RES³T - Rossendorf Expert System for Surface and Sorption Thermodynamics

Paper Details


Bibliographic Data:


Code: AR05
Paper Type: Article
Author(s): Al-Hamdan A, Reddy KR
Title: Surface Speciation Modeling of Heavy Metals in Kaolin: Implications for Electrokinetic Soil Remediation Processes
Journal: Adsorption: Journal of the International Adsorption Society
Volume: 11   Year: 2005   Pages: 529-546
ISSN-Print: 0929-5607   ISSN-WWW: 1572-8757
Internal Storage: V2864
DOI: 10.1007/s10450-005-5611-6
Abstract:

The driving mechanisms for flux occur at interface between the soil particles and solution during electrokinetic soil remediation and the nature of this interface affects the electrokinetic response of the system. The pH-dependent adsorption of heavy metal contaminants by kaolin and the sensitivity of kaolin zeta potential to the aqueous phase properties are two important aspects that complicate the metal movement during electrokinteic soil remediation. This paper addresses these aspects and presents an electrostatic adsorption model that describes the behavior of kaolin surface for Cr(VI), Cr(III), Ni(II), and Cd(II) under various chemical conditions. This study showed that the aqueous properties: pH, ionic strength and the presence of the heavy metals Cr(VI), Cr(III), Ni(II), and Cd(II) in the system affect the zeta potential of kaolin surface. The zeta potential of kaolin shifts to a more negative value if the system pH increases. However, it shifts to a more positive value if the system ionic strength or metal concentration increases. It was found that the amount of the heavy metal adsorbed by kaolin has a pronounced sensitivity to the pH. As a result of the adsorption modeling, the constant capacitance protonation-dissociation intrinsic constants of kaolin are: pKint+ = −3.8 ± 0.5 and pKint = 9.4 ± 0.5. The ion-kaolin surface complexation constants (pKint) of Cr(VI), Cr(III), Ni(II), and Cd(II) are: −12.5 ± 0.5, −5.0 ± 1.0, 2.6 ± 0.6, and 3.3 ± 1.0, respectively.

Comment: the area size and surface site densitity is cited from [DK90] but there are no these values for kaolinite

Surface Area   |   Site Density / Protolysis   |   Complex Formation   |   Formatted Citation