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Kurzfassung

Die direkte Integration von magnon-spintronischen Bauteilen in moderne Technologien er-

fordert die Entwicklung von kurzwelligen Spinwellenquellen und verlustarmer Spinwellen-

leiter.

In dieser Arbeit werden mögliche Lösungen für diese beiden Herausforderungen vorgestellt.

Der erste Teil dieser Arbeit beschäftigt sich mit der nichtreziproken Spinwellenemission

in magnetischen Doppellagen. Zwei Prototypsysteme werden theoretisch untersucht und

durch experimentelle Ergebnisse untermauert: (i) ausgedehnte magnetische Doppellagen

und (ii) mikrometer-große elliptische Doppellagen. Durch die dynamischen Dipol-Dipol-

Wechselwirkungen wird eine Nichtreziprozität der Dispersionsrelation induziert. Diese

wird mittels mikromagnetischer Simulationen und einer analytischen Theorie untersucht.

Die nichtreziproke Frequenzverschiebung nimmt hierbei bei kleinen Wellenzahlen linear

mit der Filmdicke zu. Die topologische Emission von Spinwellen wird in den mikrometer-

großen elliptischen Doppellagen unter Verwendung von Röntgentransmissionsmikroskopie

beobachtet und theoretisch unter Verwendung mikromagnetischer Simulationen bestätigt.

Im zweiten Teil dieser Arbeit wird der spezielle Spintransport in ferromagnetischen dün-

nen Filmen untersucht, der als Spinsuprafluidität bekannt ist. Das Hauptmerkmal dieses

makroskopischen Zustands ist die Abhängigkeit des dissipierten Spinstromes von der Prop-

agationslänge als Potenzgesetz im Gegensatz zur exponentiellen Dämpfung von Spin-

wellen. Die Existenz und die Stabilität des suprafluiden Transportes in dünnen ferromag-

netischen Filmen, angeregt durch einen spinpolarisierten Strom, in Gegenwart der intrin-

sischen Dipol-Dipol-Wechselwirkungen wird erstmals beschrieben. Um Hinweise für die

experimentelle Realisierung der Spinsuprafluidität zu geben, wird die Abhängigkeit des Zu-

standes vom Anregungsstrom numerisch analysiert. Hierbei ergeben sich drei verschiedene

Bereiche für den Fall vernachlässigter als auch aktivierter Dipol-Dipol-Wechselwirkung.

Dies zeigt die Allgemeinheit des untersuchten Systems. Die beiden vorgestellten Effekte

könnten in Zukunft neue Wege für die technologische Anwendung magnonischer Struk-

turen eröffnen.
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Abstract

The direct integration of magnon-spintronic devices in current technologies requires the

development of spin-wave sources emitting ultra-short wavelengths and low-loss spin-wave

guides. In this work, possible solutions for both of these challenges are provided.

The first part of this thesis is dedicated to the nonreciprocal spin-wave emission in mag-

netic bilayers. Two prototype systems are theoretically investigated and corroborated by

experimental results: (i) extended magnetic bilayer films and (ii) micron-sized elliptical

magnetic bilayers. The nonreciprocity of the dispersion relation induced by the dynamic

dipole-dipole interactions is investigated by means of micromagnetic simulations and an

analytic theory. The nonreciprocal frequency shift linearly increases with the film thickness

for small wave numbers. The topological emission of short-wavelength spin waves is ob-

served in the micron-sized elliptical magnetic bilayers using scanning transmission X-ray

microscopy and theoretically corroborated utilizing micromagnetic simulations.

The second part of this thesis theoretically investigates a special spin transport mechanism

in ferromagnetic thin films termed spin superfluidity. The main characteristic of this macro-

scopic state is the power-law dependence of the dissipated spin current in contrast to the

exponential damping of spin waves, enabling low-loss long-range transport. The possible

existence and the stability of the superfluidic transport in ferromagnetic thin films excited

by spin-transfer torque in the presence of the intrinsic dipole-dipole interactions is reported

for the first time. To provide indicators to prove the experimental realization of a spin su-

perfluid the dependence on the excitation current is numerically analyzed. Three distinct

regimes are obtained for both disabled and enabled dipole-dipole interactions, showing the

generality of the investigated system.

Both presented effects might open new paths for the technological application of

magnonic devices in the future.
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1. Introduction

Research regarding magnetic materials and their applications has attracted enormous inter-

est in the last decades [1]. This class of materials is already present in our everyday life,

e. g. in electric motors, sensors or in information technology [2, 3]. Many of these appli-

cations are based on the combination of the electric charge transport and the electron spin,

providing an additional degree of freedom [4, 5].

This new research field, termed spintronics was particularly stimulated by the discovery

of the giant magnetoresistance (GMR) [6, 7], tunneling magnetoresistance (TMR) [8] and

the spin transfer torque effects (STT) [9]. The mentioned examples show the direct interac-

tion of a charge current with the magnetic moment. It is interesting to note that commercial

products based on the GMR, TMR and STT already exist. The GMR effect was imple-

mented as the new technology in hard disk drives to read out the information shortly after

its discovery. Recently, the first commercial magnetic random access memory (MRAM)

combining the TMR and the STT for reading and writing operation was launched. Utilizing

magnetic material in such ways directly shows the advantages of spintronic systems. The

information stored with magnetic material is non-volatile in comparison with conventional

dynamic random access memory (DRAM). The operation speed of MRAM devices can

reach GHz or even THz and therefore, can compete with the common DRAM. The opera-

tion speed of magnetic devices for example can be tuned by the size and geometry of the

device, novel material and ion beams, providing the ability to optimize the device for the

desired application [10, 11].

Besides the emerging field of spintronics, the direct application of spin waves or

magnons—the elementary excitations in magnetic materials—is heavily investigated [12–

14]. Since all spintronic applications still involve the electric charge transport, Joule heat-

ing will always be present, limiting the energy efficiency of spintronic devices. The field of

magnon spintronic or magnonics tries to explore the direct integration of spin waves in logic

circuits for information transport and processing. Such wave-based logic circuits could uti-

lize not only the amplitude of the incoming signal, but also the phase or frequency, opening

new possibilities for non-boolean architectures. To fabricate commercial devices, three im-

portant issues have to be solved: (i) The efficient excitation of spin waves with arbitrary

wavelength and frequency, (ii) the fabrication of spin waveguides and (iii) the detection of

the spin wave signal. Besides these three important parts, the general property of nonrecip-
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1. Introduction

rocal transport has to be fulfilled [13,15]. So far, all issues have been partially addressed in

the literature. The generation of spin waves with very short wavelength by using a vortex

core as an emitter was shown by using STXM [16]. However, this scheme produces radial

spin waves with very small propagation distances. More commonly lithographically pre-

pared antennas are utilized to excite spin waves. However, to pattern structures well below

100 nm is challenging. A natural solution for this issue is the usage of magnetic textures as

spin wave emitters [17, 18].

Many works focused on the investigation of magnonic waveguides. Besides the concept

of the geometrical confined waveguides [19–22], flexible schemes based on effectives field

wells at the edge of the structure or generated by magnetic textures have been proposed

[23–25].

Regarding the detection of the transmitted spin wave signal, the spin-pumping effect [26]

and the inverse spin Hall effect [27] provide efficient processes. Moreover, the spin wave

signal is converted in an electric signal [28], making it compatible with current technologies.

The general property of the nonreciprocal transport can be achieved in multiple ways.

Every Damon-Eshbach spin wave shows a nonreciprocal transport regarding the spin-wave

amplitude for a magnetic film thickness larger than the exchange length [29, 30]. To in-

tegrate magnonic devices into current information technology devices the film thickness

is limited, and therefore, new approaches are needed. Recently many ways to manipulate

the spin-wave dispersion relation have been proposed: Prominent examples are the mod-

ification of the material parameters at the surfaces of the magnetic film [31] or the usage

of the Dzyaloshinskii-Moriya interaction (DMI) [32, 33]. Both schemes require elaborated

techniques regarding the growth of the magnetic thin films, and therefore, provide many

challenges.

As already discussed by Grünberg et al. in the 1980s [7, 34, 35], nonreciprocal proper-

ties can be introduced by the intrinsic dipolar interactions in magnetic materials. Recent

reports point out that arrays of magnetic nanopillars, ferromagnetic nanotubes, and anti-

ferromagnetic coupled bilayers exhibit nonreciprocal transport. Detailed theoretical and

experimental studies regarding the magnon transport in magnetic bilayers are still missing.

The complete discussion of magnonic devices was so far focused only on spin waves. As

shown by many authors, the propagation distance of spin waves can be rather limited de-

pending on the material system. Studies for the spin-wave transport in magnetic insulators

show the possibility of centimeter-long propagation distance in specific systems. However,

commonly the propagation distance is limited to micrometers. However, already in the

year 1969 a hydrodynamic formulation of spin waves was proposed [36]. This theoretical

framework opened the discussion of similarities of the equations of motion in ferromagnetic

system to the hydrodynamic equation for ideal fluids. Years later the field was rediscov-
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1. Introduction

ered [37] and was termed spin superfluidity, given by the similarities of the spin transport

with superfluids. Several authors show the big advantage of the spin superfluidity compared

to spin waves [37–42]. The superfluidic spin transport shows a power-law spatial decay

in contrast to the exponential decay of spin waves, and thus enables long-range spin trans-

port. So far mainly analytic studies omitting dipole-dipole interactions have been published.

Only two micromagnetic studies of the spin superfluidity are available [43, 44]. However,

both studies investigated micron-sized system with very strong magnetostatic fields. These

strong magnetostatic fields lead to the suppression of the spin superfluid. This issues can be

avoided considering extended thin films.

On this basis, the first part of this thesis deals with the nonreciprocal spin-wave trans-

port in magnetic bilayers and the generation of planar spin waves with short wavelength

in such systems. The dynamic dipole interactions inside the bilayer are carefully analyzed

and a simple analytical formula to calculate the dispersion relation in antiferromagnetically

aligned bilayers is provided. Both, experimental results obtained utilizing ferromagnetic

resonance, magnetometry, transmission electron microscopy and Brillouin light scattering,

as well as micromagnetic simulations support the analytic model.

The second part addresses the spin superfluidity and the impact of dipole-dipole inter-

actions on this state. A combined analytical and numerical approach predicts the stability

of the superfluid for (i) omitted dipole-dipole interactions and (ii) including dipole-dipole

interactions. For both cases qualitatively the same behavior was obtained. In contrast to

the published work so far, the superfluidic transport is not subject to a simple breakdown

due to large excitation strength. The obtained numerical results indicate the existence of

three different transport regimes. For small excitation bias the traditional superfluid is ob-

tained. For larger bias a breakdown was expected. However, the superfluid is subject to a

self-stabilization mechanism in this regime, allowing the emission of spin waves. Such a

superposition shares many similarities with the well-known two-fluid model for superfluid

He, indicating the generalities of superfluidic systems. This and also the third regime are

strongly influenced by the interaction of the active region or the injector and the transport

channel. For even larger excitations of the superfluid, the injector is polarized and the trans-

mitted spin current, and therefore, the superfluid is screened. Besides the novel regimes, it is

shown that the general behavior is not affect by additional anisotropies or dipole-dipole in-

teractions, indicating possible paths for the experimental realization of such spin superfluids

in ferromagnetic thin films.

This thesis is divided into six chapters: Chapter 2 covers the important theoretical back-

ground needed to understand the theoretical and experimental results. The contribution to

the total energy in ferromagnets, the magnetization dynamics of single spins and spin waves,

and theoretical details regarding the spin superfluidity are presented.

3



1. Introduction

The next chapter, 3, summarizes the experimental and numerical methods used in this

thesis. The basics regarding the ferromagnetic resonance and the vector network analyzer

ferromagnetic resonance setup are shortly described. In order to understand the evalua-

tion of the numerical results, micromagnetic simulations are briefly introduced. Both high-

performance programs developed in the course of the present work, commonly utilized for

the evaluation of micromagnetic simulations are described in detail and benchmarked.

The fourth chapter is devoted to the nonreciprocal spin-wave emission in magnetic bi-

layers. The theoretical framework deriving the dispersion relation in magnetic bilayers de-

veloped in close collaboration with the group of Prof. Landeros at the Universidad Técnica

Federico Santa María in Valparaíso is briefly described and compared to micromagnetic

simulations performed within the present thesis. To obtain experimental evidence ferro-

magnetic resonance spectroscopy performed by me as well as, magnetometry, and Brillouin

light scattering were employed, showing a remarkable agreement with the theoretical de-

scription.

The fifth chapter summarizes the results regarding the spin superfluidity in ferromagnetic

thin films. Two different systems exhibiting spin superfluidity are presented. For ferromag-

netic thin films three regimes are obtained using micromagnetic simulations. The numerical

results are compared with an analytic theory developed by D. Hill at the University of Cal-

ifornia, Los Angeles. Hypotheses are presented in order to understand the interaction of the

injector with the transport channel, resulting in the emergence of the three distinct regimes.

Moreover, similarities with the two-fluid model of superfluid He are discussed.

In the final chapter the main results obtained in this thesis are recapitulated and an outlook

for further studies is provided.

4



2. Fundamentals

Figure 2.1.: Spherical coordinate system for the magnetization
#–
M and the external field µ0

#–
H .

This chapter will cover specific fundamentals, which are important for understanding sub-

sequent experimental and numerical results. The first section is devoted to the contribution

of the free energy for a ferromagnetic body. Afterwards the dynamics for both a macro-spin

and non-uniform excitations, spin waves, will be presented. In the final section, a unique

transport phenomenon in thin ferromagnetic films will be introduced. If not otherwise indi-

cated, the coordinate system used throughout this thesis is depicted in Fig. 2.1.

2.1. Contributions to the Total Energy

For the understanding of the magnetic configuration and excitations of magnetic bodies,

it is important to find an expression for the total energy Etot. This quantity contains all

information necessary to derive all relevant physical quantities observed in experiments.

5



2. Fundamentals

The five most important contributions are:

Etot = Eexch +EMCA +EZeeman +Edipole +EIEC + ... (2.1)

with Eexch, the exchange energy, EMCA, the magnetocrystalline anisotropy energy, EZeeman,

the Zeeman energy, Edipole, the magnetostatic energy and EIEC, the interlayer exchange

energy. All these five contributions will be discussed in detail in the following section. To

derive the contribution to the total energy, the magnetization is considered as a vector field
#–
M( #–r , t), according to the interpretation of W. F. Brown [45]:

#–
M( #–r , t) = Ms · #–m( #–r , t). (2.2)

To simplify calculations, the reduced magnetization #–m( #–r , t) is introduced. Multiplying with

the saturation magnetization Ms, the full magnetization can be recovered. The magnetiza-

tion configuration is assumed to continuously vary in space and time within the magnetic

body. In contrast to the domain theory developed by Landau and Lifshitz, no constraints

keeping the magnetization uniform within a domain are included. Therefore, many local-

ized phenomena can be described by micromagnetic approaches. For some experimental

observations it is sufficient to consider a single macro-spin as

#–
M =

1
V

∫
#–
M( #–r , t) dV (2.3)

with the volume of the magnetic body V . This macro-spin can be considered as the averaged

response of all magnetic moments.

In the following, the important energy contribution will be briefly derived.

Exchange Energy

The exchange energy is a direct consequence of the Pauli exclusion principle [46]. In

quantum-mechanical calculations of many particles the symmetrization or antisymmetriza-

tion of the wave function indirectly introduces new effective terms in the many-particle

Hamiltonian. Therefore, the commonly used Heisenberg Hamiltonian to describe the ex-

change interaction in ferromagnets and antiferromagnets should be considered an effective

Hamiltonian, which is given by

Ĥ =−J
2 ∑
<i, j>

#̂–
S i · ˆ#–

S j (2.4)

with the exchange integral J and the spin operators
#̂–
S at the lattice sites i and j. The

summation is executed for all lattice sites in the lattice. To prevent the double counting of

6



2. Fundamentals

spins, the factor 1/2 is included. The here presented operator is commonly used to solve

the exchange energies on the atomistic scale. However, generally the observation length in

experiments is much larger than the atomic distances and it is appropriate to consider an

average within a continuum theory. Therefore, the angle φi, j between the spins at the lattice

sites i and j is introduced. The newly obtained equation reads

Ĥ =−J
2 ∑
<i, j>

ŜiŜ j
(
1−ϕ

2
i j
)
. (2.5)

By assuming only small angle variations between neighboring spins and rewriting this finite

difference into a derivative, the exchange energy can be written as

Eexch = A
∫ [

|∇ mx|2 + |∇ my|2 + |∇ mz|2
]

dV. (2.6)

Here, A is the exchange constant, an important material parameter and mi the component of

the reduced magnetization #–m ( #–r , t). Since the exchange energy depends on the gradient of

the individual magnetization components, it is intuitively clear that this contribution is zero

in the macro-spin approach.

Dzyaloshinskii-Moriya interaction

For specific system without inversion symmetry, an additional contribution to the exchange

has to be considered. The spin-orbit interaction leads to the introduction of the antisymmet-

ric exchange interaction or Dzyaloshinskii-Moriya interaction (DMI) given by the Hamilto-

nian:

HDMI = ∑
<i, j>

[
#–
S i ×

#–
S i

]
· #–

d ij. (2.7)

Here,
#–
S i and

#–
S i are two neighbouring spins at the lattice sites i and j.

#–

d ij is the correspond-

ing Dzyaloshinskii-Moriya vector. Depending on the symmetry class of the investigated

system the Dzyaloshinskii-Moriya vector has to be chosen accordingly [47].

An easy example is given by the symmetry break provided by an interface of a ferromag-

netic layer with a heavy metal. This effect is usually termed interfacial DMI [48]. For this

case the Dzyaloshinskii-Moriya vector is given by [48]:

#–

d ij = dij
(
ẑ× ûij

)
, (2.8)

where ẑ and ûij are the unit vectors perpendicular to the surface and the connection of the

lattice sites i and j, respectively. dij is reduced to a scalar constant.

7



2. Fundamentals

The interfacial DMI favors two different alignments depending on the sign of dij.

If dij > 0 (dij < 0) the magnetization rotates anticlockwise (clockwise). Assuming that the

normal exchange is nonzero leads to the formation of spin spirals in the presence of DMI.

The micromagnetic energy given by the interfacial DMI can be formulated as

follows [48]:

EDMI = D · (mz∂xmx −mx∂xmz +mz∂ymy −my∂ymz) (2.9)

with the DMI constant D.

Zeeman Energy

Already within the classical electro-dynamic theory, the energy of a magnetic dipole in a

magnetic field
#–
H , termed Zeeman energy, is defined based on the torque exerted on the

magnetic dipole. The Zeeman energy of a single magnetic dipole is given by

EZeeman =−µ0
#–
µ · #–

H . (2.10)

Depending on the relative orientation of the magnetic dipole moment #–
µ and the magnetic

field
#–
H , the Zeeman energy can be positive for antiparallel alignment or negative for parallel

alignment. However, without external perturbation both configurations can be considered

stable.

Since the magnetic moment is mainly carried by the electronic spin in ferromagnets, the

magnetic dipole moment can be replaced by µe = g µB
h̄

#–

Ŝ = γ
#–

Ŝ , resulting in

EZeeman =−µ0γ
#–

Ŝ · #–
H . (2.11)

with the gyromagnetic ratio γ = g µB
h̄ and the g-factor g. Furthermore, this equation can be

expressed in terms of the magnetization, instead of the spin operator

EZeeman =−µ0Ms

∫
#–m( #–r ) · #–

H( #–r ) dV. (2.12)

However, since the magnetization is a vector field, we have to integrate over the volume of

the magnetic body.

Then, the relation for a macro-spin can easily be written as

EZeeman =−µ0V Ms
#–m · #–

H (2.13)

Rewriting the vector product using the polar coordinates defined in Fig. 2.1

and dividing by the volume V , gives the well-know expression for the

8



2. Fundamentals

Zeeman energy density εZeeman = EZeeman/V

εZeeman =−µ0MsH [sinθ sinθH cos(ϕ −ϕH)− cosθ cosθH] . (2.14)

Magnetostatic Energy

The contribution of the dipole-dipole interactions between the magnetic dipole moments is

of great importance for the magnetization dynamics, as well as the spatial magnetization

configuration. As one will see in the Chapters 4 and 5, the dipole-dipole interactions can

strongly influence many effects and therefore are a source of phenomena that have not been

described before. In the simplest model, only the dipole-dipole interaction between two

magnetic moments #–
µ i and #–

µ j separated by #–r i j is considered. To consider all magnetic

moments, a summation over all lattice sites i and j has to be performed, leading to:

Edipole =
1
2 ∑

i, j

µ0

4π

[
#–
µ i · #–

µ j

r3
i j

−
3( #–r i j · #–

µ i)(
#–r i j · #–

µ j)

r5
i j

]
. (2.15)

As for the exchange energy, the factor 1
2 prevents the double counting of magnetic moments

twice. For continuous magnetization distributions one may assume that the separation ri j

is small, the sum can be rewritten into an integral over the volume of the magnetic body.

With this we finally find the magnetostatic energy for a magnetic body with arbitrary shape,

Edipole:

Edipole =−µ0Ms

2V

∫
#–m ( #–r ) · #–

Hdip (
#–r ) dV. (2.16)

Therefore, the problem was simplified and condensed to the calculation of the magneto-

static field
#–
Hdip (

#–r ). To find a general expression for the magnetostatic field, Maxwell’s

equations [49] have to be considered. Within the classical electrodynamics the divergence

of the magnetic field
#–
B ( #–r ) is zero and, therefore, the existence of magnetic monopoles is

forbidden
#–

∇ · #–
B( #–r ) = 0. (2.17)

However, this equation is not sufficient in the given context, since a magnetic body is con-

sidered. The magnetic field
#–
B ( #–r ) has to be replaced by the auxiliary field equation

#–
B( #–r ) = µ0

[
#–
Hdip(

#–r )+ Ms
#–m( #–r )

]
. (2.18)

Combining both equations leads to:

#–

∇ · #–
Hdip(

#–r ) =−Ms

µ0

#–

∇ · #–m( #–r ). (2.19)

9



2. Fundamentals

As directly visible from Eq. (2.19), the magnetostatic field is directly related to the diver-

gence of the magnetization. Therefore, the existence of magnetic (pseudo-) charges can

be postulated, since the equation shows similarities with another Maxwell equation for the

electrical field. However, magnetic pseudo-charges are only similar to classical electric

charges. They also show attractive and repulsive forces, but cannot annihilate. For the

understanding of the symmetry of the magnetostatic field and the relative orientation, it is

sometimes useful to rely on the principle of magnetic charges. An example will be presented

in Chapter 4.

To simplify the problem further, we also assume the electrostatic case. Since no

current densities are present in the magnetic body, the second Maxwell equation states
#–

∇ × #–
Hdip(

#–r ). Such vector fields are termed irrotational vector fields. For this kind of

vector fields an identity of vector calculus states
#–

∇ × (∇Φ). Therefore, a scalar potential

Φ can be found, satisfying the condition of zero curl. The magnetostatic field now can be

written as:
#–
Hdip =−∇Φ. (2.20)

Combing Eqs. (2.19) and (2.20), results in the defining equation for the magnetostatic po-

tential Φ

∆Φ( #–r ) = Ms
#–

∇ · #–m( #–r ). (2.21)

This resembles the well-known Poisson equation, for example found in the calculation of

the electric potential. Since the solution for the Poisson equation was already calculated for

the electric potential, the solution can be written as

Φ = Ms

∫
G
(

#–r , #–r
′
)(

#–

∇ #–r ′ · #–m
(

#–r
′
))

dV
′
. (2.22)

The solution of this linear differential equation is given by Green’s function G
(

#–r , #–r
′
)
=

− 1
4π

1
| #–r − #–r ′ | [50]. The area of integration is still not specified. If we assume a magnetic body

with the volume V , the magnetostatic potential can be calculated by ∆Φout(
#–r ) = 0, since

the magnetization is zero outside of the magnetic body. This does not necessarily mean that

the magnetostatic potential is zero outside the magnetic body. Since the starting point were

Maxwell’s equations, the potential has to fulfill the boundary conditions at the interface

of the magnetic body. This leads to a continuous potential itself, but to a discontinuous

derivative [51]. The boundary conditions can be formulated as:

Φin(
#–r ) = Φout(

#–r ), (2.23)
δΦin(

#–r )
#–n

−
δΦout( #–r )

#–n
=

#–
M( #–r ) · #–n . (2.24)
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with the normal vector #–n given by the surface of the magnetic body. By constraining the

integration volume in Eq. (2.22) and using Gauss’s theorem, the integral can be split into

two contributions. The resulting magnetostatic field is then given by [51, 52]

#–
Hdip(

#–r ) = ∇

(∫
V

dV
′

#–

∇ · #–
M( #–r )

| #–r − #–r ′ |
+
∫

∂V
dA

′
#–n · #–

M( #–r )
| #–r − #–r ′ |

)
. (2.25)

This representation has the great advantage that both contributions arising from the volume

and surface can be calculated individually. We will come back to this in the presentation of

the magnetostatic field in case of a magnetic bilayer in Chapter 4.

However, the exact analytical calculation of the magnetostatic potential or magnetostatic

field is very challenging. Only for a few shapes of a magnetic body the Eq. (2.25) can be

solved analytically. Depending on the case of application either the magnetostatic field can

be calculated numerically or appropriate analytic approximations can be done [51, 53]. For

the calculation of the dynamics of a single spin, the simplification using the demagnetization

tensor N proved reliable:
#–
Hdip(

#–r ) =−Ms N · #–m( #–r ). (2.26)

This tensor either can be calculated analytically for the case of a uniformly magnetized

ellipsoid or again approximated numerically.

Magneto-crystalline Anisotropy

So far, no energy contribution was introduced to favor any alignment of the magnetiza-

tion in an infinite magnetic body. However, many realistic systems show an energetically

more complex landscape. This phenomenon is referred to as magneto-crystalline anisotropy

(MCA). The origin of the difference in energy while rotating the magnetization with re-

spect to the crystal lattice is given by the spin-orbit interaction and dipole-dipole interac-

tions [54–56]. Thereby, the energy of the magneto-crystalline anisotropy can be expressed

in terms of the crystal symmetry itself:

Emca =
∫

g( #–m( #–r ))dV. (2.27)

Here, the function g( #–m( #–r )) contains all the information of the underlying symmetry.

The two important anisotropy contributions are the uniaxial anisotropy (90° symmetry)

and the cubic anisotropy (45° symmetry). Since both contribution will be used throughout

this thesis, the underlying equations will be discussed briefly within the macro-spin approx-

imation.

11
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In many systems the uniaxial anisotropy strongly differs between the direction within the

film plane and perpendicular to the film plane. Therefore, two independent anisotropies are

induced. The in-plane and out-of-plane cases are governed by the anisotropies arising from

the anisotropy constants K2,∥ and K2,⊥, respectively. The uniaxial anisotropy energy density

εu is given by

εu =−K2,⊥ sin2
θ −K2,∥ sin2

θ cos2 (ϕ −ϕu) . (2.28)

All angles θ , ϕ and ϕu are defined according to Fig. 2.1.

The energy density contribution arising from a cubic crystal lattice εc reads

εc = K4 sin2
θ − 1

8
K4 (cos(4ϕ)+7)sin4

θ (2.29)

with the cubic anisotropy constant K4.

Interlayer exchange energy

This contribution to the total energy is similar to the exchange energy, but the coupling of

neighboring spins is not within the films itself, but rather across an interface. In general, the

interlayer exchange coupling can be considered as a special case of the so-called Ruderman-

Kittel-Kasuya-Yoshida (RKKY) interaction [57]. The energy of the interlayer exchange for

each two coupled magnetic layer can be written as

E(1)
IEC = − J1

M(1)
s d(1)

∫
#–m(1)( #–r ) · #–m(2)( #–r ) dV1

− J2

M(1)
s d(1)

∫ [
#–m(1)( #–r ) · #–m(2)( #–r )

]2
dV1, (2.30)

E(2)
IEC = − J1

M(2)
s d(2)

∫
#–m(1)( #–r ) · #–m(2)( #–r ) dV2

− J2

M(1)
s d(1)

∫ [
#–m(1)( #–r ) · #–m(2)( #–r )

]2
dV2. (2.31)

Here the saturation magnetization M(i)
s , the layer thickness d(i) and the reduced magneti-

zation #–m(i)( #–r ) corresponds to the magnetic layer i. Clearly, the similarities between the

exchange energy and the interlayer exchange energy are visible.

Depending on the sign of the bilinear coupling constant J1 the alignment of the two fer-

romagnetic layers can either be parallel for J1 > 0 or antiparallel for J1 < 0. Moreover, the

coupling constant J1 also strongly depends on the spacer material and the spacer thickness.

If the bilinear coupling vanishes, the biquadratic coupling constant favors a 90° alignment

of the magnetization for J2 < 0. By tuning both material and thickness, the desired ground

state configuration can be achieved. Extended reviews regarding the interlayer exchange

coupling were published by Stiles [58] and Bruno [59, 60].
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Magnetic Ground State

All energy contributions derived above will affect the ground state of the investigated mag-

netic system. To obtain the magnetization configuration, which minimizes the total energy,

the first variation of the latter has to be calculated. This results in Brown’s equations [45]

µ0Ms
#–m × #–

Heff = 0, (2.32)
∂

#–m
∂

#–n

⏐⏐⏐⏐
S
= 0 (2.33)

with the normal vector #–n according to the surface S of the magnetic body. The effective

field Heff for a single magnetic body is defined by:

Heff =
A

µ0Ms

(
∇

2 #–m
)

  
Exchange field

− 1
µ0Ms

∂gK

∂
#–m  

Anistropy field

+
#–
Hdip

Magnetostatic field

+
#–
Hext

Zeeman field

. (2.34)

Replacing the effective field Heff in Eq. (2.32) with the individual contributions introduced

before, reveals that the equation is in fact an integro-differential equation. The calculation

of the magnetostatic field requires solving an integral with the magnetization configuration
#–m itself as part of the integrand. Therefore, the ground state can only be calculated analyt-

ically for a few examples. Commonly, the magnetic ground state is obtained by numerical

methods.

2.2. Magnetization Dynamics

This section is devoted to the dynamic excitations of the magnetization. At first, uniform

excitations in a macro-spin model will be discussed. This will govern the basics of ferro-

magnetic resonance (FMR). Afterwards, spatially non-uniform excitation will be described,

leading to the spin-wave theory.

2.2.1. Equation of Motion for Macro-Spins

At first glance, the problem to derive the equation of motion from macro-spins seems to

involve quantum mechanics. However, as shown by various authors, only the basic equation

has to be formulated within the framework of the quantum theory. Since a large number of

spins has to be considered, the correspondence principle provides a semi-classical solution

[61–63]. Therefore, classical mechanics are sufficient to calculate an appropriate equation

of motion for macro spins.
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Figure 2.2.: Trajectory of the magnetization around the effective field direction.

The starting point is the well-known relation between the torque
#–
T and the rate of change

of the angular momentum
#–
L , usually referred to as the rotational analog to Newton’s 2nd

law [64]:
#–
T =

d
#–
L

dt
. (2.35)

Almost the total angular momentum in a ferromagnetic material is carried by the spin
#–
S .

Therefore, we can replace the total angular momentum
#–
J with the spin momentum

#–
S and

use the relation between the magnetization
#–
M and the spin

#–
S

#–
M =−γ

#–
S . (2.36)

Here, γ denotes the already introduced gyromagnetic ratio. Since the torque exerted on the

magnetization
#–
M is given by the effective magnetic field

#–
Heff we obtain

d
#–
M
dt

=−µ0γ

[
#–
M× #–

H
]
. (2.37)

With appropriate starting conditions this equation describes the persistent precession of the

magnetization
#–
M around the effective field

#–
Heff.

However, this result is not observed in realistic systems. On the microscopic scale, one

could interpret the persistent precession as an infinite lifetime of a spin. To solve this issue,
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dissipation of the spins or better of the magnetization has to be included. This damping term

was phenomenologically included by Gilbert [65]. This results in the complete Landau-

Lifshitz-Gilbert equation:

d
#–
M
dt

=−γµ0

[
#–
M× #–

Heff

]
− α

Ms

[
#–
M× d

#–
M
dt

]
. (2.38)

Here, α denotes the Gilbert damping constant. The resulting trajectory of the magnetization

is depicted in Fig. 2.2. Important to note is that the length of the magnetization vector
#–
M is

conserved. The trajectory, therefore, is constrained to the surface of a sphere. To obtain the

effective field, the first variation of the free energy F with respect to the magnetization has

to be calculated [65]

Heff =−∇ #–
MF. (2.39)

Since only a single spin is considered, the free energy is equal to the total energy derived in

Section 2.1.

To obtain the resonance equation needed to understand and evaluate FMR experiments,

Eq. (2.37) can be expressed linearly in terms of the spherical coordinates. The obtained

relations read [66]:

dθ

dt
= γµ0H(ϕ)

eff , (2.40)

dϕ

dt
sinθ = −γµ0H(θ)

eff . (2.41)

Here, H(ϕ)
eff and H(θ)

eff denote the azimuthal and polar components of the effective field, re-

spectively. As already discussed above, the effective field is directly related to the free

energy F , and therefore, the effective field components read

µ0H(θ)
eff = − 1

Ms
Fθ , (2.42)

µ0H(ϕ)
eff = − 1

Ms sinθ
Fϕ . (2.43)

Fθ and Fϕ denote the partial derivatives of the free energy F . Using these equations, the

equilibrium angles θ0 and ϕ0 of the magnetization in the effective field can be obtained. To

calculate the resonance equation, small deviations from equilibrium have to be assumed

δθ(t) = θ(t)−θ0, (2.44)

δϕ(t) = ϕ(t)−ϕ0. (2.45)
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To describe the excitations around the minimum of the free energy, given by the equilibrium

angles, the free energy has to be expended linearly around this minimum

Fθ = Fθθ δθ +Fθϕδϕ, (2.46)

Fϕ = Fϕθ δθ +Fϕϕδϕ, (2.47)

which includes the second derivatives of the free energy Fi j with respect to the equilibrium

angles. By combing the presented equations, we obtain a coupled system of equations of

motion

Ms

γ
sinθ0δ θ̇ = Fϕθ δθ +Fϕϕδϕ, (2.48)

Ms

γ
sinθ0δ ϕ̇ = Fθθ δθ +Fθϕδϕ. (2.49)

By assuming a periodic solution in time for δθ and δϕ , the system of equations can be

solved for the resonance frequency ωres

ωres = γHeff =
γ

Ms sinθ0

[
Fθθ Fϕϕ −F2

θϕ

]
. (2.50)

The presented approach to obtain the resonance frequency ω = 2π f was developed by Smit

and Beljers [67] and Suhl [68] simultaneously. However, Suhl provided a generalization of

the method relying on the curvature tensor in arbitrary coordinates:

ω =− γ

Ms
(det∆ f )

1
2 . (2.51)

By using spherical coordinates the curvature tensor ∆ f can be written as

det∆ f =
1

sinθ0

⏐⏐⏐⏐⏐Fθ0θ0 Fθ0ϕ0

Fϕ0θ0 Fϕ0ϕ0

⏐⏐⏐⏐⏐ , (2.52)

resembling the resonance equation derived above. The obtained equation has no solution

for specific energy systems for θ0 = 0°. Here the term energy system usually refers to the

specific symmetry or interaction of the investigated system. This divergence was solved by

Baselgia et al. [69], expanding the resonance equation using trigonometric identities. The

resulting equation reads

ω =
γ

Ms

[
Fθ0θ0

[
Fϕ0ϕ0

sin2
θ0

+
cosθ0

sinθ0
Fθ0

]
−
[

Fθ0ϕ0

sinθ0
− cosθ0

sinθ0

Fϕ0

sinθ0

]2
] 1

2

. (2.53)
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To evaluate experiments performed in this thesis, two different energy systems: (i)

exchange biased ferromagnetic bilayer and (ii) interlayer exchange coupled ferromagnetic

bilayer, are needed:

1. Exchange biased ferromagnetic bilayer without interlayer exchange coupling
Additionally to the energy contribution derived above, the influence of an antiferromagnetic

layer, the so-called exchange bias, has to be considered. Such exchange-biased samples

were investigated in this thesis. The exchange bias energy density is given by

εeb = Keb sin2
θ cosϕ, (2.54)

where Keb is the exchange bias constant. By applying the formalism given by Eq. (2.53) the

resonance equation can be derived(
ω

γ

)2

=

{
µ0H [sinθH sinθ cos(ϕ −ϕH)+ cosθH cosθ ]

−cos2θ

[
µ0Meff +

2K2∥

Ms
cos2 (ϕ −ϕu)+

2Keb

Ms
cosϕ

]}
×{

µ0H [sinθH sinθ cos(ϕ −ϕH)+ cosθH cosθ ]

−cos2
θ

[
µ0Meff +

2K2∥

Ms
cos2 (ϕ −ϕu)+

2Keb

Ms
cosϕ

]
+

2K2∥

Ms
cos(2(ϕ −ϕu))+

Keb

Ms
cosϕ

}
−
[

K2∥

Ms
sin(2(ϕ −ϕu))+

Keb

Ms
sinϕ

]2

cos2
θ .

(2.55)

Here, the angles θ0, ϕ0, θH and ϕH denote the magnetization and the magnetic field angles,

respectively. To extract the material parameters, such as the effective magnetization Meff,

the in-plane uniaxial anisotropy K2∥
Ms

and the exchange-bias field Keb
Ms

, the corresponding free

energy density is numerically minimized to obtain the equilibrium magnetization angles

θ0 and ϕ0. Using this input, the resonance condition Eq. (2.55) is solved analytically to

calculate the resonance field µ0Hres.
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2. Ferromagnetic bilayer with interlayer exchange coupling
The total energy density for a coupled bilayer is given by

ε = εJ1 +
2

∑
i=1

di

[
−Miµ0Hη

(i)
z + εAniso,i

]
(2.56)

with

η
(i)
z = sinθH sinθi cos(ϕi −ϕH)+ cosθH cosθi,

εAniso,i =−
(
2πM2

i −K2⊥,i
)

sin2
θi −K2∥,i sin2

θi cos2 (ϕi −ϕu,i)

and

εJ1 =−J1 [sinθ1 sinθ2 cos(ϕ1 −ϕ2)+ cosθ1 cosθ2]

− J2 [sinθ1 sinθ2 cos(ϕ1 −ϕ2)+ cosθ1 cosθ2]
2 .

Here, Mi corresponds to the saturation magnetization for layer i, K2⊥,i to the out-of-plane

uniaxial anisotropy and K2∥,i to the in-plane uniaxial anisotropy. Furthermore, the coupling

between the two layer is given by the interlayer exchange coupling constants J1 (bilinear

coupling) and J2 (biquadratic coupling). Additionally, the thickness di of each ferromag-

netic layer i influences the coupling. Again, the energy density is numerically minimized

with respect to the magnetization angles θ1, θ2, φ1, and φ2. The resonance equation is ob-

tained in the same framework as presented above. Since two ferromagnetic layers have to

be considered the determinant has 16 entries for this case, resulting in a quartic equation for

the resonance frequency [70]

ω4

γ2
1 γ2

2
−b

ω2

γ1γ2
+ c = 0. (2.57)

The corresponding resonance equation (2.57) is solved numerically and fitted to the experi-

mental data sets. The coefficients b and c are listed in the appendix A.1.

2.2.2. Spin Waves

So far, only the dynamics of a single spin or an averaged macro-spin have been considered.

Since a magnetic body contains many of individual spins or better magnetic moments, one

can understand the macro-spin solution of Eq. (2.37) as a motion of all spins with the iden-

tical phase φ . It is clear that this equation can be solved by a harmonic time-dependent

magnetization
#–
M =

#–
M0 +

#–meωt . However, solutions of the form
#–
M =

#–
M0 +

#–me(ωt+φ( #–r ))

are also allowed. Such solutions are called spin waves. Since the solution with identical

phase for every spin has infinite wavelength, the wave number k corresponding to it is zero,

(k = 0). All other cases can be classified by k ̸= 0, defined by the wavelength λ .
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Figure 2.3.: Renormalized energy contribution for spin waves as a function of wave length.

Over the course of this section the classification of spin waves and their theoretical de-

scription in the form of the dispersion relation will be introduced and thereby focusing on

magnetic thin films.

Spin waves can be classified according to different properties, such as wavelength λ or

the orientation of the magnetization
#–
M with respect to the propagation direction

#–

k .

The exchange energy and the magnetostatic energy, introduced in Section 2.1, depend on

the wavelength of the spin wave. Solving the exact Heisenberg Hamiltonian yields the eigen

energies ε (k) = 2JS [1− cosk], with the exchange integral J and the spin quantum number

S [71]. In the limit of small wave numbers or long wavelengths, the dispersion relation

can be approximated by ω ∝ k2. The wave number dependence of the magnetostatic field

is complex to solve. Both, the Landau-Lifshitz equation and the Maxwell equations have

to be solved simultaneously within the linear regime. The resulting energy contribution

reads [29]

Edipole =
1
2

µ0M2
s

(
1− e−kd

kd

)
(2.58)

with µ0M2
s saturation polarization, k the wave number and d the film thickness.
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Figure 2.4.: Sketch of (a) Damon-Eshbach, (b) backward-volume and (c) forward-volume spin
waves.

Both energies for a 10 nm thin Ni80Fe20 magnetic film, renormalized to the total energy,

are shown in Fig. 2.3. As indicated in the figure, three regimes can be defined. For very

small wavelengths the exchange energy dominates the total energy of the spin wave. In

this limit, neighboring spins enclose a large angle with respect to each other, resulting in a

strong increase in the exchange energy. For intermediate wavelengths in the range between

λ ≈ 10 nm and λ ≈ 100 nm, both exchange and magnetostatic energy equally contribute.

Therefore, these spin waves are termed dipole-exchange spin waves. For large wavelengths,

the tilting angle of neighboring spins is very small, resulting in negligible exchange energy.

However, the magnetostatic field, and therefore, the energy is a long-range interaction, dom-

inating at such large wavelengths.

Additionally to the wavelength, spin waves can be classified depending on the relative

orientation of the magnetization
#–
M and the wave vector

#–

k . The spin wave dispersion re-

lation can be obtained for arbitrary orientation of
#–
M with respect to

#–

k and the resulting

dispersion is known to be highly anisotropic [72]. However, three principle orientation pro-

vide interesting properties. Spin waves propagation parallel to the magnetization is referred
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to as backward-volume (BV) modes (
#–

k ∥ #–
M). Waves with the wave vector

#–

k oriented per-

pendicular to the magnetization are termed Damon-Eshbach (DE) modes (
#–

k ⊥ #–
M). For

completeness it is to mention, that the third principle spin-wave mode with again a per-

pendicular orientation of
#–

k and
#–
M, but with the magnetization

#–
M perpendicular to the film

plane in this case, is named Forward-volume (FV) mode. All these three modes are sketched

in Fig. 2.4.

In the following the dispersion relations of DE and BV modes will be discussed briefly.

Backward-Volume Modes

In the case of BV modes, the static magnetization is (anti)-parallel to the propagation direc-

tion. The spin-wave dispersion relation derived by Slavin and Kalinikos [72] reads:(
ω

γ

)2

=
[
µ0Heff +Dk2][

µ0Heff +Dk2 +µ0Ms

(
1− e−kd

kd

)]
. (2.59)

Here, ω = 2π f is the spin-wave frequency and D = 2A/Ms the exchange stiffness. The

naming property of backward-volume modes is the group velocity vg =
∂ω

∂k for small wave

numbers k, which reads

lim
k→0

vg =−µ0γ
HeffMs

4
√

Heff (Heff +Ms)
. (2.60)

The dipole-dipole interaction leads to a negative slope of the spin-wave dispersion and there-

fore to a negative group velocity. In contrast to this, the phase velocity vp =
ω

k is positive.

However, the energy transport is directly related to the group velocity, which is backwards to

the phase velocity vp. Moreover, such spin-wave modes have similar amplitudes throughout

the magnetic body, leading to the term volume.

Another interesting property of BV modes is the formation of a minimum in the spin-

wave dispersion, due to the dipolar energy. This minimum in the dispersion is directly

related to the formation of Bose-Einstein condensates in ferromagnetic films, underlining

the bosonic nature of magnons [73].

Damon-Eshbach Modes

Damon-Eshbach modes are defined by the perpendicular alignment of the wave vector
#–

k

and the magnetization
#–
M [29, 30]. Another commonly used term for such modes is magne-

tostatic surface modes, arising from the fact that the spin-wave amplitude is confined close

to the surface of the magnetic film, if the thickness d is much larger than the exchange

21



2. Fundamentals

length λ =
√

2A/µ0M2
s . The spin-wave dispersion for DE modes reads [72](

ω

γ

)2

=
[
µ0Heff +Dk2 +µ0Ms

(
1− 1−e−kd

kd

)]
×[

µ0Heff +Dk2 +µ0Ms

(
1−e−kd

kd

)]
. (2.61)

Evaluating the group velocity for DE modes yields

lim
k→0

vg = µ0γ
dM2

s

4
√

Heff (Heff +Ms)
. (2.62)

Since the group velocity is positive, the spin-wave frequency is monotonically increasing.

Therefore, no minimum is formed.

2.3. Hydrodynamic Formulation of Magnetization Dynamics

Transport phenomena without dissipation are known in many different fields of physics.

This intriguing property occurs in different states of matter. However, one general char-

acteristic all system have in common is: They consist of bosons. Due to the fundamental

nature of this class of particles, the possibility of collective quantum states arises. The par-

ticles can be considered as a macroscopic wave function introducing one order parameter

specific to the investigated system. Since magnons are bosons, many phenomena discovered

in different fields of physics might also be observable in ferromagnets. Since several years

the condensation of magnons as a Bose-Einstein condensate (BEC) in magnetic materials

has been investigated [74–77]. Different methods to produce such condensates have been

developed, such as thermal condensation [74] or parallel pumping [77]. Furthermore, re-

cent studies suggest the possibility of dissipationless transport of this BEC in ferromagnetic

materials [78]. Nevertheless, this new transport channel in ferromagnetic material is not

fully understood.

Another new state of matter was discovered in supercooled liquid Helium [79]. The

bosons present in the system formed another macroscopic state, providing the possibility of

superfluidic transport. Both BEC and superfluidity are closely related. However, introduc-

ing the detailed entanglement of both effects would go beyond the scope of this thesis.

Both BEC, as already shown experimentally, and superfluidity, are theoretically possible

in ferromagnets. Besides the well-known magnon transport via spin waves, the possible

superfluid transport in magnetic thin films was proposed already by Halperin and Hohenberg

[36]. The authors present the transformation of the underlying equations but did not fully

consider the consequences of this for the transport. The theory later was refined by Sonin,
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Figure 2.5.: Schematic representation of the transported spin current in non-superfluidic and super-
fluidic media. The upper panel shows the normal fluid, e.g. magnons. The damping
of the mz component is exponentially, and therefore, also the spin current Jz is damped
exponentially. In contrast to this superfluidic transport is presented in the lower panel.
The spin current is only linearly damped along the transport channel.

where for the first time the term spin superfluid for ferromagnets was introduced [37]. Sonin

defined this new state as 2π windings of the magnetization.

The term spin superfluid originates in the different damping behavior of the superfluidic

state. The stability of the spin current is given by the topology of the system. For easy-

plane ferromagnets the free energy does not depend on the magnetization angle ϕ defined

by the 2π windings. It only depends on the gradient of the magnetization angle ∇ϕ . If one

now considers the Noether theorem [80] this should lead to the conservation of a conjugate

variable, providing the supercurrent. Furthermore, this property of the free energy can be

formulated within the framework of group theory. The symmetry of the energy corresponds

to the unitary group U(1). Therefore, the state is topologically protected and exhibits a

different damping behavior.

However, one of the main disadvantages of the before-mentioned spin waves, especially

for possible applications, is the limited propagation length. Many possible scattering mech-

anisms limit propagation length. Only for special materials like Yttrium iron garnet (YIG)

very long spin wave propagation up centimeters was observed [12]. Nevertheless, the pos-

sibility of superfluid transport is intriguing from both fundamental and application points of

view.
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Due to the advances of spin-torque oscillators and thereby, the deeper understanding of

the underlying processes involved, the field of superfluidic transport was considered again

in the last years. In the following chapter, a short summary of the analytic theory for the

superfluidic transport in easy-plane ferromagnets will be presented.

Starting with the free energy F

F =
∫

dV
[
A(∇ #–m ( #–x ))2 −Kumz (

#–x )2
]

(2.63)

for an easy-plane ferromagnet will directly lead to coupled hydrodynamic equations [37].

Here, A is the exchange constant and Ku the easy-plane anisotropy constant. As already

introduced above, an easy-plane ferromagnet can simply be defined by the ability of rotating

the magnetization within one plane of the system, without changing the total energy of it.

To gain insight in the dynamics of the ferromagnetic system, the underlying equation of

motion [Eq. (2.37)] has to be solved for the here presented total free energy. To simplify the

derivation of the hydrodynamic equations, no damping is assumed. For this the functional

derivative of Eq. (2.63)
δF
δ

#–m
≡ #–

Heff = 2A∇
2 #–m −2Kumzẑ (2.64)

has to be calculated. Introducing the transformation

#–m =

(√
1−m2

z cosϕ,
√

1−m2
z sinϕ,mz

)
(2.65)

yields two coupled equations [81, 82]. At first, the equation of motion for the z-component

is computed. To simplify the discussion even further, a one-dimensional channel for the

superfluid transport is assumed. Therefore, only the derivative along the x-direction con-

tributes. Resulting in

1
γ

dmz

dt
= 2Amz∂xmz∂xϕ +A

(
m2

z −1
)

∂xxϕ. (2.66)

By applying the reverse chain rule the equation can be shortened:

1
γ

dmz

dt
= ∂x

[
A
(
m2

z −1
)

∂xϕ
]
. (2.67)

Both in-plane components require more steps to solve the equation. As a result of the

transformation shown above, the in-plane components are coupled to the out-of-plane com-

ponent. Therefore, Eq. (2.67) has to be substituted in the x- and y-component in Eq. (2.65),

resulting in:
1
γ

dϕ

dt
=
(

A(∂xϕ)2 −Ku

)
mz +

Amz (∂xmz)
2

(m2
z −1)2 − A∂xxmz

m2
z −1

. (2.68)
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Approximating this set of coupled equations, by only considering the first order of ∇ϕ , mz

and assuming mz << 1 results in

ϕ̇ = 2γKumz, (2.69)

ṁz = 2γA∇
2
ϕ. (2.70)

These equations directly show the existence of the superfluid state in easy-plane ferromag-

nets. Interesting to note is that Eq. (2.70) has the form of a continuity equation for mz [83].

The direct consequence is the conservation of the out-of-plane component in an ideal easy-

plane ferromagnet. Furthermore, this property of such systems is directly linked to the

conservation of the total energy under rotation within the easy plane. Following this inter-

pretation leads directly to the conclusion, that ṁz corresponds to a collective spin current

j⃗z =−2A∇ϕ. (2.71)

In the limit of α = 0, a dissipationless spin current can flow in the system, if the gradient of

the easy-plane angle, ∇ϕ , is non-zero.

One possible solution for Eqs. (2.69) and (2.70) is given by the ansatz

mz (x, t)≡ const = mz, (2.72)

ϕ (x, t) = ϕ (x)+Ωt. (2.73)

with the precession frequency Ω = γKumz. Hence, Eq. (2.70) can be written as

0 = 2γA∇
2
ϕ. (2.74)

Thus, the solution for ϕ (x) is given by

ϕ (x) =
1

2γA
C1x+

1
2γA

C2, (2.75)

with the integration constants C1 and C2.

The here presented theory easily can be extended to the case of non-zero Gilbert damping.

The modified equation reads

ϕ̇ = 2γKumz +αṁz, (2.76)

ṁz = 2γA∇
2
ϕ −αϕ̇. (2.77)

For the case of non-zero Gilbert damping the stationary solution is also modified by the

condition ∂xxϕ = α/AΩ [40, 44, 81]. With this is clearly visible, that the dissipation of the
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spin current Jz ∝ −∇ϕ is proportional to the distance. The difference between a normal

fluidic state, i. e. a spin wave, and a superfluidic state is depicted in Fig. 2.5. The mz

component of the normal fluid is damped exponentially, resulting in an exponential decay

of the carried spin current Jz. In contrast to this, the solution of the superfluid contains a

constant ouf-of-plane component of the magnetization. As discussed above, the solution of

the easy-plane angle in case of non-zero damping will have the form ϕ (x) = Ax2 +Bx+C.

Therefore, the spin current Jz ∝ −∇ϕ (x) will depend linearly on x, as depicted in Fig. 2.5.

It is important to note, that the presented analytic approach neglects two important terms:

At first, the developed equations lack the excitation term. It is not clear how an excitation

region will behave in the presence of the superfluid. Secondly, no long range dipole-dipole

interactions are included in the model. Since the superfluid is considered as composed of

2π rotations, the energy landspace is more complex in the presence of dipole-dipole inter-

actions. A simplified picture using the terminology of spin waves can easily be introduced.

The spin-wave dispersion is not isotropic due to the magnetostatic field [29, 30]. The two

principal directions
#–

k ⊥ #–
M (Damon - Eshbach configuration) and

#–

k ∥ #–
M (Backward volume

geometry) show different dispersion relations for spin waves due to the dipole-dipole inter-

action in ferromagnetic thin films [84]. Since the superfluid has a coherent transition from

the Damon-Eshbach into the Backward-volume configuration, the energy of the system will

be affected.

To investigate the two mentioned shortcomings of the analytic theory, extended micro-

magnetic simulations have been performed. The results of this study are presented in Chap-

ter 5.
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3. Experimental and Numerical Methods

3.1. Ferromagnetic Resonance

The first reported measurement of the ferromagnetic resonance (FMR) was done by

Arkadiew in 1919, probing the absorption of microwaves for two parallel wires [85]. Later

on, this powerful experimental method was rediscovered in the 1940s, resulting in two in-

dependent reports by Zavoisky [86] and Griffiths [87].

Over the last decades, various techniques to measure the FMR have been developed. Each

technique has its own advantages and disadvantages. However, classical FMR setups based

on a microwave cavity are still present today, providing excellent signal-to-noise ratios,

but are usually limited to a single frequency without changing the cavity. Other techniques

based on a vector network analyzer (VNA) offer a broad range of frequencies but the signal-

to-noise ratio is smaller compared to cavity setups [88].

Moreover, a variety of all-electrical detection methods have been developed, mainly based

on the magneto-resistance [89–92].

However, the basic principle of the FMR phenomenon is always the same, and therefore

is independent of the detection method.

3.1.1. Broadband CPW-FMR

All measurements presented in this thesis were done using a vector network analyzer (VNA)

FMR setup. A detailed description of the setup, including the principle of the VNA can be

found in Ref. [93]. The VNA acts as the microwave source and detector simultaneously.

Such experimental setups support multiple operation modes to obtain the FMR data. Since

the VNA is designed as a broadband source and detector, the excitation frequency can be

swept while the sample is placed within a fixed external magnetic field. However, this oper-

ation mode requires a tedious calibration of all involved passive as well as active microwave

components. Therefore, a second operation mode was utilized in this thesis. The frequency

of the microwave source was kept constant and the external magnetic field was swept. This

operation mode is identical to classical FMR measurements based on cavity setups.

If the resonance condition is fulfilled the sample will partially absorb the incoming mi-

crowave power. Therefore, the transmitted power in case of the resonant excitation will
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3. Experimental and Numerical Methods

differ compared to the internal reference of the VNA. This difference is proportional to the

change in the high-frequency susceptibility, and can be theoretically described by one or

several Lorentzians.

By fitting each recorded spectrum with a Lorentzian function, the resonance field µ0Hres

and the linewidth µ0∆Hpp can be extracted. With the formulas presented above, the ex-

tracted resonance fields can be fitted according to the appropriate energy system, and there-

fore the material parameters are extracted.

3.2. Numerical Micromagnetism - MuMax3

To understand the often complex processes in ferromagnetic materials many different ap-

proaches to simulate this material class have been developed [94–97]. Especially micro-

magnetic simulations gained popularity during the last years, due to the experimental and

technical progress in the fields of spintronics and magnonics. To facilitate the interpretation

of experimental data of magnetic micro- or nano-devices, modeling within the framework

of micromagnetism provides an easy and reliable tool. The main task of micromagnetic

simulations is solving the Landau-Lifshitz-Gilbert equation [98], which is equivalent to

d
#–
M
dt

=−γµ0

[
#–
M× #–

Heff

]
−µ0

γα

(1+α2)Ms

[
#–
M×

(
#–
M× #–

Heff

)]
. (3.1)

Therefore, the effective magnetic field
#–
Heff has to be computed including all interactions

introduced in Chapter 2.1. Moreover, the boundary conditions and requirements on the

simulation grid have to be fulfilled.

The growth in the computing power and video memory enabled researchers to perform

large-scale micromagnetic simulations on an everyday basis. The past generation of micro-

magnetic codes still relied on the central processing units (CPU) to compute the magneti-

zation configuration considering all interactions between the magnetic moments. Usually

one or more computing nodes, located at a high-performance computing (HPC) cluster, are

needed to solve large-scale problems within a reasonable time frame. The costs of such

systems easily range up into the tens of thousands of Euros. With the introduction of the

Compute Unified Device Architecture (CUDA) by Nvidia in February 2007 it was possible

to easily use the Graphic processing units (GPUs) for parallel computing.

Besides the intensive parallelism provided by GPUs, micromagnetic simulations based

on the finite-difference approach are also accelerated by using fast-Fourier transformations.

As visible in Eq. (2.25) the calculation of the magnetostatic field is a convolution of the

Green function and the magnetization. The convolution theorem states that a Fourier trans-

formation F of a convolution is given by the product of the Fourier transformation of the
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Figure 3.1.: Maximum throughput in millions of cells as a function of the total cell number in
MuMax3. Four different GPU generations are compared. The performance regard-
ing micromagnetic simulations was almost doubled between 2014 (Kepler launch) and
2017 (launch full Pascal GPU).

individual factors [99]:

F{ f ∗g}= F{ f} ·F{g}. (3.2)

By utilizing this theorem, the magnetostatic field is calculated as the product of the Fourier-

transformed Green function and the Fourier-transformed magnetization. An naive imple-

mentation for the calculation of the magnetostatic field requires N2 numerical operations

for N cells. The fast-Fourier transformation (FFT) only requires N logN numerical opera-

tions.

The latest GPU generations provide the same performance as full CPU compute nodes

with similar or even less cost per node. The performance of different generations for

NVIDIA GPUs in MuMax3 is shown in Fig. 3.1. Typical system sizes in simulations are

in the area of a few hundred thousands or million cells. Depending on the GPU generation

the performance varies between 150 million cells per second (Kepler) and 350 million cells

per second (Pascal Full). For 2D simulations the performance gain directly reduces the wall

time by the same amount.

The increase of the performance depends on two important factors: (i) Every new GPU

generation provides an increase in the number of compute cores and the overall efficiency

of each compute core. (ii) The increase of the memory bandwidth highly enhanced the per-
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3. Experimental and Numerical Methods

formance of micromagnetic simulations, since the FFT is limited by the memory interface

speed [100]. Therefore, it is very useful to upgrade at least every second GPU generation.

In the next section the problem of the data evaluation is discussed.

3.2.1. Evaluation of Micromagnetic Simulations

Large-scale simulations need proper numerical tools to evaluate hundreds of gigabytes or

even terabytes of data. Therefore, two tools commonly used to evaluate data produced

by micromagnetic simulations have been developed during this thesis. Often the dynamic

response of the system, usually termed power spectrum and the dispersion relation have

to be computed. The developed program provide a time efficient way to calculate both

quantities. Abstractly, both programs can be divided into three main routines. At first the

data has to be loaded into the main memory. Afterwards, the main routine has to perform

mathematical operations for the magnetization vector of each cell. Lastly, the computed

spatially dependent quantities have to be written back to the storage system. The details for

each step will be discussed for the two programs individually in the next sections.

Power spectrum calculation - MuMax3-pwsp

The calculation of the power spectrum is a common task when evaluating micromagnetic

simulations. To obtain the dynamic response of a system, the time dependent magnetiza-

tion m⃗( #–r , t) is recorded and afterwards transformed into the frequency space using an FFT

approach. Transforming only the spatially averaged response F ⟨m⃗(t)⟩N, with the number

of cells N, can substantially differ from the averaged transformed response
⟨
F
(

m⃗(t)
)⟩

N
.

Considering the symmetry of the eigenmodes, the first approach will lead to zero or a small

intensity for perfectly symmetric eigenmodes, since the average of the response before the

FFT is close to zero. Applying the FFT first to all cells and averaging afterwards the dy-

namic response solves this issue. To perform an FFT in time for every cell is very challeng-

ing.

The presented program was directly implemented into the MuMax3 source code and

therefore, shares many functions with the original release. The program was designed to

evaluate extremely large data sets within a reasonable amount of time (maximal 8 h per data

set with size of 1 TB) and additionally provides easy usability. The user only has to provide

a minimal amount of input and the rest is done completely automatically.

The developed program has the following main functions as shown in Fig. 3.2. The mag-

netization data is loaded from the storage system into the main memory of the host system.

Depending on the size of the simulated system, the whole amount can be stored but com-

monly the transformation has to be done inparts to fit the data into the host memory. De-

pending on the number of files provided for the transformation the program automatically
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Figure 3.2.: Flow chart of MuMax3-pwsp.

estimates the maximal number of cells which can be loaded into the main memory. The

amount of the main memory available is fixed in the source code at 4 GB for the normal

release and 16 GB for the HPC release. However, some overhead of each routine will lead

to an increase of the memory needed.

Due to the strong increase of the input-output (IO) performance, regarding the develop-

ment of solid state drives (SSD) and highly parallel data systems, the maximal reading per-

formance can be achieved, by parallelizing the reading operations [101, 102]. To maximize

occupancy of each CPU core the reading routine and the separation of the magnetization

vector m⃗( #–r , t) into the three components are combined into one thread.
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Figure 3.3.: Runtime of MuMax3-pwsp in the HPC release as a function of cells. Both axes are
shown in logarithmic scale. The program was executed on the compute node mag007.

The FFT is calculated for each component of the magnetization vector mi individually

using N/3 threads. For this, the FFTW3 [103] wrapper originally shipped together with the

MuMax3 source code was modified. This modification reduced the amount of host memory

needed to perform the transformation, by using the R2HC flag of the FFTW3 package. This

option in the FFTW3 package provides the ability to store the real and imaginary part in

one vector as follows: The first N/2 -1 entries in the vector are the real part of the FFT and

the N/2 to N - 1 entries correspond to the imaginary part. The multi-core implementation

of FFTW3 is directly used to calculate the FFT of each component. Therefore, the main

functions are executed in the C back-end to provide maximum performance. Both reading

and calculation functions are optimized to perform similarly for most common system sizes.

The time spent in each function is approximately the same.

The performance critical part is the write-back of the transformed data to the storage

system. The writing function can be split into two operations. At first the amplitude A =√
ℜ

(
m̃ j

i

)2
+ℑ

(
m̃ j

i

)2
and the phase φ = arctan

(
ℑ

(
m̃ j

i

)
/ℜ

(
m̃ j

i

))
are calculated for each

transformed component i and every cell j. The calculation of the amplitude A is rather fast,

but the phase calculation requires a significant amount of time. The correction of the phase

φ to map it onto the full 2π range requires several if-else statements, strongly increasing

the runtime. Therefore, the calculation of the amplitude A and the phase φ are parallelized.

Depending on the number of CPU cores available, each core has to calculate a subset of the

cells. This approach provides a significant increase of the performance of the program.
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Nevertheless, storing the data is still open. The writing a single file with multiple threads

is not safe1. Therefore, both amplitude and phase are written using a single thread. Both

files are again written within the framework of C.

To validate the newly developed tool, a standard FMR simulation was performed. The

investigated system, a Ni80Fe20 square, was homogeneously excited with a sinc-Pulse in

time. Standard literature material parameters were used. This pulse form in time provides

a box window in the frequency space after the transformation. The cell size of the system

was kept constant at 4× 4× 4 nm3. Only the cell number N of the system was changed.

The ring-down of the magnetization was recorded for 25 ns with a step size of 10 ps. This

results in 2500 magnetization configurations taken into account for the evaluation. The inte-

gration time was chosen larger than the decay time of the excited magnetization dynamics.

The maximal time step in the simulation was fixed to 1 ps to avoid numerical error. The

runtime of the program executed on the mag007 compute node in the hypnos cluster of the

HZDR was measured four times. The test data was stored on the GSSNAS system directly

connected to the compute node by using InfiniBand [104] . The runtime for all four runs of

MuMax3-pwsp were averaged.

The performance of Mumax3-pwsp is shown in Fig. 3.3. The error bars correspond to

the standard deviation of all four runs. For a small number of cells the runtime is almost

constant. This is a direct result of the overhead produced by the massive parallelism of the

tool. The largest simulated case of approximately 16 Mio. cells corresponds to roughly 471

GB of data. The runtime for such mid-sized systems is only 42 min. The analysis of the

runtime scaling with the number of cells gives an N logN dependence for large numbers of

cells. This is the theoretical maximum for the FFT [103].

As already discussed above, the cell-dependent FFT provides advantages in calculat-

ing the power spectrum. To obtain all eigenmodes regardless of their symmetry, the cell-

dependent FFT is inevitable. To illustrate this, a prototype system is considered. The dy-

namic response of a Ni80Fe20 disk with a diameter d = 500 nm and thickness t = 20 nm

was computed. Again standard values of the material parameters were used. The magnetic

configuration of the system is given by a magnetic vortex.

The power spectrum and eigenmodes of the magnetic vortex have been computed using at

first the cell-dependent approach and, second, the averaged approach. The resulting power

spectra are shown in Fig. 3.4. The first three eigenmodes of the system are visible for both

approaches. However, with increasing mode number, only the cell-dependent FFT provides

reliable results for the eigenmodes in the power spectrum. In the averaged approach almost

no signal is present for some eigenmodes (encircled area in Fig. 3.4).

1Each thread has to remember the position of the data per thread in the file. Therefore, extremely large integer
numbers occur and sometime overflow the variable storage.
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Figure 3.4.: Power spectrum of the magnetic vortex. The material parameters were chosen accord-
ing to literature values for Ni80Fe20. The dashed red and solid blue lines show the
averaged and cell-dependent approach, respectively. The encircled area shows the dif-
ference between both approaches. Some eigenmodes are suppressed in the averaged
approach.

The massive parallelism of the tool provides an additional source for errors. For small a

number of cells, the numerical noise in the calculated spectrum strongly increases. Since

every CPU core utilized for the calculations has a slightly different round error, the total

error accumulates. However, common systems have a larger number of cells, and therefore

this is not an important issue. All other numerical errors of the tool can be ignored since

all calculation are executed with double precession accuracy and the input data provide by

MuMax3 is only single precession accuracy.

Dispersion relation calculation - MuMax3-dispersion

A second very important task is the calculation of the spin-wave dispersion relation. How-

ever, the conventional approach of local excitation with a CW frequency and extracting the

corresponding wave number is tedious and time-consuming. A similar approach applied for

the power spectrum using a sinc-pulse can also be utilized here. Therefore, a program is

needed, which provides a two-dimensional FFT in space and time. During this thesis the

program MuMax3-dispersion was developed for this purpose. A large part of the source

code is based on MuMax3-pwsp. However, some fundamental changes were necessary. Es-
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Figure 3.5.: Simulated dispersion relations of a 5 nm thick Ni80Fe20 film for (a)
#–

k ⊥ #–
M and (b)

#–

k ∥ #–
M. The red solid lines show the analytic calculations of the dispersion relation

based on the Eqs. (2.59) and (2.61)

pecially in the reading function several major changes have been implemented. Instead of

an arbitrary number of cells of all time steps, a complete row of cells in the direction of the

spin-wave propagation has to be loaded for all time steps to arrive at a 2D transformation.

Two different versions for solving this issue have been developed.

The first version loads a single row of cells for all time steps. Since many read operations

are needed the performance especially on the hypnos cluster was not sufficient. The sec-

ond version, mainly developed for the hypnos cluster, loads multiple rows of cells. Since

the FFT is performed on the two-dimensional structure of a single row in space and all time

steps, additional treatment of the data structure is needed. The two-dimensional transforma-

tion is performed multiple times, where every time a part of the large data structure is stored

in a buffer. After the transformation of the buffer data, the results are written back into the

large data structure. However, since all three components can be treated individually both

mentioned operations have been parallelized.

Another major difference is the application of a Hann window to the magnetization data

in space and time. This window function is given by

w(n) =
1
2

[
1− cos

(
2πn

N −1

)]
. (3.3)

Here N is the number of samples and n the index of the corresponding frame. The number of

samples is either provided by the discrete cell size in space or the discrete saving period in

time. Each cell is multiple with the corresponding window function in time and space before

the transformation. For this two one-dimensional Hann windows are multiplied with the

original magnetization data while loading the data into the main memory. The application
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Figure 3.6.: Runtime of MuMax3-dispersion for both releases as a function of cells. Both axes are
shown in logarithmic scale. The program was executed on the compute node mag006.
The blue open symbols correspond to the HPC release of the program compiled for 64
GB of RAM. The green open symbols show to runtime for the standard release using 4
GB of RAM.

of this filter reduces the power loss with increasing frequency or wave number [105]. An

example for the application of a window function is provided in the appendix A.3.

The transformation itself is very similar to the MuMax3-pwsp program mentioned before.

Only the one-dimensional FFT in time is replaced with a two-dimensional FFT in space and

time. Since the reconstruction of mode profiles is not needed for dispersion simulations, no

space-dependent data is stored. However, the dispersion relation, as a sum over all cell

rows of the Fourier amplitude, is stored as a matrix. An example for a simulation evaluated

with the MuMax3-dispersion is shown in Fig. 3.5. Both Damon-Eshbach and backward-

volume configurations have been computed for a 5 nm thick Ni80Fe20 film. The excitation

was modeled as a sinc-pulse in space and time. In integration time was set to 25 ns. The

magnetization configuration was stored every 10 ps. Both calculated dispersion relations

perfectly resemble the theoretical predicted results (see Chapter 2.2.2).

To compare the performance of both versions the example mentioned above was com-

puted and evaluated for different cell numbers. The cell number along the propagation

direction of the spin wave (x-direction) was fixed to 2048. The second dimension Ny was

changed from 4 to 512. The scaling for the HPC version again follows the theoretical max-

imum N logN. However, the first simple version shows a very strong non-linear scaling for

large cell numbers. For smaller cell numbers both version perform similarly. Loading the
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data row by row produces a larger overhead while opening and closing all files multiple

times and therefore, significantly slows down the program.
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Magnetic Bilayers

As already briefly discussed in Chapter 2.2.2, SWs propagating in DE geometry exhibit a

nonreciprocity regarding their amplitude distribution along the thickness of the magnetic

film. For counter-propagating SWs, the largest amplitude is either located close to the top

interface (k > 0) or the bottom interface (k < 0).

In recent years the general phenomenon of nonreciprocal transport became very pop-

ular [106–108]. In this case, one or several physical properties are different regarding the

transport in opposite directions. Especially in the field of electronics and photonics this non-

reciprocal transport is heavily investigated, leading to possible applications in electronic or

photonic devices as isolators, circulators, and gyrators [109–111].

Moreover, ferromagnetic systems are also known to exhibit nonreciprocal propagation of

SWs with respect to their wavelength. The already discussed case of DE SWs can also show

nonreciprocity regarding the SW wavelength. Modifying the material parameters of both

surfaces will inevitably lead to a different energy landscape and therefore, to different SW

wavelengths [31, 112–116].

Recently, it was shown that dipolar interactions can lead to nonreciprocal properties in

ferromagnetic nanostructures and ferromagnetic nanotubes [117, 118], underlining the im-

portant role of the dipole-dipole interactions in ferromagnetic bodies. The fabrication of the

proposed nanostructures and the stabilization of the proper groundstate is rather challeng-

ing. So far, no experimental report is available, measuring the nonreciprocal SW dispersion

in ferromagnetic nanotubes.

Therefore, many research groups focused their attention on the first theoretically pre-

dicted Dzyaloshinskii-Moriya interaction (DMI) arising from the symmetry break at inter-

faces or within the bulk [119, 120]. The influence of the DMI on the SW dispersion was

heavily investigated in recent years [47, 121–126]. However, besides materials with a bro-

ken inversion-symmetry, mainly ultra-thin ferromagnetic films capped with a heavy-metal

layer, providing a broken symmetry at the interface, were investigated. Since interfacial

DMI is proportional to 1/tFM [47], very small values of the layer thickness are required,

making the experimental validation of large wavelength differences challenging.
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In this thesis, a different way of inducing a nonreciprocal SW dispersion was investigated.

Inspired by the work presented in Ref. [16], the effect of the dipole-dipole interaction in an

antiferromagnetically aligned layers was investigated.

Regarding the nonreciprocal transport, three important questions can be formulated:

1. Is it possible to derive an analytic formula to describe the nonreciprocal SW disper-

sion relation including uniaxial anisotropy for antiferromagnetically aligned bilayer?

2. What are the limits of the analytic description in comparison to full-scale micromag-

netic simulations?

3. Can samples be designed to validate the proposed theoretical framework?

Two different prototype systems were numerically investigated in this thesis and supported

by experimental investigations. The systems are extended bilayers, where the antiparallel

alignment is either achieved by the coupling of one layer to an antiferromagnet or using

interlayer-exchange coupling. The spin-wave dispersion relation was investigated by means

of BLS. The second system is a microstructured interlayer-exchange coupled magnetic bi-

layer. The microstructuring leads to the formation of a spin texture, giving rise to additional

topological effects for the spin-wave emission.

4.1. Theoretical Description

The analytical description was mainly developed by R. A. Gallardo, A. Roldán-Molina and

P. Landeros1.

Fig. 4.1 depicts a schematic diagram of the bilayer structure, including the coordinate

system used throughout the calculations. The investigated system is composed of two fer-

romagnetic layers with homogenous magnetization
#–
M(1) and

#–
M(2), respectively. Both layers

might have different material and geometric parameters. To simplify the analytic calcula-

tions, a local coordinate system is introduced, where the local x-axis X̂ (i) always points

along the local magnetization direction.

All interactions, such as dipole-dipole interactions, exchange interaction, interlayer ex-

change interaction and local anisotropies are considered in the model.

To obtain the dispersion relation, the Landau-Lifshitz equation (2.37) is linearized. There-

fore, the magnetization
#–
Mi and the corresponding effective field

#–
H (i)

eff for each layer are

written as

#–
M(i) ( #–r , t) = M(i)

s X̂ (i)+ #–m(i) ( #–r , t) (4.1)
#–
H (i) ( #–r , t) = H(i)

eff X̂ (i)+
#–

h (i)
eff (

#–r , t) . (4.2)

1Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
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4. Nonreciprocal Spin Wave Emission in Magnetic Bilayers

Figure 4.1.: (a) depicts a sketch of the bilayer system in the antiparallel state. The spin waves
are excited below the antenna region (gold area) and travel in the direction of positive
and negative wave numbers. The different color of the waves indicates the wavelength
difference given by the nonreciprocity. (b) shows the in-plane components of the global
coordinate system. The local coordinate system utilized for the calculation is shown in
grey for layer 1 and red for layer 2, respectively.

Here, #–m(i) ( #–r , t) and
#–

h (i)
eff (

#–r , t) are the dynamic magnetization and the corresponding dy-

namic effective field for the layer i, respectively. The resulting linearized equations of

motion are:

i
ω

γ
mYi( #–r ) =−mZi( #–r )HXi

eff +M(i)
s hZi

eff(
#–r ), (4.3)

i
ω

γ
mZi( #–r ) = mYi( #–r )HXi

eff −M(i)
s hYi

eff(
#–r ), (4.4)

where a harmonic time dependence of the dynamic magnetization was assumed #–m ( #–r , t) =
#–m ( #–r )eiωt . Since one is interested in the dispersion relation ω

(
#–

k
)

, one can transform the

dynamic magnetization m(z) = #–m (k)eikz and effective field heff (z) =
#–

h eff (k)eikz into the

reciprocal k-space. Additionally, the propagation direction was fixed to the z-direction with

k =
#–

k ẑ.

The resulting equation can be written in matrix form

i
ω

γ

#–m (k) = Ã #–m (k) , (4.5)

reducing the calculation to an eigenvalue problem. The matrix elements are presented in the

appendix A.2.

The eigenvalue problem can be solved fully analytically for identical layers with the thick-

ness d = d1 = d2. The dispersion relation for two antiparallel aligned layers is given by the

following expressions

fm1 (k) = γ

2π

{
−G(k)+

√
[G1 (k)−G(|k|)] [G2 (k)−G(|k|)−2CJ]

}
, (4.6)

fm2 (k) = γ

2π

{
G(k)+

√
[G2 (k)+G(|k|)] [G1 (k)+G(|k|)−2CJ]

}
, (4.7)
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where fm1 (k) and fm2 (k) correspond to the acoustic and optical mode of the bilayer system.

The individual terms are defined by:

ζ (k) =
sinh(kd/2)

kd/2
e−|k| d

2 , (4.8)

G(k) =
k d
2

µ0Msζ (k)2 e−|k|s, (4.9)

G1 (k) = µ0Hu +µ0Msk2
λ

2
ex +µ0Ms[1−ζ (k)], (4.10)

G2 (k) = µ0Hu −µ0Hs +µ0Msk2
λ

2
ex +µ0Msζ (k) . (4.11)

Here, s is the spacer thickness, CJ =
J1−2J1

dMs
the bilinear (biquadratic) interlayer exchange

field, µ0Hu the in-plane uniaxial anisotropy field and µ0Hs the out-of-plane uniaxial

anisotropy field.

As clearly visible, G(k) is introducing the nonreciprocity in the bilayer system. This is

the only term changing sign as a function of wave number k. All other terms are positive

for both wave-vector directions.

4.2. Nonreciprocity in Extended Thin Films

The derived dispersion relation was validated by micromagnetic simulations, using the

GPU-accelerated code MuMax3 [127]. To calculate the spin-wave dispersion, a long mag-

netic bilayer stripe with the length l = 20 µm and width w = 80 nm was considered. The

system was discretized with 2048 × 16 ×Nz cells. Nz was chosen according to the total

thickness of the bilayer. The cell size cz was kept constant with cz = 1 nm. To mimic the

extended nature of a magnetic thin film, periodic boundary conditions were applied along

the x- and z-directions, as depicted in Fig. 4.1. The magnetization dynamics were excited

using the sinc-pulse form
#–

h = h̃
sin(k0z)

k0z
sin(2π f0t)

2π f0t
ŷ (4.12)

with the cut-off wavelength λ0 = 2π/k0 = 9.77 nm, and a cut-off frequency of 50 GHz. To

obtain the spin-wave dispersion relation, the magnetization configuration was stored every

10 ps for a total time of 12.5 ns and afterwards transformed using MuMax3-dispersion. The

amplitude of the h̃ was chosen to h̃ = 50 mT.

Two example systems were chosen to investigate the nonreciprocal spin-wave dispersion

relation theoretically. The first system is composed of two identical NiFe layers with three

different layer thicknesses d = 2, 5 and 20 nm. The spacer thickness was fixed to s = 1

nm. The saturation magnetization Ms and the exchange stiffness D = 2A/Ms were chosen

to Ms = 658 kA/m and D = 24.8 Tnm2, respectively. The resulting spin-wave dispersion
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Figure 4.2.: (a,c) Nonreciprocal spin wave dispersion relation for the layer systems SI and SII,
respectively. The open symbols represent the results of the micromagnetic simula-
tions and the solid lines the analytic theory. (b,c) frequency shift ∆ f of two counter-
propagating spin-waves as a function of the wave-vector k.

relations calculated with Eq. (4.7) in comparison to micromagnetic simulations are shown

Fig. 4.2(a). In the limit of small thickness, the analytic theory and micromagnetic simula-

tions agree perfectly. However, increasing the layer thickness results in slight deviations

between both approaches.

Figure 4.2(b) depicts the frequency difference for two counter-propagating SWs. Al-

ready for 5 nm layer thickness, small deviations for large wave numbers are visible. These

deviations increase with increasing layer thickness as visible for d = 20 nm. Since the an-

alytic theory considers the amplitude of the dynamic magnetization to be constant along

the thickness, this result is not surprising. For a very large layer thickness, the character

of the magnetostatic surface modes has to be obtained, resulting in variations of the SW

amplitude along the thickness. As one will see later in detail, the dipolar fields are respon-

sible for the nonreciprocal spin-wave dispersion [16]. The thickness-dependent amplitude
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of the dynamic magnetization will partially screen the magnetic charges in the volume and

therefore, the nonreciprocity is reduced.

The second system considered was composed of one NiFe layer and one Co layer with the

same thicknesses mentioned above. The material parameters of the NiFe layer were chosen

identical to the material parameters of the first system. For the Co layer the saturation

magnetization Ms and the exchange stiffness D were selected as Ms = 1150 kA/m and D =

50.0 Tnm2, respectively. The eigenvalues of Eq. (4.5) for this case had to be calculated

numerically. The resulting spin-wave dispersion is presented in Fig. 4.2(c). For this system,

SII, very small deviations are already observed for k = 0 for all investigated thicknesses.

Since the effective field strongly differs in both layers, already the k = 0 modes show a

profile of the dynamic magnetization along the film thickness. However, the deviation of the

nonreciprocity in the case of system SII is smaller [Fig. 4.2(d)]. Since the confinement of the

SW modes to the surface depends on the wave number as well as the material parameters,

this result is directly clear. The maximal nonreciprocity for d = 20 nm was calculated for

k ≈ 35 rad/µm instead of k ≈ 60 rad/µm for system SI.

The achieved magnitude of the nonreciprocity is almost a factor of five larger then the

largest values reported for DMI systems [32, 33, 128] so far.

Moreover, the scaling of the dipolarly induced nonreciprocity is inverted compared to

DMI. Approximating Eq. (4.7) for small wave numbers, and therefore considering the large

wavelength limit yields

f (k → 0) = f (0)− γ

2π
dµ0Ms

(
1+

γ

2π

µ0Hu

f (0)

)
k. (4.13)

The similarity of the approximated spin-wave dispersion with the influence of DMI is re-

markable [129]. In contrast to DMI, the frequency shift of two counter-propagating waves

shows a different behavior. The frequency shift for the antiparallel state (AP) is given by

∆ fAP =
γ

2π
µ0Msk d ζ (k)2e−|k|s. (4.14)

This expression can be approximated for small wave numbers, resulting in

∆ fAP (k → 0) =
γ

π
µ0Msd k. (4.15)

Therefore, the frequency shift will linearly increase with the film thickness d. This result is

in strong contrast to the interfacial DMI induced nonreciprocity.

To understand the effect of the dipolar field qualitatively, the dynamic magnetization and

the corresponding magnetic charges for antiparallel alignment are shown in Fig. 4.3. Both,

volume and surface magnetic charges are considered. For SWs traveling along the positive
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Figure 4.3.: Schematic representation of the magnetic volume and surface charges produced by the
dynamic magnetization in a magnetic bilayer for the layer system SI. The dynamic
magnetization of both FM layers is shown as indicated by the arrows. The blue curve
represents the x-component and the red dashed curve the z-component of the dynamic
magnetization projected onto the plane of the propagating SW. The magnetic charges
produced by the dynamic magnetization in the volume proportional to ∇ · #–m (blue) and
the surface (red) are indicated with plus and minus signs. The resulting dynamic dipole
field is indicated by the dashed arrows. Comparing both, positive k- and negative k-
direction, a clear difference in the arrangement of the magnetic charges, and therefore
the dynamic dipole field is visible.

z-direction, the volume charges start with positive values and oscillate, while moving along

the z-direction. For the negative z-direction the signs of the volume charges are inverted, due

to the fixed rotation sense of the dynamic magnetization. However, changing the alignment

of the static magnetization from antiparallel to parallel, the rotation sense has to be inverted,

resulting in a configuration of the volume charges as depicted in Fig. 4.3.

Additionally, the magnetic surface charges at the interface to the non-magnetic spacer

have to be considered. Calculating #–n · #–m, with the normal vector of the surface #–n , for both

layers, results in opposite charges at both interfaces to the ferromagnetic layers.

To now understand the different wavelengths for both counter-propagating waves, the

dynamic dipole energy has to be analyzed. Evaluating the magnetic charges for a fixed
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position in z for both +z and −z (grey shaded area), clearly shows a strong difference for

both directions. For negative wave numbers the dynamic dipole field is antiparallel to the

dynamic magnetization. Regarding positive wave numbers, the magnetic charge distribution

is changed and therefore, a parallel configuration of the dynamic magnetization and the

dipole field is achieved. Since the dipole energy is given by εDemag =−(1/2)( #–m · #–

h Demag),

the counter-propagating waves have different energies. However, the frequency f is fixed,

the spin wave therefore will adapt the wavelength for both directions to match the energy

landscape.

So far the analytical calculations are only supported by micromagnetic simulations. How-

ever, supporting the theoretical framework with experimental results is beneficial. There-

fore, two samples series were designed in collaboration with the group of Prof. Hellwig

at the TU Chemnitz. All material and geometric parameters of the sample were carefully

determined using multiple methods, like transmission electron microscopy (TEM), magne-

tometry and FMR. An overview of the samples is presented in Tab. 4.1. The first samples

series consists of two synthetic antiferromagnets, containing Co40Fe40B20 and Ni81Fe19. A

thin Ir layer mediates the interlayer exchange coupling between both layers, to achieve an

antiparallel alignment at remanence. Such systems were and still are strongly investigated

regarding their static and dynamic properties [35, 130–132].

In the second sample series the antiparallel alignment of both layers is produced by the

direct interface of the antiferromagnet IrMn with one of the Ni81Fe19 layers.

Magnetometry

The sample magnetization for the first samples series, M(H), was determined using SQUID-

VSM magnetometry, with a QuantumDesign Magnetic Properties Measurement System

(MPMS)2. The effective anisotropy constant (Keff) was determined by acquiring in-plane

2The measurement was done by S. S. P. K. Arekapudi at the TU Chemnitz.

Table 4.1.: Overview of the thickness of the individual layers of all samples. For the sample Ch2724
the thicknesses were determined by TEM. The nominal thickness for the sample Ch2724
are provided in the squared brackets. For all other samples the nominal thicknesses are
given.

Sample Stack dFM1 [nm] dFM1 [nm] s [nm]
Ch2724 Co40Fe40B20 / Ir / Ni81Fe19 5.7(2) [6] 6.7(3) [6] 0.6(3) [0.45]
Ch2717 Co40Fe40B20 / Ir / Ni81Fe19 10 10 0.45
Ch2745 IrMn / Ni81Fe19 / Cu / Ni81Fe19 8 8 5
Ch2746 IrMn/ Ni81Fe19 / Cu / Ni81Fe19 10 10 5
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Figure 4.4.: Magnetometry measurements for the sample Ch2724 for (a) in-plane orientation and (b)
out-of-plane orientation of the magnetic field. The black and red solid lines represent
the experimental data for the SQUID-VSM and conventional VSM, respectively. The
black open symbols represent micromagnetic simulations of the hysteresis loop.

(θH = 90°) and out-of-plane (θH = 0°) hysteresis loops. The bilinear and biquadratic inter-

layer exchange coupling constants of the AF-coupled layers were obtained from the in-plane

hysteresis loops. Additionally, conventional VSM measurements have been performed with

a MicroSense VSM EZ73. The results of the magnetometry measurements are presented in

Fig. 4.4. Both field orientation θH = 90° [Fig. 4.4(a)] and θH = 0° [Fig. 4.4(b)] are shown.

The black and red solid lines show the experimental results. To extract the material param-

eters, micromagnetic simulation have been performed, to reproduce the hysteresis loops.

Since no domain formation is expected, only a small lateral system (16 x 16 cells) has to be

considered. The individual thicknesses of each layer were modeled according to the realis-

tic sample. To mimic the nature of an extended film, periodic boundary conditions (PBC)

were applied within the film plane. At every field step the total energy and the torque were

minimized using a steepest-descent solver.

The open black symbols show the results of the micromagnetic simulations. The cur-

vature of the hysteresis loop for θH = 90° suggests a rather strong contribution of the bi-

quadratic coupling [133, 134]. Both magnetometry measurements provide different results,

especially for the saturation field µ0Hs for the sample. It is important to note, that the

saturation fields measured with both techniques differ by almost 10%. At first, this small

difference seems to be negligible, but in coupled systems the saturation field is mainly given

by the strength of the interlayer exchange coupling [135]. Therefore, this rather small dif-

ference leads to a wrong assumptions regarding the coupling strength, which subsequently

will affect the evaluation of the dynamic magnetic properties. The saturation field µ0Hs in

3The measurement was done by A. Oelschlägel at the HZDR.
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coupled identical magnetic bilayer is given by [135]:

µ0Hs =− 2
Msd

(2J2 + J1) . (4.16)

The saturation field determined by the SQUID-VSM is smaller than the field determined by

the conventional VSM, leading to smaller bilinear (biquadratic) interlayer exchange cou-

pling constants J1 (J2). The reason of the difference of the saturation field is still unknown.

Moreover, the VSM measurements do not show a perfect antiparallel alignment of both

layers at small external magnetic fields. In contrast to this, the SQUID measurement does.

However, also the in-plane SQUID loop has a small slope in the low field regime. This ob-

served static behavior of the bilayer sample might indicate a non-perfect antiparallel align-

ment of both layers. This would consequently affect the spin-wave dispersion measurement

presented later.

FMR Experiments

To extract the contribution of the exchange bias for the second series, FMR measurements

have been performed. The in-plane angular dependence will provide valuable information

about the direction of the exchange bias with respect to the easy-axis in the unbiased layer

and the strength of the exchange bias field. As an example the in-plane angular dependence

for the sample Ch2745 is shown in Fig. 4.5. Two modes can be detected over the full circle

of in-plane angles. The clear crossing of these two modes at 90 ° and 275 ° indicates

that both magnetic layers are uncoupled. The minimal resonance field (easy axis) at 180 °

denotes the exchange bias direction. To increase the visibility of the exchange bias in the

experimental data, the measurement was performed at a frequency f = 5 GHz instead of

the more commonly used values f = 10 GHz or f = 15 GHz. At the lower frequency the

influence of the exchange bias on the resonance position is larger since the resonance fields

are rather small compare to the exchange bias field. Therefore, the exchange bias field

dominates the measured resonance field, leading to a clearer splitting of the two modes.

Further reduction of the excitation frequency is not possible, since the resonance fields tend

towards zero field.

The extracted material parameters using the resonance equation (2.55) for both exchange

biased samples are listed in Tab. 4.2.

A detailed analysis of the interlayer exchange-coupled sample regarding the structural and

magnetic parameters was performed. The magnetic parameters were extracted as the best fit

of all performed measurement techniques, each with its own advantages and disadvantages.
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Figure 4.5.: In-plane angular dependence of the sample Ch2754. The excitation frequency was fixed
to f = 5 GHz. The red and black open symbols represent the extracted resonance fields
for both layers. The angular dependence of the red symbols is attributed to the exchange
bias. The red and black solid lines are fits using Eq. (2.55) for the exchange bias energy
system.

The coupling of the two magnetic layers leads to the presence of two eigenmodes of the

system. Therefore, two FMR modes, the acoustic and the optical mode, can be detected.

Both modes strongly differ in intensity. The acoustic mode, consisting of the parallel

alignment of the dynamic magnetizations, shows larger intensities in the aligned regime. In

contrast to this, for the optical mode, defined by the antiparallel alignment of both dynamic

magnetizations, only the difference signal will be detected using the VNA-FMR [136,137].

Table 4.2.: Overview of magnetic parameters for selected samples.

Sample µ0Meff1 [mT] µ0Meff2 [mT] 2Ku1/Ms [mT] 2Ku2/Ms [mT] Keb/Ms [mT]
Ch2745 948 948 0.40 0.84 -9.9
Ch2746 993 970 0.20 0.30 10.3
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Figure 4.6.: Polar angular dependence of sample Ch2724. The red and black symbols correspond
to the optical and acoustic mode, respectively. The solid lines show the fit based on the
parameters presented in Tab. 4.3. The excitation frequency was fixed to f = 10 GHz.

The results of the FMR measurements are summarized in Figs. 4.6 and 4.7. Figure 4.6 de-

picts the polar angular dependence. Since the interlayer exchange coupling was optimized

to favor antiparallel alignment, the optical mode is detected at higher resonance fields, and

therefore lower energy. The red and black open symbols in Fig. 4.6 correspond to the optical

mode and acoustic mode, respectively. However, as visible in both Figs. 4.6 and 4.7, the op-

tical mode is difficult to measure, resulting in missing data points or additional scattering of

the data. Nevertheless, already the polar angular dependence strongly indicates a coupling

due to the avoided crossing of both modes around θH = 10° and the large difference in the

intensities of both modes.

For the frequency-field dependence (Fig. 4.7) two critical magnetic fields are visible. At

those external field values the character of the FMR modes changes. The first transition

around 15 mT is related to the spin-flop transition from the perfect antiparallel state to a

canted state [131], as indicated in the magnetometry data. Interesting to note is the transition

from an aligned mode back to an not-aligned mode present for the optical mode after the

first critical field. At first the frequency as a function of the external of the optical starts

increasing, reaching a maximal frequency around 75 mT. At this field values the frequency
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Figure 4.7.: Frequency-field dependence f (H) of sample Ch2724. The red and black symbols cor-
respond to the optical and acoustic mode, respectively. The solid lines shows the fit
based on the parameters presented in Tab. 4.3. Two critical fields are visible, where the
FMR modes change their character. The inset shows an exemplary spectrum recorded
at f = 15 GHz. The black solid line shows the complete spectrum with both, acoustic
and optical mode. The red solid lines depicted the optical mode enlarged by a factor of
20.

starts decreasing again until reaching the saturation field. The sample is saturated around

100 mT, defining the second critical field or saturation field [131].

Without the not-aligned field range it is impossible to determine the ratio of the bilinear

and biquadratic coupling using FMR. In the aligned field range, both coupling constants

can be treated as an effective coupling of both layers [131]. The fitting of the not-aligned

branches is challenging due to the larger linewidth and overlapping resonance peaks. In

combination with the magnetometry measurements all material parameters were extracted,

fitting the experimental data to the model using Eq. (2.57).

Now all magnetic and geometric parameters of the sample Ch2724 are determined. Only

the exchange constant Aex has to be fitted using the BLS results presented in the next section.
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Brillouin Light Scattering Experiments

To investigate the spin-wave nonreciprocity, Brillouin light scattering (BLS) measurements

were performed by the group of Prof. Anjan Barman4 in the Damon-Eshbach (DE) geome-

try [138,139]. A bias magnetic field was applied in the sample plane. The plane of incidence

of the laser beam was set perpendicular to the applied field, probing SWs in the DE con-

figuration. To investigate the spin-wave dispersion, a back-scattering geometry was used.

The wave number was selected by changing the incidence angle θ of the monochromatic

laser light (wavelength λ = 532 nm and power P = 250 mW) from a solid-state laser. To

eliminate any phonon contributions to the measurement signal, the polarization of the inci-

dent laser beam and the scattered light were crossed. Subsequently, the frequencies of the

scattered light are analyzed using a Sandercock-type six-pass tandem Fabry-Pérot interfer-

ometer from JRS scientific instruments [140]. Since the SW frequencies in the AFM region

are very small, a free spectral range (FSR) of 30 GHz for higher wave numbers and 20 GHz

for lower wave numbers was used, respectively. Additionally, a 210 multi-channel analyzer

was used during the BLS measurements, resulting in a frequency resolution of 0.05 GHz

(0.02) for higher (lower) wave numbers.

The sample magnetization was first saturated by applying a high enough magnetic field of

-140 mT (P state) followed by reducing the field slowly to the bias magnetic field µ0H =−5

mT (AP state) and the BLS spectra were measured at both field values for multiple wave

numbers. The SW dispersion was measured with a wave-number resolution of 2.06 rad/µm

up to a maximal wave number of k = 20.4 rad/µm.

For the first few wave vectors, the Stokes and anti-Stokes peaks merge with the tail of the

elastic peaks and could not be resolved and hence, only BLS spectra from k = 8.1 rad/µm

and higher are presented. The nonreciprocity in spin-wave frequency (∆ f ) was calculated by

taking the difference between anti-Stokes and Stokes peak observed in the BLS spectra. All

samples listed in Tab. 4.1 were investigated using BLS. However, only the sample Ch2724

provides reliable and useful results.

4Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sci-
ences, Block JD, Sec. III, Salt lake, Kolkata 700106 India

Table 4.3.: Experimentally determined material parameters for sample Ch2724. The magnetic prop-
erties were determined by FMR, SQUID and VSM. The layer thicknesses and the spacer
thickness were determined by cross-section TEM.

d (nm) µ0Meff (mT) µ0Hu(mT ) Jbl (mJm-2) Jbq (mJm-2) s (nm)
Ni81Fe19 6.7(3) 942.5 4.0

-0.195 -0.044 0.6
Co40Fe40B20 5.7(2) 1442.9 0.0
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Figure 4.8.: BLS spectra for selected wave numbers for (a) the antiparallel and (b) the parallel state
of sample Ch2724. The red and blue solid lines mark the trend of the peak. Already
without detailed evaluation the nonreciprocity is clearly visible.

Exemplary BLS spectra for sample Ch2724 are shown in Fig. 4.8. The red and blue

solid lines indicate the trend of the peak as a function of the wave number. For the SW

frequencies observed in the AP state [Fig. 4.8(a)] the red and blue lines already indicate

the nonreciprocity present in this system, as a different slope. Such a difference can be

observed for the P state as well [Fig. 4.8(b)], but the frequency shift is significantly smaller.

Nevertheless, the observed SW intensity is rather small, leading to a larger uncertainty in

the SW frequencies.

The SW dispersion and the frequency shift are presented in Fig. 4.9. The open symbols

in all panels represent the experimentally obtained SW frequencies and the resulting fre-

quency shift. The solid lines are the theoretical calculation based on the approach shown

above. Since almost all geometric and magnetic parameters were already determined by

other measurement techniques, only the exchange constant Aex had to be fitted for both

measurements in the P and the AP state. The calculated SW dispersion for the P state

[Fig. 4.9(b)] fits the experimental data set almost perfectly. Only small deviations are visi-

ble, especially in the frequency shift [Fig. 4.9(d)].
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Figure 4.9.: Spin-wave dispersion and frequency shift for Stokes and Antistokes for the antiparallel
(left panel) and the parallel state (right) panel. The blue and red open symbols represent
the fitted BLS spectra as indicated in Fig. 4.8 by the red and blue solid lines. The
black open symbols in (c) and (d) show the frequency shift for the AFM and FM state,
respectively. All solid lines show the theoretical prediction.

Since the theoretical approach has 15 independent parameters, the uncertainties of all

these parameter affect the resulting SW dispersion. The agreement in the AP state

[Fig. 4.9(a)] is not as perfect as for the FM state, but still good. However, to obtain this

almost perfect match, each layer had to be tilted 25° with respect to the y-axis. This leads

to a reduction of the intermediate angle of both layers and is directly followed by a reduc-

tion of the nonreciprocity. However, already the VSM hysteresis loops indicated such a

possible tilting. The biquadratic coupling can stabilize such a canted state. Nevertheless,

the theoretically predicted frequency shift was almost confirmed. Our prototype system

already reaches frequency shifts similar to the largest values reported in the presence of

DMI [32]. However, the big advantage of the here proposed system is the scaling with the

film thickness. With increasing film thickness, the nonreciprocity could easily be increased.

To investigate this increase of the nonreciprocity a second prototype system with very

thick magnetic layers was investigated.
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Figure 4.10.: Sketch of the dynamic magnetization profile along the thickness of a thick magnetic
bilayer. Mode 1 shows a strong decay of the SW amplitude towards to spacer for the
first layer (FM 1). The SW amplitude for mode 1 grows towards the second interface
in the second layer (FM 2). Mode 2 shows the exactly opposite behavior.

4.3. Nonreciprocal Spin-Wave Emission in Stacked Vortex Pairs

As presented in the previous section, BLS can provide direct evidence for the spin-wave

nonreciprocity in magnetic bilayers. However, this technique is not suitable for investi-

gating thick magnetic layers. The penetration depth of the laser light is limited to several

nanometers [141]. However, normally this depth is enough to collect all necessary infor-

mation regarding the spin waves. For the here investigated system, the distribution of the

dynamic magnetization has to be considered. Both spin-wave branches have the character

of magnetostatic surface spin waves, which results in a confinement of the amplitude close

to the surface if the specimen is thick enough. However, in the case of a magnetic bilayer,

four interfaces have to be considered. Fig. 4.10 shows the profile of the dynamic mag-

netization for the prototype system. Therefore, time-resolved scanning transmission x-ray

microscopy (TR-STXM) was used to investigate the spin-wave dispersion in thick magnetic

bilayers [143]. Details regarding the experimental realization and sample preparation can be

found in Refs. [16,142]. Since the application of an external magnetic field in such a setup

is technically challenging, the antiferromagnetic groundstate should be stable at zero field.

To achieve this groundstate, the magnetic film was patterned into elliptical microstructures

as described in Ref. [142]. Moreover, an external antenna was lithographically prepared
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Figure 4.11.: STXM images of the magnetic configuration of the coupled bilayer. (a) shows the
in-plane component of the magnetization and (b) the out-of-plane component clearly
highlighting the 180° domain wall in the center [142]. The top row shows the CoFeB
layer image obtained at the Co edge and the lower row for the NiFe layer recorded at
the Ni edge.

on top of the microstructure, resulting in a homogeneous Oersted field in the area of the

sample.

Due to the competition of the magnetostatic and the exchange field, a special magnetic

texture is formed, referred to as magnetic vortex. The magnetic moments located at the

rim of the microstructure are aligned parallel to it, resulting in a circulating magnetization

and magnetic singularity in the center, termed vortex core. However, the here investigated

system poses a peculiarity. Due to presence of a uniaxial anisotropy in both magnetic lay-

ers and the elliptical shape, a 180° domain wall is formed in the center of the structure,

separating the magnetic texture in two parts. The resulting domain wall is present in both

magnetic layers. However, since an antiferromagnetic alignment is favored, the vorticity,

i. e. the rotation sense of the magnetization, is opposite. The domain wall itself can be

considered as a mixture of a Bloch- and a Néel-like wall [144], showing partial perpendic-

ular alignment. The STXM images of this complex ground state are depicted in Fig. 4.11.

The black or white color indicates the local orientation of the magnetization of either the

in-plane component [Fig. 4.11(a)] or the out-of-plane component [Fig. 4.11(b)]. The par-

tial perpendicular alignment of the domain wall is not favored by the interlayer exchange

interaction but the flux-closure state minimizes the magnetostatic energy.
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Figure 4.12.: TR-STXM image of the magnetic configuration of the coupled bilayer.

Spin waves can be excited in such magnetic textures by applying an alternating Oersted

field [16,145]. The antenna geometry utilized in this experiment results in strong a in-plane

Oersted field within the area of the sample. The antenna is oriented along the long edge

of the ellipse, resulting in Oersted field components parallel to the short axis of the ellipse.

Therefore, the Oersted field is oriented perpendicular to the domain wall. Since the Oersted

field is homogenous within the sample area, only the domain wall and the vortex core can be

excited by the rf-field. The concept of domain-wall mediated spin-wave emission was theo-

retically proposed in Ref. [146]. Moreover, first signatures were found in experiments [18].

The magnetization dynamics of the micro-structured bilayer was imaged stroboscopically

by means of TR-STXM. This technique uses the time structure of the X-ray pulses pro-

duced in the synchrotron to image the excited dynamics. Details regarding this method can

be found in Refs. [16, 142]. The resulting images for selected excitation frequencies are

shown in Fig. 4.12. The black or white color represents the out-of-plane component of the

magnetization.

For the smallest investigated frequency, f = 260 MHz, no spin waves can be detected

within the domains themselves. Only confined excitations along a one-dimensional channel

are visible. The static STXM images (Fig. 4.11) indicated the presence of the domain wall

exactly at the position of the detected spin wave. Such a spin transport within a domain

wall was already investigated theoretically [23] and later on confirmed by means of BLS

[24]. Increasing the frequency ( f = 520 MHz) clearly shows the expected reduction of the

wavelength. However, the spin wave is still confined to the domain wall. At the excitation

frequency f = 760 MHz, the first spin waves within the domain are detected. For this

frequency three different types of spin waves are visible. At first, the spin wave within the

domain wall is still present, as visible as an additional modulation along the domain wall.
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Figure 4.13.: Micromagnetic simulations of the excitation mode in coupled domain walls. (a) Do-
main wall width and (b) the relative wall position as a function of time excited with
f = 10 GHz. The red and blue solid lines show the response in the NiFe and the
CoFeB layers, respectively.

Moreover, radial spin wave modes were detected. Such an emission of radial spin waves

within such magnetic textures had already been observed [16]. Due to the in-plane Oersted

field, both vortex cores are excited, resulting in a small gyrotropic motion of theses cores

around their equilibrium positions. This gyrotropic motion leads to the formation of small

magnetization "dips" of opposite sign [147]. This combined perturbation of the spin texture

is followed by the emission of spin waves. An analogon can be easily found in a fluidic

system. If a fluidic system is stirred orbitally, the resulting spiraling wave pattern is very

similar.

Additionally, planar spin waves are excited in the investigated system. This type of spin

waves are detected for all frequencies above f = 760 MHz. However, for all shown fre-

quencies ( f ≥ 760 MHz) also radial spin waves are measured. For both f = 1.11 GHz

and f = 1.45 GHz, the planar spin waves propagated further than the radial ones, since

the damping in radial modes is inversely proportional to the traveling distance [16]. There-

fore, the excitation of planar spin waves is superior with regard to the possible propagation

distance.

To understand the process of the planar spin wave excitation in detail, micromagnetic

simulations of this presented bilayer microstructure have been performed. Given the fact

that both magnetic layers are rather thick (≈ 50 nm) and the spacer thickness is very small

(s = 0.8 nm), the simulation of such a system is rather challenging. Already the discretiza-

tion along the thickness requires 115 cells. Assuming a cell size within the plane of 5× 5

nm2, limits the system size tp 3.24× 2.16 µm2 due to the maximal available memory on

modern GPUs. The material parameters were chosen according to experimental and litera-
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ture values. For the NiFe layer the saturation magnetization Ms = 800 kA/m, the exchange

constant Aex = 10.5 pJ/m and a small uniaxial in-plane anisotropy µ0Hk = 0.5 mT were

assumed. Regarding the CoFeB layer, the saturation magnetization Ms = 1250 kA/m, the

exchange constant Aex = 13 pJ/m [148] and a uniaxial in-plane anisotropy µ0Hk = 8 mT

were chosen. The anisotropy value in the CoFeB layer is significantly larger than values

reported for individual layers [149]. This increase can be attributed to the strain present

in the microstructured bilayer due to the antenna patterned on top of the system [150]. To

stabilize the antiferromagnetic alignment, the interlayer-exchange coupling was chosen to

be J =−0.3 mJ/m2.

An in-plane sinusoidal excitation field along the short edge of the ellipse with a fixed

frequency f was applied to excite the magnetization dynamics. In order to obtain a dynamic

equilibrium the integration time was set to 20 periods. For each period the magnetization

configuration was stored 10 times.

To study the excitation mechanism of the planar wave, the magnetization configuration

for each layer was averaged along the thickness for all points in time. The contribution of

the domain wall to the planar excitation was analyzed by extracting the domain wall profile

across the short edge of the ellipse. The position and the width of the domain wall were

extracted for both magnetic layers and are shown in Fig. 4.13. Within the first 0.25 ns only

the wall width is periodically changing, indicating the excitation of spin waves due to the

breathing of the domain walls [Fig. 4.13(a)] [151]. Important to note is that the breathing of

both domain walls is is phase-shifted by 180°. Since the interlayer exchange coupling favors

antiparallel alignment, this optical mode is the energetically lower mode. Such breathing

modes were reported as fundamental domain wall excitations [152]. With increasing time

both domain walls start to move [Fig. 4.13(b)]. Only small periodic oscillations of the do-

main wall position are visible. For larger times a continuous shift of both domain walls is

strongly pronounced. Since the simulated structure is rather small, the excited spin wave

might be reflected at the border of the system and could interact with the domain wall, lead-

ing to a continuous shift of the latter. Additionally, also the width of the domain walls seems

to be affected by the reflected spin waves.

To further deepen the understanding of the spin wave types present in this system, the

spin-wave dispersion relation was experimentally determined and theoretically verified.

At first the planar waves within the domains are analyzed. By extracting the STXM signal

along the propagation direction, the wave number k = 2π/λ was extracted for all investi-

gated frequencies. The result is represented by the open purple symbols in Fig. 4.14. The

blue solid line shows the theoretical results, obtained by an extended framework discussed

in Sec. 4.1. As mentioned before in this section, the theoretical description assumes a con-

stant amplitude of the dynamic magnetization along the thickness. However, the framework
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Figure 4.14.: Dispersion relation for the coupled Vortex pair [142].

was extended to include the splitting of each ferromagnetic layer into N equally thick thin

films. These N slabs are coupled to each other by an effective ferromagnetic intralayer ex-

change coupling Jintra. This effective intralayer exchange coupling Jintra is determined by

the continuum limit of the splitting, given by

Jintra =
2Aex

a
(4.17)

with the exchange constant Aex and the slab thickness a. This theoretical description enables

quick computing of the spin-wave dispersion relation in thick coupled ferromagnetic layers.

Therefore, the eigenvalue problem [Eq. (4.5)] has to be solved. The size of the matrix Ã

increases to 2N. However, the solution of the eigenvalue problem is still considerably faster

than full-scale micromagnetic simulations.

The calculated dispersion relation is sensitive on the CoFeB in-plane uniaxial anisotropy

and the interlayer exchange coupling. For J = −0.1 mJ/m2 and µ0Hk(CoFeB) = 4.8 mT,

a very good agreement of the theoretical calculation with the experimental data was found.

Moreover, the exchange constant Aex = 7.5 pJ/m [153] was slightly reduced compared to
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Figure 4.15.: Calculated dispersion relation of the coupled vortex pair. The open blue and red sym-
bols correspond to the optical and acoustic mode of the magnetic bilayer, respectively.
The grey shaded areas were experimentally accessible utilizing TR-STXM. The small
wave number is given by the sample size. The highest frequency is determined by the
time structure of the synchrotron.

the simulation of the excitation mechanism. All other material parameters were chosen as

mentioned above. To validate the splitting approach micromagnetic simulations were per-

formed. The results are shown as the solid grey symbols in Fig. 4.14. Both, micromagnetic

simulations and theory agree very well, showing the suitability of the splitting approach.

As already observed in Fig. 4.2, the spin-wave dispersion shows a frequency gap in the

presence of uniaxial anisotropy, leading to the formation of a local minimum in the dis-

persion. This intriguing feature is introduced by the combination of the dipole-induced

nonreciprocity in antiferromagnetically coupled bilayers [16] with the uniaxial anisotropy.

Again, similarities with the frequency shift induced by DMI can be found [129]. The exper-

imental observation of the selective spin-wave propagation can be explained by the presence

of the frequency gap. When selecting a frequency inside this gap no magnon propagation is

allowed. Important to note is that only spin waves with positive wave numbers could be de-

tected. Both, the very large group velocity of the fast branch and the system size limits the

direct investigation of the nonreciprocity. Since the short axis of the ellipse is 2.5 µm, the
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small wave number is limited to kmin ≈ 5 rad/µm. The high excitation frequency fmax = 3.5

GHz is given by the time structure of the X-ray pulse produced at the synchrotron. As

visible in Fig. 4.15, no spin wave with negative wave number can be excited.

In contrast to the planar wave, the measured dispersion relation in the domain walls lin-

early tends towards zero frequency. Therefore, no frequency gap is observed for this type

of excitation. The existence or absence of gap-less excitation modes is usually explained by

the Goldstone theorem [154]. This theorem postulates the existence of a gap-less mode, if

the continuous symmetry of the system is spontaneously broken in the ground state. Specif-

ically in the system under investigation, the continuous symmetry within the domains is

broken by the uniaxial anisotropy, and therefore the frequency gap for this excitations is

observed. For the spin wave confined to the domain wall, the continuous translational sym-

metry along the domain wall is preserved, leading to the presence of the gap-less mode.

However, in realistic samples defects and the finite length will always introduce a small

frequency gap, which seems to be too small to be observed within the scope of this study.

Conclusion
In conclusion, the theoretically predicted nonreciprocity in antiferromagnetically aligned bi-

layers could be directly and indirectly confirmed by means of BLS and TR-STXM. Since the

frequency shift will increase with increasing film thickness, BLS measurements are limited

in observing a very large nonreciprocity. For very thick magnetic layers, TR-STXM pro-

vides a suitable alternative. However, by using this technique only one branch of the spin-

wave dispersion can be observed, providing only indirect evidence for the nonreciprocity

in such systems. Nevertheless, using TR-STXM the striking feature of frequency-selective

spin wave propagation in either ferromagnetic domains or the domain walls was experi-

mentally observed for the first time. Both features, the nonreciprocity and the selective

propagation provide new possibilities for magnon-based computing and magnonic circuits.
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5. Numerical Investigation of Spin
Superfluid Transport in Quasi-U(1)
Systems

Many studies investigating superfluidic transport only rely on analytic theory. To the knowl-

edge of the author only two single micromagnetic simulations including all important in-

teractions have been reported [43, 44]. However, especially the excitation and therefore,

the feedback of the injector on the magnetic state and vice versa, is of big interest regard-

ing the experimental investigation of this long-distant spin transport. Moreover, multiple

publications already explored an application of the spin superfluidity, e. g. , domain walls

acting as hosts of these states or the transportation of domain walls using spin superflu-

ids [155, 156]. Moreover, first experimental signatures of spin superfluidic transport were

found in YIG [78], Chromia [157] and Graphene [158]. In this thesis, the spin superfluid

transport is numerically investigated, exciting the dynamics using spatially localized spin-

transfer torque. This injection region plays a crucial role defining the transport properties

of the system. Both, an easy-plane ferromagnetic without non-local dipole-dipole interac-

tions and a thin film including dipole-dipole interaction between the spins, are subject of the

study. The latter shows not a perfect U(1) symmetry as discussed in Chapter 2.3, since, as

one will see later, dipole-dipole interactions introduced a quasi anisotropy in the system. In

the light of the currently available theoretical description of the spin superfluidic transport,

two main questions can be formulated:

1. Is the superfluidic transport subject to a self-stabilizing mechanism at high bias cur-

rent?

2. Does the superfluidic transport exist on large length-scales in the presence of non-

local dipole-dipole interactions?

5.1. Thin Films with Dipole-Dipole Interaction

To understand the non-local dipole-dipole interactions and its impact on the superfluidic

transport, a model system was studied. The material parameters were chosen to correspond
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Figure 5.1.: Sketch of the theoretically investigated system. The yellow line indicates the DC in-
jection channel with out-of-plane spin polarization (blue arrows). The blue areas corre-
spond to the spin sinks to absorb the angular momentum. The red arrows indicate the
2π rotations of the magnetization [162].

to thin Y3Fe5O12 (YIG) films. The saturation magnetization Ms = 130 kAm-1 and the ex-

change constant Aex = 3.5 pJm-1 were chosen according to Refs. [159–161]. The lateral size

of the system was chosen with a length l = 50 µm and a width w = 5 µm. Since the dipole-

dipole interactions should scale with the thickness of the system, a thickness from d = 2 nm

up to d = 30 nm with a step size of 1 nm were simulated. To mimic the extended nature

of the thin film, PBC were applied along the in-plane directions. Since the system is not

a square, additional tests using a square-sized system (50 µm × 50 µm) were conducted to

test and verify the magnetostatic field. In contrast to the analytic model, the micromagnetic

simulation have to assume a non-zero Gilbert damping parameter with α = 0.002 to obtain

a stable numerical solution. A sketch of the system showing the spin spiral is depicted in

Fig. 5.1. It is important to note that in contrast to the previous chapter the x direction is now

the propagation direction.

As already discussed in Chapter 2.3, the presented analytic approach does not cover the

excitation. However, in the micromagnetic simulations the superfluid transport was excited

by means of spin-transfer torque (STT). The SST with a spin polarization #–p = (0,0,1),

was applied locally in the center of the system. Additionally, a spin sink, like an interface

to a heavy metal, was introduced in the simulation to extract the spin current. This sink

was modeled as an exponentially increasing Gilbert damping constant α at the short edges

of the system. To investigate the zero-thickness limit, the dipole-dipole interactions were

disabled. Instead an easy-plane anisotropy was introduced by using a negative uniaxial out-

of-plane anisotropy Ku = −10000 Jm-3. This value roughly provides the same anisotropy

field HK = 2Ku
Ms

as the magnetostatic field µ0Ms. It was shown, that this replacement resem-

bles the zero-thickness limit perfectly [163]. As discussed in Chapter 2.3, the gradient of

the in-plane angle ϕ is directly proportional to the spin current. To extract this quantity, the
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Figure 5.2.: Gradient of the in-plane angle ϕ as a function of the distance from the injector for
selected current densities in the area of 1.0×1010 A/m3 to 4.6×1011 A/m3. The three
panels are representative for the three observed regimes of the superfluidic transport.
In (a) ∇ϕ shows a linear dependence with the distance for all current density values.
Within the oscillatory regime, shown in (b) the linear dependence is superimposed with
non-coherent oscillations along the channel. (c) with further increase of the injector
current density, the linear dependence is recovered with an additional spin texture in
the injector region. ϕ = 0° is defined by the equilibrium configuration

#–
M = Msx̂.

magnetization dynamics is excited and the equation of motion is integrated over 500 ns to

reach the dynamic equilibrium for each current density.

In Fig. 5.2 the gradient of the in-plane angle ∇ϕ as a function of the distance is shown for

various injection currents. The Fig. 5.2(a) shows ∇ϕ as a function of the distance for the
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Figure 5.3.: Initial fluid velocity u0 (black open symbols) and frequency Ω (red open symbols) of
the superfluid state as a function of the injector current density omitting dipole-dipole
interactions. The black solid line represent the analytically calculated transmitted spin
current usin2

θ for the spin superfluid. The three different regimes are marked with
different color (yellow, red and blue).

linear regime (1×1010−2.5×1011 A/m3). For every current density in this regime a linear

response of the superfluid is observed. However, for the two largest current densities already

a stronger increase in ∇ϕ is visible in Fig. 5.2(a). This observed regime corresponds

to the traditional spin superfluid solution, investigated by many studies [38, 40, 81]. The

state provides the possibility for long-range spin transport. The gradient of the in-plane

angle ∇ϕ is linearly reduced only by a factor of two, when comparing values close to the

injector and to the sink. Since the spin current is directly proportional to this quantity,

the same reduction applies for it. In comparison to this, SWs would show an exponential

damping. In the vicinity of the spin sink, the spin current quickly goes to zero due to

the largely increased damping at the edges of the simulated system. The application of

the spin superfluidic transport would be beneficial for various applications, since the spin

current can be transported over very large length-scales. This regime is also obtained in

the analytically model for the spin superfluid state using linear response theory. However,

increasing the bias current density further, results in a breakdown of the initial fluid velocity

ux =−∇ϕ(x).

In Fig. 5.2(b) the fluid velocity is clearly reduced compared to the largest current density

shown in Fig. 5.2(a). After this first critical current density j(1)crit (blue line in Fig. 5.2(b),

the system undergoes a transition. As shown in Fig. 5.2(b) the linear superfluid is superim-

posed with additional spatial oscillations along the channel width. These oscillations are

visible in all components of the magnetization vector. The injection mechanism can be con-

sidered as incoherent parametric magnon excitation within the region of the injector using

spin-transfer torque. The injector region itself will autooscillate as a result of the paramet-

ric excitation. These autooscillations can be observed in Fig. 5.2(b) as an antisymmetric
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distribution of ∇ϕ in the active region. However, the excited magnons are unstable, and

therefore will rapidly disperse into incoherent magnons, propagating in the spin texture of

the superfluid [164]. This superposition of spin waves (or magnons) with a collective state

of magnons (the superfluid) shares large similarities with the two-fluid theory of superfluid

Helium. The magnons in the system can be considered as the normal fluid in the system.

Despite the fact that magnons are quasi-particles, still a BEC can be formed. Therefore, the

magnon number in the system has to be conserved within a time scale accessible for exper-

imental techniques. The time scale directly depends on the spin-lattice relaxation time. For

YIG the spin-lattice relaxation time was reported to be about 1 µs.

If we now consider the superfluid as a collective magnon state closely related to a magnon

BEC, the two-fluid model for magnons can be explained as follows: While exciting a large

number of incoherent magnons, the number of magnons in the collective state is reduced.

Therefore, the fluid velocity u has to decrease.

If the bias current density is even further increased, the system will undergo the next

transition. If the current density is larger than the second critical current density j(2)crit the

magnetization in the injection region is almost parallel to the injected spin polarization.

The injected amount of angular moment is too large for the active region to autooscillate.

This is visible in Fig. 5.2(c). The gradient of the in-plane angle again depends linearly on

the distance from the active region. In contrast to this, a stable spin texture is introduced in

the active region.

The main results of all three regimes are summarized in Fig. 5.3. The gradient of the

in-plane angle was extracted close to the active region, which is considered the initial fluid

velocity u0 = −∇ϕ(0). As already discussed within the linear regime I. this quantity de-

pends linearly on the injected current density. After reaching the first critical current density

j(1)crit = 2.5×1011 A/m3, the initial fluid velocity u0 is reduced. The initial fluid velocity u0

still depends linearly on the current density. However, the evaluation of the initial fluid

velocity u0 is complicated for this current range. The values in Fig. 5.3 correspond to the

mean values of the oscillatory gradient at a given current density.

Therefore, minimizing the influence of the excited incoherent magnons on the data eval-

uation, and therefore, the oscillations visible in Fig. 5.2(b), a cell-dependent fast-Fourier

transformation of the system was performed for all simulated current densities.

The resulting frequencies Ω are shown as the open red symbols in Fig, 5.3. Both quanti-

ties show very similar behavior. Only for the regime II. small deviations are visible between

both. As already discussed above, u0 is influenced by the additional magnons present in the

system. The calculated frequency Ω of the spin superfluid depends linearly on the injector

current density for both regimes I. and II.. The slope of the frequency is quite different for

both regimes. The reduction of the frequency might be directly related to the reduction of

67



5. Numerical Investigation of Spin Superfluid Transport in Quasi-U(1) Systems

Figure 5.4.: Dependence of the spin superfluid on the injector width. (a) shows the calculated fre-
quency Ω for four different injector widths. In (b) the extracted critical current density
is plotted as a function of the injector width. The red line is a guide to the eye.

magnons in the collective state. Additionally, the difference in the slope might be a result

of a large time-averaged mz within the active region.

A similar effect is more pronounced for regime III.. At first the slope of the initial velocity

and that frequency are similar to the one in regime II., but with increasing bias current

density both u0 and Ω saturate. Since the static alignment of the magnetization in the active

region is almost parallel to the spin polarization of the spin current for sufficiently large bias

current densities, the superfluid is screened.

Since the observed behavior should strongly depend on the amount of injected spin cur-

rent, different injector widths w were simulated. In Fig. 5.4(a) the frequency Ω is shown as

a function of the bias current density for four different injector widths. For all four widths,

the oscillatory breakdown is observed. The first critical current density j1
crit clearly depends

on the injector width. For the nominally 300 nm wide active region the breakdown already

occurs around j(1)crit = 2×1011 A/m2. In comparison to this, reducing the injector width to

nominally 30 nm, which corresponds to 1 cell in the simulations, increases the first critical

current density to j(1)crit = 8× 1011 A/m2. Due to limitations in compute time and storage

space the third regime could not be simulated for the small width of 30 nm. However, the

results still clearly indicate that the amount of spin current injected modifies the breakdown

current density. In Fig. 5.4(b) the first critical current density j(1)crit is depicted as a function

of the injector width. For this, the nominal width w of the injector was renormalized to the

exact width given by the cell size of the simulation

w0 = cx · int
(

w
cx

)
. (5.1)

Here, w is the nominal width of the injector and cx the cell size along the x-direction.

Only the integer part of the fraction is considered for the calculation of the renormalized

width w0. The red solid line in Fig. 5.4 is a fit using the function A
wp

0
+B, with the injector
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width w0. A, B, p were treated as fitting parameters. The obtained fit parameters are listed

in Tab. 5.1. Since the amount of spin current provided to the system linearly increases

with the width w, a linear scaling was expected. However, scaling is proportional to x−1

within the uncertainties of the fit. Therefore, the critical current should be constant for

sufficiently large injectors and converge to the value B extracted from the fit. To deepen the

understanding of this scaling behavior additional studies of the detailed mechanisms of the

breakdown have to be performed.

Together with the group of Prof. Tserkovnyak, and mainly driven by D. Hill1, an analytic

theoretical description of the observed effects was developed. As a starting point the equa-

tions of motion for non-linear spin superfluid transport were used [42]. The same coordinate

system as depicted in Fig. 5.1 was employed.

θ̇ −αϕ̇ sinθ =−
∂x
(
∂xϕ sin2

θ
)

sinθ
(5.2)

and

ϕ̇ sinθ +αθ̇ = ∂
2
x θ +

1− (∂xϕ)2

2
sin2θ . (5.3)

Additionally, the following boundary conditions were applied

(∓∂xϕ +gϕ̇ − j)sinθ = 0, (5.4)

∂xθ ∓gθ̇ = 0. (5.5)

Here, θ and ϕ describe the out-of-plane and the in-plane angle of the magnetization, re-

spectively. The boundary conditions are determined by the dimensionless spin-mixing con-

ductance g = 1
s

√
Ku
Ms

( h̄
4π

)
and the applied dimensionless spin current density j. To simplify

matters, the Gilbert damping constant α is assumed to be zero. Moreover, we assume ϕ̇ =Ω

and θ̇ = 0. The fluid velocity is defined as always: u(x) = −∂xϕ . Then, the equations of

motion become

∂x
(
usin2

θ
)
= 0, (5.6)

Ωsinθ =∂
2
x θ +

(
1−u2)sinθ cosθ . (5.7)

1Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA

Table 5.1.: Extracted parameters for the first critical current j(1)crit as a function of the injector width
w.

A B p
210.40 ± 59.04 1.52 ± 0.18 1.09 ± 0.09
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Eq. (5.6) easily can be solved by integrating:

u = c1 csc2
θ . (5.8)

It is important to note that c1 is an integral. Substituting Eq. (5.8) in Eq. (5.7) and multiply-

ing the equation with ∂xθ yields

Ωcosθ +
1
2
(∂xθ)2 +

1
2

sin2
θ +

c2
1

2
csc2

θ = c2. (5.9)

The solution now should satisfy the new boundary conditions at x = 0

v(0) = j−gΩ, (5.10)

∂xθ (0) = 0 (5.11)

and for x → ∞

u(∞) =− j∞ −gΩ, (5.12)

∂xθ (∞) = 0. (5.13)

In general, the solution for non-constant θ can be obtained from Eq. (5.9), solving for x

x− x0 =
1√
2

∫
θ(x)

θ0

dθ√
c2 −Ωcosθ − 1

2 sin2
θ +

c2
1

2 csc2 θ

. (5.14)

Considering the steady-state spin superfluid, the transition from an arbitrary θ1 to θ2 over

a finite region, resembles a domain wall, as the superfluid state consists of 2π windings.

The points θ1 and θ2 can be obtained from Eq. (5.9) with the condition ∂xθ = 0. The

characteristic equation reads

Ωcosθi +
1
2

sin2
θi +

c2
1

2
csc2

θi = c2, (5.15)

with i = 1,2.

To obtain the general solution, the boundary conditions have to be applied properly. At

first we start with Eq. (5.7), which results in

u(x) =
( j−gΩ)sin2

θ1

sin2
θ (x)

(5.16)
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and
sin2

θ1

sin2
θ2

=− j∞ −gΩ

j−gΩ
≥ 0. (5.17)

Beyond the transition region, the solution represents a dissipationless spin superfluid, and

from Eq. (5.7) this state must satisfy Ω =
(
1−u2

)
cosθ . By applying the boundary condi-

tion at x = ∞ to the equation, one finds

Ω =
[
1− ( j∞ −gΩ)2

]
cosθ2. (5.18)

Finally, one can apply the boundary conditions to Eq. (5.9)

Ωcosθ1 +
1
2

[
1+( j−gΩ)2

]
sin2

θ1 = Ωcosθ2 +
1
2

[
1+( j∞ −gΩ)2

]
sin2

θ2. (5.19)

The Eqs. (5.17), (5.18) and (5.19) give us three coupled equations for the three unknowns

θ1, θ2, and Ω as a function of the external parameters j, j∞, and g.

The general solution of the set of coupled equations has to be obtained numerically. How-

ever, the limit of large bias, j → ∞, for the case of j∞ = 0 results in an asymptotic behavior

Ω ∝ 1/ j sinθ1 ∝ 1/ j sinθ2 ∝ 1+O(1/ j) . (5.20)

Therefore, the spin current carried by the spin superfluid is

js = usin2
θ2 ∝

1
j
. (5.21)

The resulting spin current usin2
θ2 is shown in Fig. 5.3 as the solid black line. The qualita-

tive agreement of both analytic theory and micromagnetic simulations is remarkable. Both

critical current densities are almost perfectly predicted by the analytic calculations. In fact,

the quantitative agreement is also good. For the low bias regime the deviation between both

approaches is only given by the slope of the linear dependence. Since the analytic model

was developed for the zero damping case, this is not surprising.

Moreover, the calculated fluid velocity u had to be renormalized by a factor of two to

match the micromagnetic simulations. According to Ref. [40], the damping will affect the

precessional frequency of the spin superfluid as

Ωd = Ω
1

1+β
(5.22)

with the positive parameter β

β =
2παsL

h̄
. (5.23)
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Here α is the Gilbert damping parameter, s the spin density and L the length of the trans-

port channel. Since the fluid velocity is given by Eq. (5.11) the velocity in the presence of

damping reads
ud

u
= 1+

(
β

1+β

)
. (5.24)

Since β ≫ 1 the velocity in the case of non-zero damping is given by ud ≈ 2u. Nevertheless,

also the slope might slightly be affected.

The large bias regime seems to deviate more strongly from the analytically expected

trend. For these large current densities, the stable spin texture in the active region is already

formed. Two main contributions might affect the velocity of the spin superfluid. At first, the

exact spin texture in not considered in the analytical model. Depending on the strength of

the spin-transfer torque, the spin texture might change within the active region, and there-

fore influence the fluid velocity u. Additionally, the effect of the finite discretization size in

the micromagnetic simulations has to be considered. Since the reorientation of the magne-

tization from in-plane to out-of-plane happens on a very small length scale, the cell size is

crucial for the high bias regime. However, the overall trend does not change, only the fluid

velocity is renormalized.

In order to understand the instability of the superfluid in more detail, the free energy

F =
1
2

∫
dx
[
(∂xθ)2 +(∂xϕ)2 sin2

θ + cos2
θ

]
(5.25)

has to be analyzed. To do so, the second variation of the free energy in θ has to be consid-

ered. Furthermore, we assume that u =−∂xϕ and θ0 are constants that satisfy the equations

of motion and boundary conditions discussed above. The superfluid will be unstable to

fluctuations if the second variation corresponds to a saddle point in the free energy. The

variation is given by

δ
2F =

1
2

∫
dx δθ (x)

[
−∂

2
x −2

(
1−u2)cos(2θ)

]
δθ (x) . (5.26)

This variation can be negative, if the operator inside the brackets has negative eigenvalues.

If we further assume u < 1, which is always the case for the investigated system, the spin

superfluid will become unstable if cos(2θ)> 0, corresponding to θ < π/4 and therefore to

mz > 1/
√

2.

Before discussing the impact of the dipole-dipole interactions on the superfluidic trans-

port, it is valuable to discuss the spin superfluid in the presence of cubic anisotropy. Since

the easy-plane anisotropy is stronger than the cubic anisotropy, only the in-plane contribu-

tion of the cubic anisotropy has to be considered. Thus, the energetic landscape is modified

and easy directions are introduced within the plane of the film, resulting in a break of the
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Figure 5.5.: Gradient of the in-plane angle ϕ as a function of the channel length with cubic in-plane
anisotropy.

U(1) symmetry. Since the system minimizes the total energy, spins close to the easy di-

rections will rotate faster towards the easy anisotropy axes, when slightly increasing the

exchange energy. As depicted in Fig. 5.5 the resulting gradient of the in-plane angle ∇ϕ ,

and thus the fluid velocity u will be modulated along the transport channel. This distorted

magnetization profile minimizes the total energy of the system. Since the magnetic ground

state is aligned along one of the easy directions (
#–
M ∥ x̂) of the system, a threshold energy,

respectively a threshold current density, is required to excite the superfluidic transport.

This symmetry-broken superfluid was already introduced by Sonin [37]. Since the ho-

mogenous rotation of the magnetization is perturbed, each full 2π rotation of the spin su-

perfluid is considered an individual soliton2 [37]. Therefore, the state can be interpreted

as a chain of solitons traveling along the channel. Extending the theoretical description in-

troduced by Sonin, one obtains a damped Sine-Gordon equation for the superfluidic trans-

port [44, 82]. This type of equation is well-known in the fields of high-energy and particle

physics [165–167]. Moreover, it is interesting to note that already Skyrme obtained the

same equation [168]. One important class of solutions of this type of equation are solitons,

shown in deep entanglement of the superfluidic transport with the motion of solitons.

Analyzing the modulation of the fluid velocity in detail yields two different periods di-

rectly linked to two frequencies present in the system.

As we now shall see, the dipole-dipole interaction will lead to very similar properties.

Until now the superfluidic transport was only investigated without non-local dipole-dipole

interactions. Realistic samples, e. g. , based on YIG will always have some non-zero thick-

ness, and therefore dipole-dipole interactions will be present. To the knowledge of the

author only two studies of spin superfluidity including full-scale micromagnetic simula-

tions were published [43,44]. However, both did not consider extended thin magnetic films.

2A solition is a self-reinforcing wave packet.
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Figure 5.6.: Gradient of the in-plane angle ϕ as a function of channel length with enabled presence
of non-local dipole interactions. The different colors represent different current densi-
ties ranging from 1.0×1010 A/m2 to 1.6×1011 A/m2. The current density step size is
3.0×1010 A/m2.

The publication, even named "Spin Superfluidity and Long-Range Transport in Thin-Film

Ferromagnets" [43], only considered magnetic microstructures. As it will be concluded in

this section, the proper calculation of the magnetostatic field is crucial for the superfluidic

transport in thin films. For this the calculation scheme applied to the magnetostatic field in

MuMax3 will shortly be summarized.

In strong contrast to the long established micromagnetic simulation code OOMMF [94],

MuMax3 relies on numerical integration to calculate the demagnetization tensor instead of

Newell’s expression [169]. As shown in the original publication of MuMax3, the accuracy

of the numerical integration method is very good for finite sized systems and even for sys-

tems with PBC [127]. The calculation of the magnetostatic field in both simulation codes

uses a supercell approach. However, in case of PBC not only the averaged demagnetization

tensor is important, but also the symmetry of the tensor elements affects the magnetization

dynamics. To study this influence in detail the demagnetization calculation of OOMMF for

PBC was ported to MuMax3 [170] in the present work. Comparing both calculation meth-

ods shows that the newly implemented method slightly overestimates the magnetostatic

field, but the symmetry is nicely calculated. Due to the decomposition of the magneto-

static field in three parts, purely analytic formulas can be employed. These formulas can

be computed with a very high numerical accuracy, minimizing the total numerical error of

the magnetostatic field. However, the original method implemented in MuMax3 usually

slightly underestimates the magnetostatic field. The symmetry of the field can also be ob-

tained using a large number of repetition to obtain a larger enough supercell for the PBC

calculations, increasing the calculation time of the tensor significantly. For all simulations

shown in this section, the newly implemented approach was used.
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Figure 5.7.: Perturbed magnetization configuration of the superfluid state in the presence of dipole-
dipole interaction. (a) In-plane components of the magnetization mx (blue solid line)
and my (red solid line). The deviation from a sine function is clearly visible. (b) depicts
the out-of-plane component mz. The peaks in this component always occur at the points
with mx =−1 and mx = 1 marked by the vertical dashed lines. In (c) the divergence of
the magnetization is shown. This quantity is directly linked to the magnetostatic field.
The divergence is zero at the peaks in the mz component.

Fig. 5.6 shows the gradient of the in-plane angle ϕ as a function of the distance from

the injector. One of the main results of this study is directly visible in this figure. In very

strong contrast to the publication mentioned above, superfluid transport is possible for very

large length scales in ferromagnetic thin films. The linear dependence of the gradient on

the distance is also achieved in the case of enabled dipole-dipole interactions. Nevertheless,

peculiarities are visible. The blue solid line in Fig. 5.6 only shows non-zero values in the

active regions. This leads to the conclusion, that the magnetostatic field induces a threshold

current for the superfluid transport. Moveover, periodic spatial modulations are visible for

all current densities shown. One should note that all the current density values shown in

Fig. 5.6 are within the linear spin superfluidic regime. A detailed analysis shows that two

different periods are present within this spin spiral. As already mentioned above, similar ob-

servations were made in easy-plane ferromagnets with additional in-plane anisotropy. In the

case of the dipole-dipole interaction, the anisotropy introduced by the nonlocal interaction

can be considered a two-fold anisotropy.
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Figure 5.8.: Initial fluid velocity u0 and frequency of the spin superfluid as a function of the injec-
tor current density in the presence of dipole-dipole interactions. Both quantities again
shows three distinct regimes marked with yellow, red and blue, respectively.

To illustrate these non-homogenous rotations, Fig. 5.7 shows the magnetization config-

uration as a function of the distance away from the injector. Additionally, the divergence
#–

∇ · #–m = ∂xmx was calculated and depicted in Fig. 5.7(c). The in-plane components mx and

my [Fig. 5.7(a)] show distinct deviations from a sine-like behavior. These deviations are a

result of the dipole-dipole interactions. The magnetostatic field is mainly created by the

volume charges in the system. Since the investigated structure is a one-dimensional trans-

port channel, only the x-component contributes to the divergence. In Fig. 5.7(c) magnetic

charges created by the spin spiral change sign every π rotation. The opposite charges attract

each other, but can not annihilate. This attractive interaction reduces the distance between

the magnetic charges at every π rotation, and thereby disturbs the spin superfluid.

The quantity mz also shows peaks along the flow direction of the superfluid. For example

shown in Fig. 5.7(b), every peak also corresponds to a π rotation. However, the analysis

of different current densities reveals, that the wavelength of the modulation depends on the

applied current density. Due to the non-homogenous rotations of the magnetization, the

spin spiral can be considered as a chain of solitons.

To gain more insight into the effect of the dipole-dipole interactions on the superfluidic

transport, again the initial fluid velocity u0 and the frequency Ω for every simulated current

density was extracted. The qualitative trend depicted in Fig. 5.8 resembles the trend without

dipole-dipole interactions. The slope of the linear increase in the initial fluid velocity u0

and the frequency Ω is very similar in the linear regime compared to the easy-plane case.

Since the dipole-dipole interactions introduced a threshold current density as mentioned

above, the observed deviations might just be a result of the sampling in the current density.

Also the two other regimes agree very well with the easy-plane case. Both critical current
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Figure 5.9.: Normalized threshold current j0/d as a function of the film thickness d. The blue open
symbols represent the simulation results. The red solid line is a guide to the eye using
a linear function.

values seem to be affected by the dipole-dipole interactions. Nevertheless, the overall trend

is perfectly reproduced.

At this point it is important to stress the significance of the results presented here. For

both simulated systems the frequency-current response is very similar. That leads to the

conclusion that spin superfluidity in thin ferromagnetic films might be observable in realistic

systems.

In addition, the second periodicity observed in all simulations can be attributed to a sec-

ond frequency. The mz-component oscillates with the double frequency 2Ω compared to

the in-plane components. Moreover, this excitation is located throughout the whole super-

fluidic channel. The out-of-plane component of each soliton is excited, and therefore this

might be considered as an excitation of the soliton lattice. Nevertheless, the dispersion of

the superfluid in the case of non-zero Gilbert damping, limits the length scale of those ex-

citations. The author expects a perfect lattice forming the case of zero Gilbert damping.

This case cannot easily be calculated using micromagnetic simulations, since zero damping

might lead to unstable results while integrating, and therefore destroys the superfluidic state.

To further predict the possibility of the spin superfluidic state in ferromagnetic thin films,

a phase diagram was calculated. For that reason, thin films with a different thickness ranging

from 2 nm to 30 nm were simulated. For each thickness d the complete current dependence

was recorded. The threshold current density was extracted for every simulation. However,

in some cases the definition of the superfluidic state is complicated. Therefore, the definition

by Sonin was chosen. The spin superfluidic state consists of multiple 2π windings [171].

Therefore, only states with multiple 2π windings after the total integration time were de-

fined as superfluidic states. The extracted threshold current densities were renormalized by

the thickness d to account for the scaling of the spin-transfer torque. The result is presented

in Fig. 5.9. This reveals a linear scaling of the threshold current density with the film thick-
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ness d. This scaling can be explained in the sense of the magnetostatic energy. Since the

demagnetization tensor stays constant, only the volume of the system is changing, resulting

in a linear increase of the magnetostatic energy. The injected spin current at first has to

overcome this energy barrier, and therefore the scaling is linear.

Conclusion
To summarize, using large-scale micromagnetic simulations is was shown, that the spin

superfluidity differs from other critical phenomena. Instead of a simple breakdown of the

collective state at higher bias, the superfluid in ferromagnets undergoes two transitions. At

first, the collective state is superimposed with incoherent magnons excited inside the injec-

tion region. Afterwards, the superfluidic transport is screened at higher current densities due

to a local reorientation of the magnetization in the active region. Moreover, it was shown

that the dipole-dipole interactions do not change the observed behavior qualitatively. Only

a threshold current density, which linearly depends on the film thickness, is introduced. The

spin spiral in the case of the dipole-dipole interactions is non-homogenous, since the sys-

tem tries to minimize the magnetostatic energy. Moreover, the dipole-dipole interactions

lead to a frequency doubling of the excitation of the mz-component. The very remarkable

fact of this investigation regarding the spin superfluidic transport is the universality of the

models to describe this transport mode. The general behavior of the superfluid itself does

not change, even if additional features like damping, dipole-dipole interactions or the effect

of the finite discretization size are considered. All these additional contributions mainly

renormalize key quantities but the observed physics stays the same.

The presented results might enable experimentalists to narrow the region of interest in the

search for this special state in ferromagnetic materials. One important question regarding

the spin superfluidity remains open. How does one achieve the injection of a spin current

with a polarization perpendicular to the easy-plane in realistic systems? In the next section,

a system is proposed to overcome this challenge.

5.2. Nanowires with Out-of-Plane Anisotropy

As already mentioned above, a thin magnetic film provides the challenge to achieve suffi-

cient spin current injection with perpendicular polarization. In this section, a new system

will be proposed to overcome this challenge.

The only condition the system has to fulfill is the presence of one easy-plane. In case

of a thin ferromagnetic film, the magnetostatic field matches this condition. However, one

can decompose this easy-plane anisotropy in two uniaxial anisotropies with perpendicular

alignment. If the strengths of these two anisotropies are similar, a macrospin can rotate

freely within the plane provided by the two uniaxial directions.
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Figure 5.10.: Sketch of the NiCo nanowire with the superfluidic state excited. The red arrows in-
dicate the spiraling magnetization excited by the spin-Hall effect (blue arrows) in the
active region (gold).

The theoretically investigated system is a nanowire of length L with additional uniaxial

out-of-plane anisotropy (PMA). The first anisotropy axis is provided by the shape anisotropy

of the nanowire. Since the width w is chosen as w/L ≪ 1, the magnetization would align

with the long axis of the wire in the case of zero PMA. However, including a nonzero PMA,

such as

µ0NzzHDemag ≈ µ0Hanis (5.27)

with the demagnetization tensor entry Nzz, leads to the formation of an easy-plane system.

A sketch of the nanowire is shown in Fig. 5.10. In this system, the x-z plane provides an

easy-plane.

All calculations were carried out in close collaboration with the group of Prof. Krivorotov

at the University of California, Irvine. This group works on the experimental realization of

the spin superfluidity in the presented system. Therefore, all magnetic and geometrical

parameter were chosen according to the experimentally determined values. The experimen-

tally investigated nanowire with the width w = 40 nm, length L = 40 µm and thickness

t = 5.6 nm is grown as a multilayer of Ni and Co. Such superlattice structures consisting

of these two materials are well known for their PMA [172–176]. However, a reduced width

w = 20 nm was additionally investigated. To investigate the possibility of spin superfluidic

transport, the phase diagram of the NiCo system was simulated. The uniaxial out-of-plane

anisotropy (PMA) was implemented as a function of the device temperature, since all ex-

periments were carried out using a cryostat. The device temperature was treated as an input

parameter in the simulation script and results in a change of the anisotropy constant. There-

fore, the difference between the PMA and the shape anisotropy can easily be controlled.

The compensation temperature for which PMA and the shape anisotropy are balanced is

~55 K for the 40 nm wide wire and ~215 K for the 20 nm width.

In Fig. 5.11 the shape anisotropy for the different wire widths is compared to the PMA

present in these systems. Both anisotropy contributions are calculated with the simulation

code MuMax3. The dashed horizontal line indicates the compensation of both contributions

and therefore, the point of spin reorientation for the system. Values smaller than zero or
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Figure 5.11.: Comparison of the shape anisotropy and the PMA for different wire widths. The
dashed line indicates the spin reorientation transition.

larger than zero correspond to an equilibrium configuration out-of-plane or in-plane, re-

spectively.

Using this as a starting point, multiple temperature values, and therefore PMA constants

were considered. To minimize the storage capacity and computing time 20 µm long NiCo

wires were chosen. During optimization of the simulations for the superfluidic transport, it

became clear that PBCs are essential due to the weak dissipation present in the simulated

system (the injected spin cannot be extracted fast enough and therefore the fluid velocity is

reduced). However, combining PBCs with an exponential increase of the Gilbert damping

constant towards the short edges of the wire provides satisfying results. Simulating longer

wires for selected current densities might be beneficial to resolve the linear slope of the

fluid velocity more nicely. Due to the small fluid velocity (~30 % than in YIG) in the NiCo

system, the integration time for a 40 µm long NiCo wire was doubled to 500 ns.

The saturation magnetization of the NiCo multilayer was calculated as the average value

of the saturation determined for Co (Ms = 1422 kA/m) and Ni (Ms = 485.4 kA/m). This

results in a saturation magnetization of Ms = 954 kA/m. Additional FMR investigations

confirmed this value. Moreover, the exchange constant was assumed as the averaged con-
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stant of Co and Ni, resulting in Aex = 14 pJ/m. The PMA was extracted from temperature-

depended FMR measurements done at the UC Irvine. The PMA field at room temperature

is given by

µ0HRT
k =

4587.5
t

[T ·nm]. (5.28)

Moreover, the temperature dependence of the anisotropy was determined as:

µ0Hk (T ) =
[

1+
0.24(300−T )

300

]
µ0HRT

k . (5.29)

The Gilbert damping constant was set to α = 0.02. The applied current density was varied

between 8×1011 A/m2 and 2×1012 A/m2 with a step size of 2.5×1010 A/m2. For each

current density the magnetization configuration is recorded every 100 ps while integration

over 500 ns. To distinguish between normal fluidic states, superfluidic states, and autooscil-

lations, the gradient of the easy-plane angle ∇ϕ was calculated for every magnetization

configuration.

Influence of the Dipole-Dipole Interactions

As already shown in Chapter 5.1, dipole-dipole interactions strongly influence the symme-

try of the superfluidic state. Since NiCo has a considerably larger saturation magnetization

Ms than YIG, the effect will be more prominent in this system. In addition, the dipole-

dipole interaction plays a crucial role for the stability of the superfluid in the nanowire.

The magnetostatic field provides one of the uniaxial anisotropies needed for the compen-

sated state. To understand the influence of the saturation magnetization in detail, a toy

model is considered. Therefore, two different systems were simulated. For the first system,

material parameters similar to YIG were chosen. Additionally, an out-of-plane anisotropy

was introduced artificially to compensate the shape anisotropy. Recent advancement in the

field of crystal growth, such as YIG on Bismuth substituted Gadolinium Gallium Garnet,

Gd3Ga5O12 [177, 178], (sGGG) or Tm3Fe5O12 (TIG) [179] might be candidates for the ex-

perimental realization of the spin superfluidity.

The second system is the aforementioned NiCo superlattice. Fig. 5.12 shows the differ-

ence in the gradient of the easy-plane angle for two different widths (20 nm and 40 nm)

of the nanowire. The larger saturation magnetization Ms and, thus, the larger dipole-dipole

fields lead to strongly non-uniform rotations of the magnetization in the x-z plane. This di-

rectly points to the fact that the system is only compensated within a macro spin approach.

Micromagnetically, the same effect as mentioned before has to be considered. The volume

charges produced by the divergence of the magnetization, and therefore the magnetostatic

field, will be minimized. However, superfluidic transport still seems to be possible.
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Figure 5.12.: Gradient of the easy-plane angle ϕ for (a) a 20 nm wide NiCo wire, (b) a 40 nm
wide NiCo wire, (c) a 20 nm wide YIG wire and (d) a 40 nm wide YIG wire. The
out-of-plane anisotropy was balanced according to the calculated magnetostatic field.

The 40 nm NiCo Wire

The frequency response of the system as a function of the injector current is shown in

Fig. 5.13. The dynamic response of the system roughly can be divided into three regimes.

At first the superfluidic transport, in the area between 0.8×1012 A/m2 and 1.1×1012 A/m2.

The gradient ∇ϕ indicates the presence of the superfluidic transport, but no signature of such

state is present in the frequency response. One explanation for the observed behavior might

be that the frequencies of the state are below 10 MHz. Only an increase of the dynamic

response towards zero frequency is present, as visible in Fig 5.13. For higher bias current

densities two autooscillation modes are observed with a narrow linewidth. Both modes are

stables within the broad current range from approximately 1.3× 1012 A/m2 to 1.8× 1012

A/m2. As clearly visible in Fig. 5.13, both modes exhibit a slightly different non-linear

frequency shift as function of the bias current, indicating the different nature of both modes.

Since, the width of 40 nm seems to be large enough to form a spin texture across the width of

the wire, two different modes might be excited in the system. This behavior was especially

observed when the PMA and the shape anisotropy were exactly balanced. Therefore, the

82



5. Numerical Investigation of Spin Superfluid Transport in Quasi-U(1) Systems

Figure 5.13.: Color-coded dynamic response of the magnetization as a function of frequency Ω and
injector current density j for the compensated 40 nm wide NiCo wire. Superfluidic
transport at very low frequencies, as well as autooscillations can be observed for the
compensated system. Two different spin wave modes are excited around 1 GHz and
1.75 GHz.

formation of the spin texture is mainly driven by the dynamic dipole-dipole interactions in

the spin spiral. It seems that the spin texture reduces the superfluid flow and even stops

it in certain cases. Nevertheless, this problem might not occur in experiments, since the

simulations are done at T = 0 K.

To further investigate the influence of the ratio of shape and out-of-plane anisotropy,

multiple cases have been computed. The results are summarized in Fig. 5.14, focusing

on important temperatures, and therefore anisotropies. If the residual PMA is too large,

e.g. for 30 K, neither a superfluidic state nor autooscillations are excited. The tempera-

ture of 30 K corresponds to a residual anisotropy of HDemag −Hk = −16.3 mT. However,

slightly increasing the temperature to 35 K, evidences for a possible superfluidic transport

with smaller frequencies are present again. Increasing the temperature further towards the

compensation point results in an increase of the current range supporting the very small

frequency response, as visible for 45 K [Fig. 5.14(b)]. No autooscillations were observed

within the investigated current range. As already discussed above, the compensated case
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Figure 5.14.: Color-coded dynamic response of the magnetization as a function of frequency Ω and
injector current density j for the 40 nm wide NiCo wire with different strengths of the
uniaxial anisotropy. (a) and (b) represent the dynamic response below the compen-
sation temperature, which is shown in (c). (d) was obtained for a temperature value
above the compensation temperature. Neither show a clear evidence for superfluidic
transport nor autooscillations.

might support both, superfluidity and autooscillations. Nevertheless, the transition is rather

sharp. The PMA only changes by 1.3% for 35 K compared to the compensation. However,

no additional investigations regarding the 40 nm width have been performed, due to the very

small frequencies observed in the simulations. To overcome this challenge, a 20 nm wide

NiCo wire has been considered.

The 20 nm NiCo Wire

To understand the influence of the spin texture across the width of the wire and the dynamic

dipole-dipole interactions, the wire width was reduced to 20 nm. According to analytic cal-

culations the compensation temperature is approximately 215 K. Since the width in the case

of the nanowires plays the role of the thickness in films, a reduction of the critical current

and less influence of the dynamic dipole-dipole interactions are expected. The results for

selected temperatures are shown in Fig. 5.15. In strong contrast to the 40 nm wide wire clear
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Figure 5.15.: Color-coded dynamic response of the magnetization as a function of frequency Ω and
injector current density j for the 20 nm wide NiCo wire with different strengths of
the uniaxial anisotropy. All simulated anisotropy strengths supported the superfluidic
transport. The stability of the superfluidic state depends strongly on the anisotropy
strength.

indications for spin superfluidity are present in both, the gradient of the easy-plane angle

and the frequency. For the compensated case (T = 215 K) a frequency response around

50 MHz to 100 MHz is observed. The selected minimal current density is even slightly

too high, confirming the reduction of the threshold current, and thus the influence of the

dipole-dipole interactions.

For both lower and higher temperatures, corresponding to the same identical effective

magnetizations as for the 40 nm wide wire, superfluidic transport is observed for all cases.

The threshold current density depends on the effective magnetization. For T = 195 K, a

threshold of j ≈ 1.2×1012 A/m2 is observed [Fig. 5.15(a)]. Comparing the threshold values

for Figs. 5.15(a)-(b) and Figs. 5.15(d)-(e), shows an interesting property. For temperature

values below 215 K the PMA is strong, changing in favor of the shape anisotropy for larger

temperatures. The threshold current values are not symmetrically distributed around the

compensation points. This shows a clear indication, that both anisotropies cannot be treated

equally. Depending on the dominating contribution, the properties of the spin superfluid are

changing.

Besides the superfluidic transport, no autooscillations are observed at the investigated cur-

rent density range. Nevertheless, it might be possible, that autooscillations will be excited

for different current values.

85



5. Numerical Investigation of Spin Superfluid Transport in Quasi-U(1) Systems

Figure 5.16.: Anisotropy energy (a) and anisotropy field including the second-order anisotropy in a
20 nm NiCo wire. No perfect compensation can be achieved in the presence of the
second-order anisotropy, leading to a suppression of the superfluidic transport.

So far, only the first order PMA was considered in the simulations. However, the NiCo

system is known to shown a rather larger second order anisotropy [180]. To the knowledge

of the author, no study measuring the second order contribution as a function of temperature

is available. Theoretical calculations predicted a power-law dependence of the anisotropy

constant on the temperature [181]. The exponent of the power-law is thereby determined

by the order of the anisotropy. This behavior is supported by experiments for cubic Fe on

GaAs [182]. Since the main goal of this study was to supply frequency and current density

ranges for the experiments done at the UC Irvine, the same scaling as for the first order

constant was assumed, since no direct measurement exists for the NiCo multilayers.

For all investigated current densities and widths it was not possible to excite the spin

superfluid with the second order anisotropy present. To further understand this strong sup-

pression of the spin superfluid, the total energy Etot as well as the effective field µ0Heff

was calculated as a function of the easy-plane angle for various temperatures. All magnetic

moments were rotated simultaneously, and therefore the calculation resembles the macro-

spin approach. The resulting effective field and total energy for T = 0 K, T = 150 K and

T = 300 K are shown in Fig. 5.16. Since the angular dependences of the energy for sec-

ond ∝ sin4 and first order ∝ sin2 uniaxial anisotropies differ, no easy-plane system can be

achieved. For the two limits T = 0 K and T = 300 K, the difference between the first order

PMA and the shape anisotropy dominates both the total energy Etot, as well as the effective

field µ0Heff. The energy is almost perfectly 180° symmetric [Fig. 5.16(a)]. However, in the

effective field the contribution of the second order anisotropy is directly visible, resulting

in a distorted 180°-symmetry [Fig. 5.16(b)]. The new compensation point with the included

second order contribution is T = 150 K. As visible in Fig. 5.16(b), a residual anisotropy

field of approximately 15 mT results, leading to the suppression of the spin superfluid.
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Conclusion
In conclusion, the collective spin transport, referred to as spin superfluidity, was numeri-

cally investigated for two different systems. For the thin-film system, two very important

conclusions were obtained:

1. Two previously unknown transport regimes were found in using micromagnetic simu-

lations as well as analytic theory. The oscillatory regime is subject to a self-stabilization

mechanism. The superfluid phase is stabilized emitting incoherent spin waves in the trans-

port channel.

2. Dipole-dipole interactions do not suppress the long-distance transport.

To overcome challenges regarding the experimental investigations, a nanowire system was

investigated. The prototype nanowire made of NiCo exhibits a large PMA to compensate

the shape anisotropy, and therefore fulfills the condition for the superfluid transport. Never-

theless, only for widths of 20 nm or smaller, spin superfluidity is possible. Moreover, it was

shown, that the second-order uniaxial anisotropy suppresses the superfluid.

87





6. Conclusion and Outlook

This thesis entitled "Spin dynamics and transport in magnetic heterostructures" presented

two important topics devoted to the field of magnonics.

The first part of the thesis focused on the excitation and guiding of nonreciprocal spin

waves in magnetic bilayers. An analytic theory of the spin-wave dispersion in magnetic bi-

layers supported by micromagnetic simulations as well as experiments was presented. The

nonreciprocity induced by the dynamic intralayer dipole-dipole interactions theoretically

reaches 8.5 GHz for 20 nm thick magnetic layers. The derived analytic spin-wave disper-

sion has many similarities with the frequency shift induced by the Dzyaloshinskii?Moriya

interaction for small wave numbers. The micromagnetic simulations show an almost per-

fect agreement with the analytic theory. For larger wave numbers both approaches slightly

deviate, due to the confinement of the spin-wave amplitude close to the surfaces of the

magnetic bilayer. Two prototype systems were experimentally investigated utilizing fer-

romagnetic resonance spectroscopy, magnetometry, transmission electron microscopy, and

Brillouin light scattering. The first system consisted of two Ni81Fe19 layers separated by a

5-nm Cu spacer. To achieve the antiparallel alignment of the magnetic bilayer the antiferro-

magnet IrMn was deposited in contact with one of the Ni81Fe19 layers. The second system

was composed of a Ni81Fe19 layer and a Co40Fe40B20 layer separated by a thin Ir spacer.

The antiparallel alignment is achieved by the interlayer exchange coupling of both magnetic

layers.

The ferromagnetic resonance measurements for the first system indicate the presence

of an exchange bias field of approximately µ0Heb = 10 mT. However, the Brillouin light

scattering results were not promising. Therefore, additional characterization were not per-

formed.

For the second layer stack the full characterization was performed. By combining the

ferromagnetic resonance results with the magnetometry and micromagnetic simulations the

bilinear (biquadratic) interlayer exchange coupling constants J1 (J2) were successfully de-

termined. The transmission electron microscopy measurements provided the structural in-

formation needed to calculate the spin-wave dispersion of the system. The Brillouin light

scattering measurements show the predicted nonreciprocity in the antiparallel state with a

maximum frequency shift of ∆ f = 2.2 GHz. Very good agreement with the analytic theory
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is achieved by tilting the magnetization of each layer by 25°. The tilt is supported by the

magnetometry indicating a non-perfect antiparallel state for small magnetic fields.

Besides the spin-wave dispersion also the topological spin-wave emission in microstruc-

tured magnetic bilayers consisting of thick magnetic layers investigated by scanning trans-

mission x-ray microscopy was presented. Since the size of the elliptical structures are in the

micrometer range, the analytic theory as well as micromagnetic simulations for extended

bilayers almost perfectly resemble the dispersion in such devices. The microstructuring

leads to the formation of a spin texture composed of an elongated vortex state separated by

a domain wall. Both building blocks of this spin texture can emit spin waves if excited ho-

mogeneously. The vortex core emits spin waves locally confined to the domain wall at low

frequencies. For higher frequencies the emission of a plane wave originating at the domain

wall was observed. This topological emission is explained by the gap in the spin-wave dis-

persion. The mechanism of the plane wave emission is explained by the antiphase breathing

of the domain walls in both magnetic layers. With this new concept it is possible to excite

spin waves with ultra-short wavelength. The lower bound is provided by the domain wall

width of the system. Combined with the nonreciprocal transport, this study is an important

step towards the application of magnonic devices in the information and telecommunication

technology.

The second part of this thesis presented the concept of spin superfluidity in ferromagnetic

thin films. For the numerical study of the spin superfluid excited locally by means of spin-

transfer torque, the prototype system YIG was chosen. Two cases: (i) omitting and (ii)

including dipole-dipole interactions were considered.

It was found that in strong contrast to previous studies, the spin superfluidic transport is

not suppressed by the presence of dipole-dipole interactions. Two distinct alterations com-

pared to previous works led to this finding: (i) extended thin magnetic film were considered

and (ii) the magnetostatic field was calculated very carefully regarding its symmetry and

strength. This very important result might encourage new experimental endeavors to realize

the spin superfluidity in ferromagnetic thin films. In addition to this, the numerical results

show the existence of three distinct regimes depending on the injection current strength.

For small injection currents the traditional superfluid regime in good accordance to liter-

ature is obtained. In this regime the fluid velocity as well as the base frequency of the spin

superfluid linearly increases with the injection current.

Further increase of the bias current leads to a reduction of the fluid velocity and the base

frequency. Moreover, incoherent oscillations were observed in the transport channel. The

reduction of both frequency and velocity can be explained in sense of a superposition of

the spin superfluid with the "normal" fluid, given by spin waves. The incoherent magnons

are excited in the active region by the parametric excitation of the injector region. The
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critical current density needed for the breakdown strongly depends on the injector width,

supporting the hypothesis of parametrically pumped autooscillations. Therefore, the second

regime is termed oscillatory regime.

The third regime is defined by the stable spin texture introduced inside the active region

by the very strong spin-transfer torque. The increase of the injector current is followed

by the overdamping of the active region, and therefore, to a localized switching of the

magnetization. At first, the fluid velocity still increases in this regime, but quickly saturates.

Further increase leads to a reduction following the trend 1/ j. The existence of the three

regimes is supported by an analytic theory, predicting the critical current.

Besides persistent superfluidic transport in the presence of dipole-dipole interactions, ad-

ditional impacts were observed. At first, a threshold current is introduced, given by the

magnetostatic energy of the system. Furthermore, the coherent rotation of the magnetiza-

tion in the presence of dipolar interactions is modified. The magnetic charges produced by

the spin spiral attract each other, but do not annihilate, leading to the distorted profile of

the spin superfluid. The profile can be considered as a chain of dispersive solitons, show-

ing the deep entanglement of the spin superfluidic transport and the sine-Gordon equation.

Additionally, the excitation of this soliton lattice can be observed at twice the frequency

of the spin superfluid. To deepen the understanding of the influence of the dipole-dipole

interactions, the threshold current as a function of the film thickness was simulated. The

resulting phase diagram shows a linear increase of the threshold current, as aspected by the

linear increase in the magnetostatic energy.

To further provide a new experimental approach to the spin superfluid, a nanowire system

consisting of Ni and Co multilayers with out-of-plane anisotropy was investigated. For this

system the injector of the spin polarized current could be achieved by means of the spin-

Hall effect. The "film thickness" is now given by the width of the nanowire, providing

an upper bound for the latter. Two widths, 40 nm and 20 nm, were considered. For the

larger width, only parametrically excited autooscillations were observed, the narrow wire

showed clear indications for spin superfluidity in the micromagnetic simulations. However,

the mentioned material system is known to exhibit an additional second-order anisotropy,

directly leading to the suppression of the spin superfluid.

The direct combination of spin waves and spin superfluid would enable a very broad

playground for applications based on magnonic devices. By directly exciting spin waves

to control the spin superfluid frequency and also to transport additional information new

concepts for neuromorphic computing or telecommunication based on magnons could be

developed.

91



A. Appendix

A.1. Coefficient for FMR in Coupled Bilayers
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A.2. Matrix Elements

The matrix Ã has following entries:
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A.3. The Effect of Windowing

Figure A.1.: Effect of a Hann window function on the result of a FFT. (a) shows a sine wave with
frequency f0 for an integer number of periods (upper panel), for an non-integer number
of periods (middle panel) and a windowed sine wave with frequency f0 for an non-
integer number of periods. The corresponding FFT spectra are shown in (b).

The effect of the window function in Fourier transformations is depicted in Fig. A.1. To

illustrate the influence of the window function a sine function with a single frequency is

considered. The left panels [Fig. A.1(a)] shows an ideal sine wave with an integer number

of periods (upper panel), a sine wave with a non-integer number of periods (middle panel)

and the windowed sine wave with a non-integer number of periods (bottom panel). The

FFT assumes that the provided data set contains at least one complete period of the signal.

If the two endpoints are not identical, higher frequencies show up in the FFT. Since this

high-frequency components may be higher than the Nyquist frequency, they are aliased

between 0 and half of the sampling rate. The obtained FFT spectrum is broadened and the

energy is distributed into other frequency. This is illustrated in Fig. A.1(b). The upper panel

represents the FFT of the perfect sine wave, resulting in a delta peak at the single frequency.

The float-point accuracy leads to a small redistribution of the energy even for this case. The

middle panel shows the FFT of the sine wave with the non-integer number of periods. The

energy is strongly redistributed over the whole frequency range. This spectral leakage of the

FFT is suppressed for the windowed sine wave, as shown in the bottom panel. The window

function varies of the amplitude of the original signal. This results in a periodic signal.
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