Contact

Coordinator
PD Dr. Peter Zahn

Phone: +49 351 260 3121
E-mail: nanonet@hzdr.de

Spokesperson
Prof. Dr. Artur Erbe

Phone: +49 351 260 2366
E-mail: a.erbe@hzdr.de

Deputy spokesperson
Prof. Dr. Gianaurelio Cuniberti

Phone: +49 351 463 31414
E-mail: g.cuniberti@tu-dresden.de

TUD Logo

News

2024-02-21
Apply for Green ICT Award 2024, deadline April 30th

2023-06-22
Ahmad Echresh defended his PhD thesis at TU Dresden, Faculty of Physics - Congratulations!

2020-12-31
Helmholtz funding of NanoNet expired, but the network will continously promote collaboration and exchange of ideas.
Thanks to all members and partners.
Stay in contact!

Events

2024-04-29
Submit abstract for Makro 2024, deadline April 29th

2024-05-27/31
E-MRS Spring Meeting 2024, Strassbourg, FR

2024-06-24/26
DRC 2024, College Park, MD, US

2024-09-18/20
NanoNet+11 Workshop 2024, Plauen

Logo Science Calendar

Dresden Nano Seminar (TUD)

Ascent+ European Nanoelectronics Network

Help Desk

HZDR International Office
Welcome Guide HZDR

List of medical doctors speaking English

First steps in Dresden (info@MPI-CBG)

Liability Insurance: Why? Costs?

Support hotline "Violence against women" (GE/EN/FR/RU/Persian/Arabian/...)

Communication help in critical situationsLogo Helpline-Dresden

Acknowledgment

IHRS NanoNet was funded by Initiative and Networking Fund of Helmholtz Association (VH-KO-606) until Dec 2020.

Topography-controlled alignment of DNA origami nanotubes on nanopatterned surfaces

Bezuayehu Teshome, Stefan Facsko, Adrian Keller

The controlled positioning of DNA nanostructures on technologically relevant surfaces represents a major goal along the route toward the full-scale integration of DNA-based materials into nanoelectronic and sensor devices. Previous attempts to arrange DNA nanostructures into defined arrays mostly relied on top-down lithographic patterning techniques combined with chemical surface functionalization. Here we combine two bottom-up techniques for nanostructure fabrication, i.e., self-organized nanopattern formation and DNA origami self-assembly, in order to demonstrate the electrostatic self-alignment of DNA nanotubes on topographically patterned silicon surfaces. Self-organized nanoscale ripple patterns with periodicities ranging from 20 nm to 50 nm are fabricated by low-energy ion irradiation and serve as substrates for DNA origami adsorption. Electrostatic interactions with the charged surface oxide during adsorption direct the DNA origami nanotubes to the ripple valleys and align them parallel to the ripples. By optimizing the pattern dimensions and the Debye length of the adsorption buffer, we obtain an alignment yield of about 70%. Since this novel and versatile approach does not rely on any chemical functionalization of the surface or the DNA nanotubes, it can be applied to virtually any substrate material and any top-down or bottom-up nanopatterning technique. This technique thus may enable the wafer-scale fabrication of ordered arrays of functional DNA-based nanowires.

NANONET PUBLICATION Abstract Nanoscale 2014

Publication: Nanoscale 2014, 6 (3), 1790-1796

DOI: http://dx.doi.org/10.1039/C3NR04627C

Press Release: Ausgerichtete DNA-Drähte für die Nanoelektronik (in German)