael Bussmann

Mitglied der Helmholtz-Gemeinschaft

Theoretical Prerequisites $\frac{\overline{P}}{2} \cdot \overline{V}^{f} + \frac{\overline{P}}{2} \cdot \overline{V}^{f} + \frac{\overline{P}}{2} \cdot \overline{U}^{f} + \frac{\overline{$

35 31

15 dr

Collisionless Boltzmann Equation

The Vlasov Equations for a collisionless multi-species plasma

The Vlasov-Maxwell Equations – What are the forces?

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \vec{v} \cdot \vec{\nabla} f + \vec{F} \cdot \frac{df}{d\vec{p}} = 0$$

$$\frac{df_{i(s,z)}}{dt} = \frac{\partial f_{i(s,z)}}{\partial t} + \vec{v}_{i(s,z)} \cdot \vec{\nabla} f_{i(s,z)} + \vec{F} \cdot \frac{df_{i(s,z)}}{d\vec{p}_{i(s,z)}} = 0$$

$$\frac{df_{e}}{dt} = \frac{\partial f_{e}}{\partial t} + \vec{v}_{e} \cdot \vec{\nabla} f_{e} + \vec{F} \cdot \frac{df_{e}}{d\vec{p}_{e}} = 0$$

Mitglied der Helmholtz-Gemeinschaft

The Vlasov-Maxwell Equations — The Lorentz force

$$\vec{F}_{i(s,z)} = Z_{i(s,z)} e\left(\vec{E} + \frac{\vec{v}_{i(s,z)}}{c} \times \vec{B}\right)$$
$$\vec{F}_{e} = - e\left(\vec{E} + \frac{\vec{v}_{e}}{c} \times \vec{B}\right)$$

The Vlasov-Maxwell Equations – Fields mediate interactions

$$\vec{F}_{x} = Z_{x}e\left(\vec{E} + \frac{\vec{v}_{x}}{c} \times \vec{B}\right)$$
$$\vec{\nabla} \times \vec{B} = \frac{1}{c}\left(4\pi\vec{j} + \frac{\partial\vec{E}}{\partial t}\right)$$
$$\vec{\nabla} \times \vec{E} = -\frac{1}{c}\frac{\partial\vec{B}}{\partial t}$$
$$\vec{\nabla} \cdot \vec{E} = 4\pi\rho$$
$$\vec{\nabla} \cdot \vec{B} = 0$$

Ampere's Law

Faraday's Law

Gauss's Law Gauss's Law

The Vlasov-Maxwell Equations – Currents created by plasma

$$\vec{F}_{x} = Z_{x}e\left(\vec{E} + \frac{\vec{v}_{x}}{c} \times \vec{B}\right)$$
$$\vec{\nabla} \times \vec{B} = \frac{1}{c}\left(4\pi\vec{j} + \frac{\partial\vec{E}}{\partial t}\right) \quad \text{Ampere's Law}$$
$$\vec{\nabla} \times \vec{E} = -\frac{1}{c}\frac{\partial\vec{B}}{\partial t} \quad \text{Faraday's Law}$$

$$\vec{j}(\vec{r},t) = \sum_{s} \sum_{z} \int e(Z_{s,z} f_{i(s,z)} \vec{v}_{i(s,z)} - f_e \vec{v}_e) d\vec{p}$$

Mitglied der Helmholtz-Gemeinschaft

The Vlasov-Maxwell Equations Cheat Sheet

$$\frac{df_{i(s,z)}}{dt} = \frac{\partial f_{i(s,z)}}{\partial t} + \vec{v}_{i(s,z)} \cdot \vec{\nabla} f_{i(s,z)} + \vec{F}_{i(s,z)} \cdot \frac{df_{i(s,z)}}{d\vec{p}_{i(s,z)}} = 0 \qquad \vec{F}_{i(s,z)} = Z_{i(s,z)} e\left(\vec{E} + \frac{\vec{v}_{i(s,z)}}{c} \times \vec{B}\right)$$

$$\frac{df_e}{dt} = \frac{\partial f_e}{\partial t} + \vec{v}_e \cdot \vec{\nabla} f_e \qquad + \vec{F}_e \cdot \frac{df_e}{d\vec{p}_e} = 0 \qquad \vec{F}_e = - e\left(\vec{E} + \frac{\vec{v}_e}{c} \times \vec{B}\right)$$

$$\vec{\nabla} \times \vec{B} = \frac{1}{c} \left(4\pi \vec{j} + \frac{\partial \vec{E}}{\partial t} \right) \quad \text{Ampere's Law} \\ \vec{\nabla} \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \quad \text{Faraday's Law} \\ \vec{\nabla} \cdot \vec{E} = 4\pi\rho \quad \text{Gauss's Law} \\ \vec{\nabla} \cdot \vec{B} = 0 \quad \text{Gauss's Law} \end{cases} \quad \vec{v}_{x} = \frac{\vec{p}_{x}}{\gamma_{x} m_{x}} = \frac{\vec{p}_{x}}{\sqrt{m_{x}^{2} + \left(\frac{\vec{p}_{x}}{c}\right)^{2}}}, x \in \{i(s, z), e\}$$

$$\vec{j}(\vec{r},t) = \sum_{s} \sum_{z} \int e\left(Z_{s,z} f_{i(s,z)} \vec{v}_{i(s,z)} - f_e \vec{v}_e\right) d\vec{p}$$
$$\rho(\vec{r},t) = \sum_{s} \sum_{z} \int e\left(Z_{s,z} f_{i(s,z)} - f_e\right) d\vec{p}$$

 $dN_{i(s,z)} = f_{i(s,z)} d\vec{r} d\vec{p}$ $dN_e = f_e d\vec{r} d\vec{p}$

> DRESDEN concept

The Vlasov-Maxwell Equations

- Phase space density is coserved for every species
- Electric and magnetic fields mediate interaction
- Close-range interactions neglected
- Current densities and charge densities change fields

Method	Resource
"Vlasov-Maxwell Equations"	A. A. Vlasov, <i>The Vibrational Properties of an</i> <i>Electron Gas</i> , Soviet Physics Uspekhi. 10(6), 721 , 1968

Simulation Methods

Methods to "probe" the Vlasov-Maxwell Equations - Going "3D"

Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp m.bussmann@hzdr.de

Molecular Dynamics for probing the Vlasov-Maxwell-Equations

2

Molecular Dynamics for probing the Vlasov-Maxwell-Equations

Pro: All interactions included **Contra:** N x N = N² interactions (plus retardation)

Every particle is a classical particle

Huge number N of particles

1 μ m³ Ti has about 5.66 x 10¹⁰ Ti atoms

Method	Resource
"Barnes-Hut"-like Tree Code	J. Barnes, P. Hut, <i>A hierarchical O(N log N) force-</i> calculation algorithm, Nature, 324(4), 446, 1986
Fast Multipole Methods	N. Engheta, et al., <i>The Fast Multipole Method for Electromagnetic Scattering Computation</i> , IEEE Transactions on Antennas and Propagation 40, 634 , 1992

The problem of retardation in Molecular Dynamics - Bookkeeping

Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

Long-range interactions via **electric** fields...

Page 32

Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp m.bussmann@hzdr.de

Page 34

Fluid Methods for probing the Vlasov-Maxwell-Equations

Pro:

Computationally much less expensive

Contra: Averaged Quantities

Long-term quasi-equilibrium development

No particle dynamics, needs closure via Equation of State

ussmann@hzdr.de

The PIC Method for probing the Vlasov-Maxwell-Equations

Page 37

Macro particles (particle density distributions) replace real particles

10¹¹ macro particles 1 macro particle ~ 1...1000 real particles

HZDR

Macroparticles (particle density distributions) replace real particles

m.bussmann@hzdr.de

Fields are discretized on a (regular rectilinear) grid

Field discretization on a rectilinear grid — The Yee Lattice

Method	Resource
"Yee-Lattice"	K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation. 14, 302, 1966

Performing the particle-in-cell algorithm

Fields interpolation (1 cell)

m.bussmann@hzdr.de

Fields interpolation (2 cells)

Field interpolation on the macroparticle's position

Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

Mitglied der Helmholtz-Gemeinschaft

Fields interpolation – We need a lot of cells around each MP

Field interpolation on the macroparticle's position

- Use several cells around each MP for higher accuracy
- Act on the macro particle according to the shape function S

"Particle pusher" (Integration of Equation of Motion)

"Particle pusher" (Integration of Equation of Motion)

"Particle pusher" (Integration of Equation of Motion)

Page 48
"Particle pusher" (Integration of Equation of Motion)

Method	Resource			
"Boris-Pusher"	.P. Boris, <i>Relativistic plasma simulation-optimization of a hybrid</i> code, Proceedings of the 4th Conference onNumerical Simulation of Plasmas, Naval Res. Lab., Washington, D.C., 3, 970			
"Vay-Pusher"	JL. Vay, D.P. Grote, R.H. Cohen, A. Friedman, Novel methods in the Particle-In-Cell accelerator Code-Framework Warp, Computational Science & Discovery 5(1), 014019, 2012			

"Current Deposition" - Computing the current density

Current Deposition Computing the current density for each macro particle DRESDEN

Page 50

The only relevant measure is the total current of all MP

The only relevant measure is the total current of all MP

 $\vec{j} = \sum Q_{MP} \int f_{MP} d\vec{l}_{cell}$

Discrete MPs create noise in current

Current Deposition Computing the current density for each macro particle

MP

Current splitting schemes — Achieving conservation of charge

Method	Resource			
"Villasenor-Buneman"	J. Villasenor, O. Buneman, <i>Rigorous charge conservation</i> for local electromagnetic field solvers, Computer Physics Communications 69(2-3), 306 , 1992			
"Esirkepov"	T. Zh. Esirkepov, <i>Exact charge conservation scheme for</i> <i>Particle-in-Cell simulation with an arbitrary form-factor</i> , Computer Physics Communications 135(2), 144 , 2001			
"Umeda"/"Zig-zag"	T Umeda, et al., <i>A new charge conservation method in electromagnetic particle-in-cell simulations</i> , Computer Physics Communications 156(1), 73, 2003			

"Maxwell Solver" - Solving 50% of Maxwell's Equations

Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp m.bussmann@hzdr.de

"Maxwell Solver" - Solving 50% of Maxwell's Equations

Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp m.bussmann@hzdr.de The particle-in-cell Cycle

Method	Resource
"Particle-Mesh"	R.W. Hockney, J.W. Eastwood
Basics	Computer Simulation Using Particles
"Particle-in-Cell"	C.K. Birdsall, A.B. Langdon
for Plasmas	Plasma Physics via Computer Simulation
"Particle-in-Cell"	Yu.N. Grigoryev
Theory	Numerical "Particle-in-cell" Methods: Theory and Applications

It's all wrong!!! Issues with PIC

Problem	Resource
Energy Conservation	S. Markidis, G. Lapenta, <i>The energy conserving particle-in-cell method</i> , Journal of Computational Physics 230(18), 7037 , 2011
Momentum Conservation	G.B. Jacobs, J.S. Hesthaven, <i>Implicit–explicit time integration</i> of a high-order particle-in-cell method with hyperbolic divergence cleaning, Computer Physics Communications 180(10), 1760 , 2009
Charge Conservation	"Villasenor-Buneman", "Esirkepov", "Umeda"/"Zig-Zag", etc.
"Numerical Heating"	E. Cormier-Michel, et al., Unphysical kinetic effects in particle- in-cell modeling of laser wakefield accelerators, Phys. Rev. E 78, 016404, 2008
"Close Collisions"	Y. Sentoku, A.J. Kemp, <i>Numerical methods for particle simulations at extreme densities and temperatures: Weighted particles, relativistic collisions and reduced currents</i> , Journal of Computational Physics 227(14), 6846 , 2008

Issues for the Particle-in-Cell Technique - An incomplete list

Problem	Resource
Field Ionization	R. Nuter et al., <i>Field ionization model implemented in Particle</i> <i>In Cell code and applied to laser-accelerated carbon ions</i> , Phys. Plasmas 18, 033107 , 2011
Collisional Ionization	A.J. Kemp, et al., <i>Modeling ultrafast laser-driven ionization dynamics with Monte Carlo collisional particle-in-cell simulations</i> , Phys. Plasmas 11, 5648, 2004
Energy Transport in overdense Plasmas	R. Mishra, et. al., Collisional particle-in-cell modeling for energy transport accompanied by atomic processes in dense plasmas, Phys. Plasmas 20, 072704 , 2013
"Numerical Dispersion"	R. Lehe, et al., <i>Elimination of Numerical Cherenkov Instability</i> <i>in flowing-plasma Particle-In-Cell simulations by using Galilean</i> <i>coordinates</i> , arXiv:1608.00227 [physics.plasm-ph], 2016
Phase space sampling	M. Vranic, et al., <i>Particle merging algorithm for PIC codes</i> , Computer Physics Communications 191, 65, 2015

DRESDEN concept izdr

Not all methods are implemented in every PIC code

- Not all methods are implemented in every PIC code
- Some methods cannot be implemented together

- Not all methods are implemented in every PIC code
- Some methods cannot be implemented together
- Some methods interact spuriously with others

- Not all methods are implemented in every PIC code
- Some methods cannot be implemented together
- Some methods interact spuriously with others
- Some methods have limited applicability

- Not all methods are implemented in every PIC code
- Some methods cannot be implemented together
- Some methods interact spuriously with others
- Some methods have limited applicability
- Some methods are approximate

- Not all methods are implemented in every PIC code
- Some methods cannot be implemented together
- Some methods interact spuriously with others
- Some methods have limited applicability
- Some methods are approximate
- Some methods are hard to parallelize

- Some methods cannot
- Some method
- PIC is a SAMPLING TECHNIQUE! ed applicability Som
- methods are hard to parallelize Som

PIC code

ether

with others

Why we need Exascale

As discussed: Methods have their faults

- As discussed: Methods have their faults
- PIC-sampling requires reruns with varying sampling

- As discussed: Methods have their faults
- PIC-sampling requires reruns with varying sampling
- Monte-Carlo sampling (Ionization, etc.), too

- As discussed: Methods have their faults
- PIC-sampling requires reruns with varying sampling
- Monte-Carlo sampling (Ionization, etc.), too
- Initial parameters not well known from Experiment

- As discussed: Methods have their faults
- PIC-sampling requires reruns with varying sampling
- Monte-Carlo sampling (Ionization, etc.), too
- Initial parameters not well known from Experiment
- Simulate what is measured!

For example Field lonization

Carrier-envelope Phase influences Femtosecond Field Ionization

Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp

Mitglied der Helmholtz-Gemeinschaft

m.bussmann@hzdr.de

At best we know the Laser Contrast at one position in the beam

Josefine Metzkes

Page 77

Choice of Field Ionization Model determines Charge State

Argon ions, $\lambda = 1 \mu m$, Keldysh vs. ADK, Marco Garten

Page 79

Solution: High performance computing

Repeat simulations for...

- ... computing stochastic errors from sampling
- ... computing systematic errors from models
- ... parameter scans in range of initial conditions
- Integrate simulated (synthetic) diagnostics

Modern HPC Systems

TOP 10 Sites for June 2016

For more information about the sites and systems in the list, click on the links or view the complete list.

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)	Architecture	Programming
1	National Supercomputing Center in Wuxi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93,014.6	125,435.9	15,371	SW26010	OpenAcc
2	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808	Intel Xeon Phi	TBB, OpenMP
3	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209	Nvidia Tesla	CUDA
4	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890	IBM PowerPC	OpenMP
5	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660	Sparc 64	OpenMP
6	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,586.6	10,066.3	3,945		
7	DOE/NNSA/LANL/SNL United States	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Aries interconnect Cray Inc.	301,056	8,100.9	11,078.9		Intel x86	TBB, OpenMP

Best Practice

Modern HPC Systems

TOP 10 Sites for June 2016

For more information about the sites and systems in the list, click on the links or view the complete list.

Rank Si	ite System	Rmax Rpeak Power Cores (TFlop/s) (TFlop/s) (kW)	Architecture	Programming
1 N W C	ational Supercomputing Center in Sunway TaihuLight - Sunway uxi MPP, Sunway SW26010 260C	10,649,600 93,014.6 125,435.9 15,371	SW26010	OpenAcc
2 N G C	Almost all systems in the list have a different a	e TOP 10 HPC	Intel Xeon Phi	TBB, OpenMP
	Cray Inc.		Nvidia Tesla	CUDA
4 D U	There is not a single prog	ramming model	IBM PowerPC	OpenMP
5 R C Ja	that provides you perfo	rmance on all	Sparc 64	OpenMP
6 D Li U	architectures (forget ab	out OpenCL)		
7 D U	DE/NNSA/LANL/SNL Trinity - Cray XC40, Xeon nited States E5-2698v3 16C 2.3GHz, Aries interconnect Cray Inc.	301,056 8,100.9 11,078.9	Intel x86	TBB, OpenMP

Best Practice

Modern Hardware – Levels of Parallelism

Modern Hardware – Memory Hierarchy

m.bussmann@hzdr.de
Modern Hardware — Mapping of Hierarchies to Hardware

90 % of code is management, 10% Physics

Page 86

 Do independent parts of the algorithm in parallel (task parallelism)

Domain Decomposition - Field and Particle Domain

Field Domain Particle Domain

Page 88

Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp m.bussmann@hzdr.de Mitglied der Helmholtz-Gemeinschaft

Use Vectorized, Sorted Data Structures

Field Domain Particle Domain

Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp m.bussmann@hzdr.de

Add Particles

Put Data in Fast Memory

Cell-wise Threading

Particle-wise Threading

Tasks – Concurrent Kernels, Asynchronous Communication

Page 94

PIC on EVERY hardware with a single source

PIC is memory bound (you do not need or can use FLOPs)

Maybe we are just not smart enough?

I. Surmin, et al., Co-design of a particle-in-cell plasma simulation code for Intel Xeon Phi: a first look at Knights Landing, arXiv:1608.01009 [cs.DC]

PIConGPU

For example 400 n_{critical} target

The difference between 2D and 3D for a spherical Target

3D3V

Mitalied der Helmholtz-Gemeinschat

The difference between 2D and 3D in resources

- 1 x 2D3V: ~300 GB, 130 GPUhrs
- 1 x 3D3V: ~250 TB,

500.000 GPUhrs

5 ps

Synthetic Diagnostics

A look inside the tool box – X-Ray free electron lasers for probing

www.hibef.eu www.eucall.eu

lons & electrons

VFEI

High power laser

EUCALL

Small Angle X-Ray Scattering (SAXS) in a nutshell

$$\Phi = \Phi_0 \cdot \Delta \Omega \cdot T \cdot \epsilon \cdot \left| r_0 \cdot \int n_e(\vec{r}) \cdot e^{i\vec{q}\vec{r}} d\vec{r} \right|^2$$

FluxSolidTrans-DetectionThomsonFourieranglemissionefficiencyscatteringtransform ofcrosssectione⁻density

$$q = |\mathbf{k} - \mathbf{k}_0| = \frac{4\pi}{\lambda} \sin \Theta$$
$$\Delta \phi = -\mathbf{r}(\mathbf{k} - \mathbf{k}_0) = -\mathbf{r}\mathbf{q}$$

What would we see if we probed the instabilities by SAXS?

Page 104

Compare to Experiment

LH88 beam time at LCSL (E. McBride, A. Pelka, M. Roedel, et al.)

SAXS is great for electron density jumps, so what do we see?

"Hollow" or "solid" cone shaped density boundary

m.bussmann@hzdr.de

SAXS is great for electron density jumps, so what do we see?

0.1/nm

10¹² X-ray photons scattered on double slit in simulation

Double slit 3D density

Scattering image of 10¹² photons

Page 109

Michael Bussmann · Computational Radiation Physics · www.hzdr.de/crp m.bussmann@hzdr.de Mitglied der Helmholtz-Gemeinschaft

Next: In-situ X-ray scattering / radiation transport / atomic physics

Thank you! www.hzdr.de/crp