Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

"Online First" included
Approved and published publications
Only approved publications

41465 Publications

Strongly Non-Reciprocal Dipole-Exchange Spin Wave Mode in Antiferromagnetically Coupled Magnetic Bilayers

Tyberkevych, V.; Slavin, A.; Wintz, S.; Slobodianiuk, D.; Melkov, G.

  • Lecture (Conference)
    59th Annual Magnetism & Magnetic Materials Conference, 03.-07.11.2014, Honolulu, USA

Permalink: https://www.hzdr.de/publications/Publ-20849


Laser pulse-shape dependence of Compton scattering

Titov, A.; Kämpfer, B.; Shibata, T.; Hosaka, A.; Takabe, H.

Compton scattering of short and ultra short (sub-cycle) laser pulses off mildly relativistic electrons is considered within a QED framework. The temporal shape of the pulse is essential for the differential cross section as a function of the energy of the scattered photon at fixed observation angle. The partly integrated cross section is sensitive to the non-linear dynamics resulting in a large enhancement of the cross section for short and, in particular, for ultra-short flat-top pulse envelopes which can reach several orders of magnitude, as compared with the case of a long pulse. Such effects can be studied experimentally and must be taken into account in Monte-Carlo/transport simulations of %e+e− pair production in the interaction of electrons and photons in a strong laser field.

Permalink: https://www.hzdr.de/publications/Publ-20847


Defining medium-specific condensates in QCD sum rules for D and B mesons

Buchheim, T.; Hilger, T.; Kämpfer, B.

QCD sum rules for D and B mesons in a strongly interacting environment require the decomposition of Gibbs averaged operators related to tensor structures. We present a procedure to decompose these operators into vacuum and medium-specific parts, thus defining plain medium-specific condensates with coefficients vanishing in vacuum. Our decomposition allows for an identification of potential elements of order parameters for chiral restoration, in particular for higher mass-dimension quark-condensates which would be masked otherwise if operators with uncontracted Lorentz indices would be linked to DIS amplitudes.

Permalink: https://www.hzdr.de/publications/Publ-20846


Recent results from the high magnetic field laboratory Dresden: Probing the 1D or 2D nature of M2+Ta2O6 (M2+=Ni,Co)

Law, J. M.

es hat kein Abstract vorgelegen

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    Moscow International Symposium on Magnetism MISM-2014, 29.06.-03.07.2014, Moscow, Russia

Permalink: https://www.hzdr.de/publications/Publ-20844


ESR Studies of the Spin-1/2 Heisenberg Antiferromagnet Copper Pyrazine Dinitrate

Ozerov, M.

Copper pyrazine dinitrate, Cu(C4H4N2)(NO3), is one of the best known model spin-1/2 Heisenberg antiferromagnet chain system. Here, we present electron spin resonance (ESR) studies of this material. Angular, temperature and field dependences of ESR parameters are studied. We evidence the inequivalence of Cu sites belonging to adjacent spin chains in the ac planes. It is revealed that the dominating interchain interaction in this compound is of zig-zag-type. This interaction gives rise to geometrical frustration strongly affecting the character of antiferromagnetic ordering. Combining our experimental findings with the results of a quasiclassical approach we predict that at low temperatures the system orders in an incommensurate spiral state.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Poster
    International Conference on Strongly Correlated Electron Systems, 07.-11.07.2014, Grenoble, France

Permalink: https://www.hzdr.de/publications/Publ-20843


Simulation of Channel Segregation During Directional Solidification of In—75 wt pct Ga. Qualitative Comparison with In Situ Observations

Saad, A.; Gandin, C.-A.; Bellet, M.; Shevchenko, N.; Eckert, S.

Freckles are common defects in industrial casting. They result from thermosolutal convection due to buoyancy forces generated from density variations in the liquid. The present paper proposes a numerical analysis for the formation of freckles using the three dimensional (3D) cellular automaton (CA) - finite element (FE) model [1]. The model integrates kinetics laws for the nucleation and growth of a microstructure to the solution of the conservation equations for the casting, while introducing an intermediate modeling scale for a direct representation of the envelope of the dendritic grains. Directional solidification of a cuboid cell is studied. Its geometry, the alloy chosen as well as the process parameters are inspired from experimental observations recently reported in the literature [2]. Snapshots of the convective pattern, the solute distribution and the morphology of the growth front are qualitatively compared. Similitudes are found when considering the coupled 3D CAFE simulations. Limitations of the model to reach direct simulation of the experiments are discussed.

Keywords: Solidification; Natural convection; Segregation; Freckle; Dendritic growth; Grain structure

Permalink: https://www.hzdr.de/publications/Publ-20842


A 3D microstructural model of freckle initiation from pre-existing imperfections

Karagadde, S.; Yuan, L.; Shevchenko, N.; Eckert, S.; Lee, P. D.

The quality and lifing of high performance turbine blades are severely hampered by presence of freckles, which are initiated by presence of enriched solute plumes during solidification [1]. Nickel based turbine blades can be cast as equiaxed, directionally solidified or single crystals. Several types of perturbations may occur during these casting techniques, which can eventually lead to freckles.
In this work, a 3D microstructural numerical model of freckle formation is presented [2]. A typical simulation of stabilized solute plume formation leading to a freckle channel is shown in Fig. 1. The model is validated with in situ x-ray radiographic measurements [3], comparing solute partitioning, convection and freckle channel width. This model was then used to investigate freckle formation under a range of solidification conditions. Using the dendrite tip growth and solute profiles, freckle onset was observed to occur in two distinct stages. The influence of imperfections that occur in primary arm spacing and grain boundary was investigated from the proposed model. It was found that the freckles initiate from these irregularities, with a higher propensity for converging grain boundaries. In addition, the effect of dendrite orientation angle on freckle formation is studied.

Keywords: 3D microstructural model; freckle; x-ray radiography; model validation; dendrite tip growth

  • Lecture (Conference)
    4th International Conference on Advances in Solidification Processes, 08.-11.07.2014, Old Windsor, United Kingdom

Permalink: https://www.hzdr.de/publications/Publ-20841


Melt flow and temperature gradient effects on freckle formation

Shevchenko, N.; Roshchupkina, O.; Eckert, S.

A visualization of the segregation freckle formation and the main convection pattern in solidifying Ga - In alloys was obtained by using the X-ray imaging technique [1, 2]. A Ga - In alloy was used because its density variation and thermo-physical properties are similar to many commercial alloys. Furthermore, it has a very good X-ray contrast and shows a melting point near room temperature. Recently, formation of stable chimney at several solidification conditions and captured the solute distribution and flow velocities were reported [2]. Variations of the vertical and lateral temperature gradients induce modifications of the melt flow pattern, which lead to different segregation structures.
In the case of solidification at higher vertical temperature gradients (up to 2 K/mm), we identified a converging flow ahead of the mushy zone coming from the side walls. Such flow patterns are driven by the lateral temperature gradient and the convex shape of the solidification front. This leads to a continuous accumulation of solute in the central part of the solidification cell followed by a remelting of the solid fraction and the occurrence of a sustaining chimney. This mechanism of chimney formation is different as compared to the case where the evolution of the segregation channel is related to any initial growth defect.
Variations of the lateral temperature gradient by additional side cooling lead to a collapse of the double-vortex convection over entire cell volume. A more complicated flow pattern occurs consisting of multiple convection rolls along the solid - liquid interface. At such solidification conditions a sustainable development of stable chimneys was rarely observed.

Keywords: Visualization; X-ray radioscopy; freckle formation; solid liquid interface; flow patterns; temperature gradient

  • Lecture (Conference)
    4th International Conference on Advances in Solidification Processes, 08.-11.07.2014, Old Windsor, United Kingdom

Permalink: https://www.hzdr.de/publications/Publ-20840


In situ X-ray radiography study on the impact of forced melt convection on solidification processes

Shevchenko, N.; Roshchupkina, O.; Eckert, S.

In this paper, we present experimental investigations focusing on the question how natural and forced convection influence the microstructure formation in solidifying alloys.
In situ visualization of the solidification of Ga–25wt%In alloys was carried out by means of X-ray radioscopy. An electromagnetically driven flow was produced inside the solidifying liquid by a rotating wheel with two parallel disks containing at their inner sides a set of permanent NdFeB magnets with alternating polarisation [1, 2]. Rotation speeds of the magnetic wheel were chosen in the range of 10 – 80 revolutions per minute resulting in local flow velocities between 0.5 and 1.5 mm/s in the area just ahead of the solidification front. The melt flow is almost perpendicular with respect to the growth direction of the dendrites.
The forced convection induces a redistribution of solute concentration, re-orientation of the dendritic structure, changes of primary and secondary branching, and leads to a formation of segregation channels. Flow patterns, dendrite morphologies and tip velocities were quantified by image analysis and related to the experimental conditions. In principle, the forced flow is an external operational parameter that can be used to control the final microstructure. However, the optimization of the microstructure by electromagnetic flow control is a complex task which requires a deep understanding of the complex interplay between melt flow and solidification process.

Keywords: X-ray radiography; Solidification; Ga-In alloy; Forced convection; Dendritic structure; Tip velocity

  • Lecture (Conference)
    4th International Conference on Advances in Solidification Processes, 08.-11.07.2014, Old Windsor, United Kingdom

Permalink: https://www.hzdr.de/publications/Publ-20839


Dependence of all-optical magnetic switching on the sublattice magnetization orientation in Tb-Fe thin films

Hassdenteufel, A.; Schubert, C.; Schmidt, J.; Richter, P.; Zahn, D. R. T.; Salvan, G.; Helm, M.; Bratschitsch, R.; Albrecht, M.

We demonstrate that the direction of all-optical switching (AOS) in rare-earth transition-metal (RE-TM) alloy Tb-Fe thin films depends on the orientation of the sublattice magnetization and not on the direction of the resulting net magnetization. For this purpose, we investigated the AOS ability for a sample dominated by the Fe sublattice magnetization (Tb24Fe76) and another dominated by the Tb sublattice (Tb30Fe70). This finding of the sublattice dependence of AOS contributes to the understanding of switching in RE-TM multilayered thin films and heterostructures.

Keywords: all-optical magnetic switching; AOS; sublattice magnetization; rare earth metal alloy

Permalink: https://www.hzdr.de/publications/Publ-20838


Why Do Strategic Alliances Persist? A Behavioral Decision Model

Klossek, A.; Meyer, K. E.; Nippa, M.

Strategic alliances are considered a flexible form of organizing, yet they are often long-lived. Even when systematic benefit–cost analysis suggests that their organizational form should be changed or terminated, some alliances still persist. Drawing on behavioral decision theory, we propose a theoretical model that explains this phenomenon. Decision makers are subject to a variety of biases that can lead to the overvaluation of the net benefits of an alliance and, hence, inhibit the change or discontinuation of underperforming alliances. Our model illustrates how decision-making biases at the individual, interpersonal, organizational, and interorganizational levels are moderated by the design of an alliance and the tools employed in the decision-making process. This behavioral decision perspective advances our theoretical understanding of the longevity of strategic alliances and their embeddedness in complex decision-making contexts.

Permalink: https://www.hzdr.de/publications/Publ-20837


Visualization of liquid metal two-phase flows in a physical model of the continuous casting process of steel

Timmel, K.; Shevchenko, N.; Röder, M.; Anderhuber, M.; Gardin, P.; Eckert, S.; Gerbeth, G.

We present an experimental study concerned with investigations of the two-phase flow in a mockup of the continuous casting process of steel. A specific experimental facility was designed and constructed at HZDR for visualizing liquid metal two-phase flows in the mold and the submerged entry nozzle (SEN) by means of X-ray radioscopy. This setup operates with the low melting, eutectic alloy GaInSn as model liquid. The argon gas is injected through the tip of the stopper rod into the liquid metal flow. The system operates continuously under isothermal conditions. First results will be presented here revealing complex flow structures in the SEN widely differing from a homogeneously dispersed bubbly flow. The patterns are mainly dominated by large bubbles and large-area detachments of the liquid metal flow from the inner nozzle wall. Various flow regimes can be distinguished depending on the ratio between the liquid and the gas flow rate. Smaller gas bubbles are produced by strong shear flows near the nozzle ports. The small bubbles are entrained by the submerged jet and mainly entrapped by the lower circulation roll in the mold. Larger bubbles develop by coalescence and ascend towards the free surface.

Keywords: continuous casting; liquid metal model; two-phase flow; x-ray imaging

Permalink: https://www.hzdr.de/publications/Publ-20836


Decision-making criteria in rare earths exploration projects: An interview study

Klossek, P.; van den Boogaart, K. G.

When the rare earth prices skyrocketed in 2011, over 400 exploration projects appeared in the rest of the world. Before any of these exploration projects comes into production, it has to pass various stages of the project development and face multiple challenges at each of these stages. According to the Cooper’s stage-gate system, a decision about whether to move on to the next project stage should be based on the evaluation of certain criteria. The case of rare earth elements, however, differs from other metals in terms of mineralogy, market, technology, environmental issues, strategic importance etc. Therefore, the decision criteria might also partly differ. To find these criteria for the case of rare earths, interviews with decision- makers from several rare earths projects at different stages of development were conducted. In the paper, obtained criteria are listed, explained, and analysed for each stage/gate. Suggestions about their application to project management are made.

Keywords: exploration; mining; project development process; project management; project evaluation; decision-making; stage-gate system; decision-making criteria; rare earth elements; interview study; project realisability; project economics; project externalities; project uncertainty

Permalink: https://www.hzdr.de/publications/Publ-20835


High-magnetic-field properties of frustrated magnets

Wosnitza, J.

es hat kein Abstract vorgelegen

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    13th Japanese-German Symposium “Interplay of Spin- and Orbital Degrees of Freedom in Strongly Correlated Electron Systems”, 13.-16.07.2014, Rottach-Egern, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-20834


Emerging evidence for FFLO states in layered organic superconductors

Wosnitza, J.

es hat kein Abstract vorgelegen

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    2nd International Symposium of the SFB/TR 49 on “Novel states in correlated condensed matter – from model systems to real materials”, 08.-10.04.2014, Königstein, Deutschland
  • Invited lecture (Conferences)
    The 11th International Conference on Materials & Mechanisms of Superconductivity, 23.-28.08.2015, Geneva, Switzerland
  • Invited lecture (Conferences)
    Workshop on "Interference of Magnetism and Superconductivity", 18.07.-02.09.2016, Natal, Brasilien
  • Invited lecture (Conferences)
    Gordon Research Conference on Conductivity & Magnetism in Molecular Materials, 14.-19.08.2016, South Hadley, USA
  • Invited lecture (Conferences)
    3rd International Workshop GRK 1621, 26.-27.05.2016, Meissen, Deutschland
  • Invited lecture (Conferences)
    10th Workshop "Control of Quantum Correlations in Tailored Matter", 03.-06.04.2017, Loveno di Menaggio, Italien

Permalink: https://www.hzdr.de/publications/Publ-20833


The Fulde-Ferrell-Larkin-Ovchinnikov state in layered organic superconductors

Wosnitza, J.

es hat kein Abstract vorgelegen

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    International Workshop on Topological quantum matter and two-dimensional superconductors, 11.-14.01.2014, Kuming, China

Permalink: https://www.hzdr.de/publications/Publ-20832


Observation of the hyperfine transition in lithium-like bismuth Bi20980+ : Towards a test of QED in strong magnetic fields

Lochmann, M.; Jöhren, R.; Geppert, C.; Andelkovic, Z.; Anielski, D.; Botermann, B.; Bussmann, M.; Dax, A.; Frömmgen, N.; Hammen, M.; Hannen, V.; Kühl, T.; Litvinov, Y. A.; López-Coto, R.; Stöhlker, T.; Thompson, R. C.; Vollbrecht, J.; Volotka, A.; Weinheimer, C.; Wen, W.; Will, E.; Winters, D.; Sánchez, R.; Nörtershäuser, W.

We performed a laser spectroscopic determination of the 2s hyperfine splitting (HFS) of Li-like 209Bi80+ and repeated the measurement of the 1s HFS of H-like 209Bi82+. Both ion species were subsequently stored in the Experimental Storage Ring at the GSI Helmholtzzentrum für Schwerionenforschung Darmstadt and cooled with an electron cooler at a velocity of ≈0.71c. Pulsed laser excitation of the M1 hyperfine transition was performed in anticollinear and collinear geometry for Bi82+ and Bi80+, respectively, and observed by fluorescence detection. We obtain ΔE(1s)=5086.3(11)meV for Bi82+, different from the literature value, and ΔE(2s)=797.50(18)meV for Bi80+. These values provide experimental evidence that a specific difference between the two splitting energies can be used to test QED calculations in the strongest static magnetic fields available in the laboratory independent of nuclear structure effects. The experimental result is in excellent agreement with the theoretical prediction and confirms the sum of the Dirac term and the relativistic interelectronic-interaction correction at a level of 0.5%, confirming the importance of accounting for the Breit interaction.

Keywords: laser spectroscopy; qed; storage ring; esr; bismuth; li-like

Permalink: https://www.hzdr.de/publications/Publ-20831


Synthesis and evaluation of a 18F-labeled spirocyclic piperidine derivative as promising σ1 receptor imaging agent

Chen, Y.-Y.; Wang, X.; Zhang, J.-M.; Deuther-Conrad, W.; Zhang, X.-J.; Huang, Y.; Li, Y.; Ye, J.-J.; Cui, M.-C.; Steinbach, J.; Brust, P.; Liu, B.-L.

Several spirocyclic piperidine derivatives were designed and synthesized as σ1 receptor ligands. In vitro competition binding assays showed that the fluoroalkoxy analogues with small substituents possessed high affinity towards σ1 receptors and subtype selectivity. Particularly for ligand 1'-((6-(2-fluoro-ethoxy)pyridin-3-yl)methyl)-3H-spiro[2-benzofuran-1,4'-piperidine] (2), high σ1 receptor affinity (Ki = 2.30 nM) and high σ12 subtype selectivity (142-fold) as well as high σ1/VAChT selectivity (234-fold) were observed. [18F]2 was synthesized using an efficient one-pot, two-step reaction method in a home-made automated synthesis module, with an overall isolated radiochemical yield of 8-10%, a radiochemical purity of higher than 99%, and specific activity of 56-78 GBq/µmol. Biodistribution studies of [18F]2 in ICR mice indicated high initial brain uptake and a relatively fast washout. Administration of haloperidol, compound 1 and different concentrations of SA4503 (3, 5, or 10 µmol/kg) 5 min prior to injection of [18F]2 significantly decreased the accumulation of radiotracer in organs known to contain σ1 receptors. Ex vivo autoradiography in Sprague-Dawley rats demonstrated high accumulation of radiotracer in brain areas with high expression of σ1 receptors. These encouraging results prove that [18F]2 is a suitable candidate for σ1 receptor imaging with PET in humans.

Keywords: PET; 18F; Sigma-1 receptors; Imaging agent; Spirocyclic piperidine derivatives

Permalink: https://www.hzdr.de/publications/Publ-20830


Adsorption of zinc by biogenic elemental selenium nanoparticles

Jain, R.; Jordan, N.; Schild, D.; van Hullebusch, E. D.; Weiss, S.; Franzen, C.; Farges, F.; Hübner, R.; Lens, P. N. L.

The adsorption of Zn2+ ions onto biogenic elemental selenium nanoparticles (BioSeNPs) was investigated. BioSeNPs were produced by reduction of selenite (SeO32−) in the presence of anaerobic granules from a full scale upflow anaerobic sludge blanket (UASB) reactor treating paper mill wastewater. The BioSeNPs have an iso-electric point at pH 3.8 at 5 mM background electrolyte concentration. X-ray photoelectron spectroscopy showed the presence of a layer of extracellular polymeric substances on the surface of BioSeNPs providing colloidal stability. Batch adsorption experiments showed that the uptake of Zn2+ ions by BioSeNPs was fast and occurred at a pH as low as 3.9. The maximum adsorption capacity observed was 60 mg of zinc adsorbed per g of BioSeNPs. The Zn2+ ions adsorption on the BioSeNPs was largely unaffected by the presence of Na+ and Mg2+, but was impacted by the presence of Ca2+ and Fe2+ ions. The colloidal stability of BioSeNPs decreased with the increasing Zn2+ ions loading on BioSeNPs (increase in mg of zinc adsorbed per g of BioSeNPs), corresponding to the neutralization of the negative surface charge of the BioSeNPs, suggesting gravity settling as a technique for solid-liquid separation after adsorption. This study proposes a novel technology for removal of divalent cationic heavy metals by their adsorption on the BioSeNPs present in the effluent of an UASB reactor treating selenium oxyanions containing wastewaters.

Keywords: adsorption; selenium nanoparticles; zinc removal; XPS analysis; ζ-potential; colloidal stability

Permalink: https://www.hzdr.de/publications/Publ-20829


Spin-lattice effects in selected magnetic materials

Zherlitsyn, S.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    V International Conference of Young Scientists LOW TEMPERATURE PHYSICS (ICYS–LTP–2014), 02.-06.06.2014, Kharkov, Ukraine

Permalink: https://www.hzdr.de/publications/Publ-20828


Direct determination of exchange parameters in spin-1/2 Heisenberg triangular-lattice antiferromagnets: high-field ESR studies

Zvyagin, S.

Spin-1/2 Heisenberg antiferromagnets Cs2CuCl4 and Cs2CuBr4 with distorted triangular-lattice structures are studied by means of electron spin resonance spectroscopy in magnetic fields up to the saturation field and above. In the magnetically saturated spin polarized phase, quantum fluctuations are fully suppressed, and the spin dynamics is defined by ordinary magnons. This allows us to accurately describe the magnetic excitation spectra in both materials and, using the harmonic spin-wave theory, to determine their exchange parameters. The proposed approach has a broader impact and can be potentially used for any quantum magnet with reduced (e.g., by the staggered DM interaction) translational symmetry, resulting, as predicted, in emergence of a new exchange mode in the magnetically saturated phase.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    International Conference Magnetic Resonance: fundamental research and pioneering applications (MR 70), 23.-27.06.2014, Kazan, Russia

Permalink: https://www.hzdr.de/publications/Publ-20827


Magnetic fields in Europe

Wosnitza, J.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    Farewell Symposium of Jan Kees Maan, 23.05.2014, Nijmegen, The Netherlands

Permalink: https://www.hzdr.de/publications/Publ-20826


Measurement of the quasi free np -> npπ+π- and np ->ppπ-π0 reactions at 1.25 GeV with HADES

Kurilkin, A.; Arnold, O.; Atomssa, E. T.; Behnke, C.; Belyaev, A.; Berger-Chen, J. C.; Biernat, J.; Blanco, A.; Blume, C.; Böhmer, M.; Bordalo, P.; Chernenko, S.; Deveaux, C.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Fonte, P.; Franco, C.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gill, K.; Golubeva, M.; González-Díaz, D.; Guber, F.; Gumberidze, M.; Harabasz, S.; Hennino, T.; Höhne, C.; Holzmann, R.; Ierusalimov, A.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Kardan, K.; Koenig, I.; Koenig, W.; Kolb, B. W.; Korcyl, G.; Kornakov, G.; Kotte, R.; Krása, A.; Krebs, E.; Krizek, F.; Kuc, H.; Kugler, A.; Kunz, T.; Kurepin, A.; Kurilkin, P.; Ladygin, V.; Lalik, R.; Lang, S.; Lapidus, K.; Lebedev, A.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Müntz, C.; Münzer, R.; Naumann, L.; Palka, M.; Pechenov, V.; Pechenova, O.; Petousis, V.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Rehnisch, L.; Reshetin, A.; Rost, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Scheib, T.; Schmidt-Sommerfeld, K.; Schuldes, H.; Sellheim, P.; Siebenson, J.; Silva, L.; Sobolev, Y. G.; Spataro, S.; Ströbele, H.; Stroth, J.; Strzempek, P.; Sturm, C.; Svoboda, O.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Wendisch, C.; Wirth, J.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.

We present the results of two-pion production in tagged quasi-free np collisions at a proton incident beam energy of 1.25 GeV measured with the High-Acceptance Di-Electron Spectrometer (HADES) installed at GSI. The specific acceptance of HADES allowed for the first time to obtain high-precision data on π+π- and π-π0 production in np collisions in a region corresponding to large transverse momenta of the secondary particles. The obtained differential cross section data provide strong constraints on the production mechanisms and on the various baryon resonance contributions (, N(1440), N(1520), Δ(1600)). The invariant mass and angular distributions from the np->npπ+π- and np->ppπ-π0 reactions are compared with dierent theoretical model predictions.

Permalink: https://www.hzdr.de/publications/Publ-20825


Application of computational fluid dynamics in nuclear reactor safety analysis

Höhne, T.

The last decade has seen an increasing use of three-dimensional CFD codes to predict steady state and transient flows in nuclear reactors because a number of important phenomena such as pressurized thermal shocks, coolant mixing, and thermal striping cannot be predicted by traditional one-dimensional system codes with the required accuracy and spatial resolution. CFD codes contain models for simulating turbulence, heat transfer, multi-phase flows, and chemical reactions. Such models must be validated before they can be used with sufficient confidence in NRS applications.

Numerical investigations on single phase coolant mixing in Pressurized Water Reactors (PWR) have been performed at the HZDR for more than a decade. The work is aimed at describing the mixing phenomena relevant for both safety analysis, particularly in steam line break and boron dilution scenarios, and mixing phenomena of interest for economical operation and the structural integrity.

On the other hand slug flow as a multiphase flow regime can occur in the cold legs of pressurized water reactors, for instance after a small break Loss of Coolant Accident (SB-LOCA). Slug flow is potentially hazardous to the structure of the system due to the strong oscillating pressure levels formed behind the liquid slugs. For the experimental investigation of horizontal two phase flows, different non pressurized channels and the TOPFLOW Hot Leg model in a pressure chamber was build and simulated with ANSYS CFX.

The behavior of insulation material released by a LOCA into the containment and the reactor core might compromise the long term emergency cooling systems. Subsequently, if the ECCS is operating in the sump recirculation mode, the debris suspended in the containment sump would begin to accumulate on the sump strainers. A small part could penetrate through the strainers and could be transported towards the reactor core. It was the aim of the numerical simulations to study where and how many mineral wool fibres are deposited at the upper spacer grid of a core.

Keywords: TOPFLOW; ANSYS CFX; LOCA; ECCS; NRS

  • Contribution to proceedings
    24th SYMPOSIUM of AER on VVER Reactor Physics and Reactor Safety, 14.-18.10.2014, Sotschi, Russland
    CD-ROM
  • Lecture (Conference)
    24th SYMPOSIUM of AER on VVER Reactor Physics and Reactor Safety, 14.-18.10.2014, Sotschi, Russland

Permalink: https://www.hzdr.de/publications/Publ-20824


Validation of closure models for interfacial drag and turbulence of horizontal segregated flows

Höhne, T.

In the last decade, applications of Computational Fluid Dynamic (CFD) methods for nuclear applications received more and more attention, as they proved to be a valuable complementary tool for design and safety. The main interest towards CFD consists in fact in the possibility of obtaining detailed 3D complete flow-field information on relevant physical phenomena at lower cost than experiments. Typically free surfaces manifest as stratified and wavy flows in horizontal flow domain where gas and liquid are separated by gravity. Stratified two-phase flows are relevant in many nuclear applications, e.g. pipelines, main coolant lines, horizontal heat exchangers and storage tanks.

CFD simulations for free surface flows require the modeling of the non-resolved scales. For modeling of interfacial transfers it is necessary to select the adequate interfacial transfer models and to determine the interfacial area. The numerical solution can resolve the statistically averaged motion of the free surface (including waves) which may not be too small relatively to the channel height and to the characteristic length of the spatial discretization. However, the detailed structure of interacting boundary layers of the separated continuous phases and surface ripples cannot be resolved. Instead, its influence on the average flow must be modeled.

The development of a general model closer to physics and including less empiricism is a long-term objective of the activities of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) research programs. Such models are an essential precondition for the application of CFD codes to the modeling of flow related phenomena in nuclear facilities. Here local geometry independent models for mass, momentum, heat transfer, and scalar transport are developed and validated. The new formulation for the drag force at the free surface within the algebraic interfacial area density model (the FSD model inside AIAD) is one result of these activities.

A further step of improvement of modeling the turbulence is the consideration of sub-grid wave turbulence (SWT) that means waves created by Kelvin-Helmholtz instabilities that are smaller than the grid size. So fare in the present code versions they are neglected. However, the influence on the turbulence kinetic energy of the liquid side can be significantly large. A region of marginal breaking is defined according Brocchini and Peregrine (2001). In addition turbulence damping functions should cover all the free surface flow regimes, from weak to strong turbulence.

CFD validation of the new approach was done using experiments of the HZDR HAWAC channel. A discussion of the general requirements of such CFD grade experiments was performed. The CFD calculations were done using the Best Practice Guidelines for two-phase flow modeling. One result of the simulations was that the sub-grid wave turbulence which exists in the area of the free surface follows the slug formations. At the wavy front and back of the slugs the value of the sub-grid wave turbulence is the highest in the channel. The slug frequency analysis was done using fast Fourier transform (FFT). The characteristic slug frequency of the simulation was around 2.0 Hz, which corresponds roughly to the experimental value of approximately 2.4 Hz. The model improves the physics of the existing two fluid approaches and is already applicable for a wide range of industrial two phase flows.

More verification and validation of the approach is still necessary – more CFD grade experimental data are required for the validation.

Keywords: CFD; AIAD; HZDR; two-phase flow

Involved research facilities

  • TOPFLOW Facility
  • Contribution to proceedings
    CFD4NRS-5, Application of CFD/CMFD Codes to Nuclear Reactor Safety and Design and their Experimental Validation, Joint OECD/NEA & IAEA Workshop, 09.-11.09.2014, Zürich, Schweiz
    CD-Rom
  • Lecture (Conference)
    CFD4NRS-5, Application of CFD/CMFD Codes to Nuclear Reactor Safety and Design and their Experimental Validation, Joint OECD/NEA & IAEA Workshop, 09.-11.09.2014, Zürich, Schweiz

Permalink: https://www.hzdr.de/publications/Publ-20823


Uranium retention by montmorillonite at high ionic strengths

Fritsch, K.; Schmeide, K.

Clay and clay minerals are viewed as potential host rock as well as backfill material for nuclear waste disposal in deep geological formations. While South German clay deposits have pore waters with ionic strengths below 0.5 mol l-1, North German clay deposits exhibit high ionic strengths up to 4 mol l-1 in the depth relevant for repositories.[1] Such high ionic strength conditions are rarely investigated and are thus in the focus of the present work. Montmorillonite is used as model clay for uranium sorption experiments in sodium and calcium chloride. Additionally, a mixed electrolyte was prepared that resembles the groundwater composition at the Konrad site, which serves as a reference site. Surface complexation modelling is employed to gain thermodynamic data from the sorption experiments.

Sorption experiments were conducted with Na montmorillonite SWy-2, which was purified according to Poinssot et al. [2] and Bradbury et al. [3]. Sorption edges were determined with an initial U(VI) concentration of 1.10-6 mol kg-1 and a solid-liquid ratio of 4 g kg-1 in a pH range of 4 to 10 with electrolyte concentrations from 0.1 to 3 mol kg-1. The U(VI) concentration for sorption isotherms ranged from 1.10-8 to 1.10-5 mol kg-1. The mixed electrolyte was composed of cNaCl = 2.52 mol kg-1, cCaCl2 = 0.12 mol kg-1 and cMgCl2 = 0.048 mol kg-1 (overall I = 3.02 mol kg-1).

The classic ionic strength effect describes the decrease of sorption with increasing ionic strength and is generally only observed in the acidic pH range, where cation exchange is the predominant sorption mechanism. Natural groundwaters at the Konrad site have pH values above 5.5, where cation exchange is not the dominant sorption mechanism anymore, which in turn causes a smaller influence of ionic strength on sorption. The sorption maxima in the different salt systems usually lie just below the neutral point and well within the pH range of groundwaters at the reference site. The sorption edge in NaCl is observed at pH 4.1. In the mixed electrolyte, sorption is increased in the alkaline pH range when compared to pure electrolytes. This is due to the magnesium content in this electrolyte, which forms hydroxide precipitates that influence uranium retention by co-precipitation.

Surface complexation modelling with the 2 site protolysis non-electrostatic surface complexation and cation exchange model (2SPNE SC/CE)[4] in conjunction with spectroscopic investigation of the sorption phenomena can be used to identify the surface species involved. The results show that ≡SOUO2 + is the dominant surface complex below pH 6 Uranium hydroxide complexes become the dominant surface complexes above pH 7 in absence of CO2. In presence of CO2, sorption above pH 7 is decreased due to aqueous uranium carbonate complexes.

In general, there is no influence of ionic strength on U(VI) retention by montmorillonite at environmentally relevant pH values. The classic ionic strength effect can only be observed in the acidic pH range, and only up to a sodium concentration of 2 mol kg-1. However, in the presence of calcium or magnesium, uranium retention is promoted by secondary phase formation which leads to partial irreversibility of immobilisation at high ionic strengths in the alkaline pH range.

[1] Brewitz, W. et al. Eignungsprüfung der Schachtanlage Konrad für die Endlagerung radioaktiver Abfälle. GSF-T 136; 1982.
[2] Poinssot, C. et al. Experimental studies of Cs, Sr, Ni, and Eu sorption on Na-illite and the modelling of Cs sorption. NTB 99-04; 1999.
[3] Bradbury, M.; Baeyens, B. Geochim Cosmochim Acta 2009, 73, 990–1003.
[4] Bradbury, M.; Baeyens, B. J Contam Hydrol 1997, 27, 223–248.

Keywords: uranium sorption; argillaceous rock; clay; uranium; montmorillonite; high ionic strength; surface complexation modelling

  • Contribution to proceedings
    Clays in natural and engineered barriers for radioactive waste confinement, 23.-26.03.2015, Brussels, Belgium
    Proceedings of Clays in natural and engineered barriers for radioactive waste confinement
  • Poster
    Clays in natural and engineered barriers for radioactive waste confinement, 23.-26.03.2015, Brussels, Belgium

Permalink: https://www.hzdr.de/publications/Publ-20822


Parameter Estimation of anisotropic diffusion in Clay with COMSOL Multiphysics

Gerasch, R.; Kulenkampff, J.; Lippmann-Pipke, J.

Our GeoPET camera is explicitly dedicated for and well capable of 4D monitoring of solute transport in dense geological material, c = c(x,y,z,t) (Richter et al., 2005; Gründig et al., 2007; Kulenkampff et al., 2008; Zakhnini et al., 2013). We apply COMSOL Multiphysics for reproducing our experiments and extracting parameter sets for our 4D problems (Lippmann-Pipke et al., 2011; Schikora, 2012). By aligning simulated results of anisotropic diffusion in clay to our observations we are able to clearly differentiate and evaluate likely explicit sample features and transport processes.

Use of COMSOL Multiphysics: A quarter section of a cylinder (3D geometry) is representing our clay core. The bedding of the clay is about vertical. A central bore allows for the application of a labelled pore water solution to diffuse into the material. Isotropic diffusion is assigned to the fluid in the bore hole, while anisotropic diffusion is assigned to the porous media (both with cdeq). From our non-invasive, spatio-temporal PET observations of the diffusion process in a real clay sample two 2D sets ci(x,z) and ci(y,z), are extracted and provided to the Optimization Module for the parameter estimation for Dxx=Dyy and Dzz. A sensitivity analysis quantifies the effects on uncertainties regarding porosity n, initial concentration c0 and spatial resolution.

The 4D simulation results quantitatively nicely match with our 4D experimental results obtained in GeoPET experiments.

  • Lecture (Conference)
    COMSOL Conference 2014, 17.-19.09.2014, Cambridge, UK

Permalink: https://www.hzdr.de/publications/Publ-20821


FP7 Project LONGLIFE: Overview of Results and Implications

Altstadt, E.; Keim, E.; Hein, H.; Serrano, M.; Bergner, F.; Viehrig, H.-W.; Ballesteros, A.; Chaouadi, R.; Wilford, K.

LONGLIFE (“Treatment of long term irradiation embrittlement effects in RPV safety assessment”) was a collaborative project of the 7th Framework Programme of EURATOM under the umbrella of NULIFE/NUGENIA, aiming at an improved understanding of irradiation effects in reactor pressure vessel steels under conditions representative of long term operation. The LONGLIFE project was completed by end of January 2014. The paper gives an overview of the main project results and their implications for future research, as discussed at the final project workshop. The microstructural database for neutron-irradiated RPV steels was extended considerably and existing gaps on mechanical property data were closed. Indications of late blooming effects (LBE) were found in some cases, but clear criteria for the occurrence/exclusion in terms of irradiation conditions and chemical composition have still to be developed. The commonly accepted trend, that low flux and low irradiation temperature promotes LBE, is supported. A significant flux effect on the size of defect clusters was observed in two high Cu weld materials, while the changes of mechanical properties are not affected by the neutron flux. The database requires completion in particular for low-Cu RPV steels. The shift of reference temperature T0 over the thickness location of a VVER-440 welding seam does not follow the prediction Russian code, because of the strong variation of the intrinsic weld bead structure. Therefore, the effect of the initial microstructure and of the heterogeneity on the radiation behaviour has to be addressed in future works. Existing embrittlement trend curves models were applied to the LONGLIFE data base. None of the trend curves could predict the behaviour of the entirety of the LONGLIFE materials sufficiently. A guideline for monitoring radiation embrittlement during life extension periods was developed.

Keywords: Reactor pressure vessel steel; radiation induced defects; embrittlement; hardening; flux effect; late blooming; trend curves

Permalink: https://www.hzdr.de/publications/Publ-20818


Novel Cyclopentadienyl Tricarbonyl 99mTc Complexes Containing 1‑Piperonylpiperazine Moiety: Potential Imaging Probes for Sigma‑1 Receptors

Wang, X.; Li, D.; Deuther-Conrad, W.; Lu, J.; Xie, Y.; Jia, B.; Cui, M.; Steinbach, J.; Brust, P.; Liu, B.; Jia, H.

We report the design, synthesis, and evaluation of a series of novel cyclopentadienyl tricarbonyl 99mTc complexes as potent σ1 receptor radioligands. Rhenium compounds 3-(4-(1,3-benzodioxol-5-ylmethyl)piperazin-1-yl)-propylcarbonylcyclopentadienyl tricarbonyl rhenium (10a) and 4-(4-(1,3-benzodioxol-5-ylmethyl)piperazin-1-yl)-butylcarbonylcyclopentadienyl tricarbonyl rhenium (10b) possessed high in vitro affinity for σ1 receptors and moderate to high selectivity for σ2 receptors and the vesicular acetylcholine transporter. Biodistribution studies in mice demonstrated high initial brain uptake for corresponding 99mTc derivatives [99mTc] 23 and [99mTc]24 of 2.94 and 2.13% injected dose (ID)/g, respectively, at 2 min postinjection. Pretreatment of haloperidol significantly reduced the radiotracer accumulation of [99mTc]23 or [99mTc]24 in the brain. Studies of the cellular uptake of [99mTc]23 in C6 and DU145 tumor cells demonstrated a reduction of accumulation by incubation with haloperidol, 1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine (SA4503), or 1,3-di-otolyl-guanidine (DTG). Furthermore, blocking studies in C6 glioma-bearing mice confirmed the specific binding of [99mTc]23 to σ1 receptors in the tumor.

Permalink: https://www.hzdr.de/publications/Publ-20817


Cyclotron based production of high specific activity [197(m)Hg]HgCl2

Walther, M.; Preusche, S.; Pietzsch, H.-J.; Bergmann, R.; Steinbach, J.

197mHg (T1/2 = 23.8 h, Eγ 133.98 keV, 33.5%) and 197Hg (T1/2 = 64.14 h, Eγ 77.4 keV, 18.7%) are gamma-emitting radionuclides suitable for SPECT imaging and of additional interest because of the potential therapeutic us of their Auger- and conversion electron emission. The unique chemical and physical properties as metal which forms water-stable carbon-metal bonds and the easy volatility awakened interest on mercury decades ago. The medical use of mercury was virtually complete after the scientific determination of the high toxicity and long biological half life of mercury compounds in vivo. From this follows that the condition precedent to develop new radiopharmaceuticals based on mercury radionuclides is their high specific activity. The production of nca 197Hg radionuclide together with the short lived 197mHg isomer is possible by proton or deuteron irradiation of natural gold using a cyclotron. The 197Au(p,n)197Hg reaction was applied until now only for small scale tracer production, beam monitoring or stacked foil measurements. The main goal of the research project is the evaluation of the cyclotron-based radionuclides 197Hg/197mHg regarding their suitability for diagnostics and therapy of tumors. First results of investigations concerning nca 197Hg/197mHg production and the development of bifunctional mercury chelate complexes stable in vivo will be reported.

Involved research facilities

  • PET-Center
  • Abstract in refereed journal
    Nuclear Medicine and Biology 41(2014)7, 646
    DOI: 10.1016/j.nucmedbio.2014.05.018
    ISSN: 0969-8051
  • Lecture (Conference)
    2nd International Symposium on TECHNETIUM and other RADIOMETALS in CHEMISTRY and MEDICINE (Terachem 2014), 10.-13.09.2014, Bressanone, Italy

Permalink: https://www.hzdr.de/publications/Publ-20816


Pharmacological characterization of α-MSH-derivatives

Sihver, W.; Gao, F.; Jurischka, C.; Haase-Kohn, C.; Steinbach, J.; Carta, D.; Bolzati, C.; Calderan, A.; Pietzsch, J.; Pietzsch, H.-J.

The melanocortin-1 receptor is known to be overexpressed in melanoma. Thus, it is a potential target for novel α-MSH peptide derivatives aiming at diagnosis and therapy of melanoma. In this study, NOTA-NCS was conjugated with two peptides: NAP-NS1, a linear peptide with 9 amino acids (Ahx-βAla-Nle-Asp-His-D-Phe-Arg-Trp-Gly-NH2) and NAP-NS2, a lactam bridge-cyclized peptide with 12 amino acids (ε-Ahx-β-Ala-cyclo(Lys-Glu-His-D-Phe-Arg-Trp-Glu)-Arg-Pro-Val-NH2) each with the sequence His-Phe-Arg-Trp for biological activity. Four α-MSH derivatives were investigated in competition assays in murine B16-F10 and human MeWo melanoma cells. (S)-p-NH2-Bn-NOTA (NOTA-NAP-NS1) labeled with 64Cu and 68Ga, showing no transchelation in the cysteine and histidine challenge, was applied in saturation assays. Determination of octanol/water partition coefficients suggested that [64Cu]Cu-NOTA-NAP-NS1 had high hydrophilicity, and in buffer and serum it was stable after 1 h and 24 h. NAP-NS1 and NOTA-NAP-NS1 showed higher affinity than the cyclic derivatives. Linking the chelate unit at the peptide was accompanied by some loss of affinity. Saturation studies with the labeled peptide resulted in Kd values in the lower nanomolar range for [64Cu]Cu-NOTA-NAP-NS1 and [68Ga]Ga-NOTA-NAP-NS1, respectively. Thus, both radiolabeled peptides appear to be promising for further investigations in animal melanoma models.

This research was supported by MIUR (PRIN 2008F5A3AF_002).

Involved research facilities

  • PET-Center
  • Abstract in refereed journal
    Nuclear Medicine and Biology 41(2014)7, 637-638
    DOI: 10.1016/j.nucmedbio.2014.05.038
    ISSN: 0969-8051
  • Lecture (Conference)
    2nd International Symposium on TECHNETIUM and other RADIOMETALS in CHEMISTRY and MEDICINE (Terachem 2014), 10.-13.09.2014, Bressanone, Italy

Permalink: https://www.hzdr.de/publications/Publ-20815


Single-domain antibodies: Next-generation targeting vectors for molecular imaging

Zarschler, K.; Zscheppang, K.; Kapplusch, F.; Cordes, N.; Stephan, H.

Single-domain antibodies (sdAbs) provide significant benefits over conventional antibodies and fragments thereof in terms of size, stability, solubility as well as tumour uptake and blood clearance. Thus, sdAbs have been identified as valuable next-generation targeting moieties for molecular imaging and drug delivery in the past years. Since these probes are much less complex than conventional antibody fragments, bacterial expression represents a facile method for production of sdAbs in large amounts as soluble and functional proteins. Herein we report on heterologous high-yield expression of substantial amounts of soluble and functional sdAbs, which have an antagonistic effect on their molecular target, the epidermal growth factor receptor (EGFR). Upon radiolabeling with Tc-99m using the tricarbonyl method, we evaluated binding specificity and affinity to human EGFR-expressing tumor cells. Furthermore, we describe bioconjugation of sdAbs to fluorescent nanoparticles and characterization of sdAb-nanoparticles conjugates covering in vitro cancer cell imaging, cell proliferation as well as EGFR phosphorylation and signaling. The herein highlighted valuable properties of radiolabeled sdAbs combined with tailored effector functions may result in innovative next-generation theranostics.

  • Abstract in refereed journal
    Nuclear Medicine and Biology 41(2014)7, 628
    DOI: 10.1016/j.nucmedbio.2014.05.015
    ISSN: 0969-8051
  • Poster
    2nd International Symposium on TECHNETIUM and other RADIOMETALS in CHEMISTRY and MEDICINE (Terachem 2014), 10.-13.09.2014, Bressanone, Italy

Permalink: https://www.hzdr.de/publications/Publ-20814


Peptide conjugates for EGFR-targeting

Viehweger, K.; Hesse, J.; Stephan, H.; Spiccia, L.; Graham, B.

We have synthesized 64Cu-labelled peptide conjugates based on a 1,4,7-triazacyclononane (TACN) framework that may be applied for in vivo PET imaging. A peptide sequence (LARLLT, “D4”) was used to target the epidermal growth factor receptor (EGFR). Overexpression and mutations of this cell-surface receptor are involved in carcinogenesis and progression of many human cancers.

Four different linker groups were introduced to influence solubility and lipophilicity. The TACN-peptide conjugates are obtained in high yields after purification by RP-HPLC. Radiolabelling with 64Cu(II) was rapidly achieved under mild conditions (pH = 5.5; 22 °C). The receptor binding abilities of the labelled conjugates have been evaluated using immunoprecipitation and by determination of the dissociation constants, revealing only weak interactions (Kd > 100 nM) compared to its native ligand epidermal growth factor (EGF; Kd = 0.04 ± 0.002 nM). However, it was not determined if the “D4” peptide alone could target the EGFR.

  • Abstract in refereed journal
    Nuclear Medicine and Biology 41(2014)7, 636
    DOI: 10.1016/j.nucmedbio.2014.05.045
    ISSN: 0969-8051
  • Poster
    2nd International Symposium on TECHNETIUM and other RADIOMETALS in CHEMISTRY and MEDICINE (Terachem 2014), 10.-13.09.2014, Bressanone, Italy

Permalink: https://www.hzdr.de/publications/Publ-20813


Binding properties of radiolabeled cetuximab conjugates

Sihver, W.; Schubert, M.; Stephan, H.; Graham, B.; Spiccia, L.; Baumann, M.; Pietzsch, J.; Steinbach, J.; Pietzsch, H.-J.

The monoclonal antibody cetuximab (C225) binds with high affinity to the epidermal growth factor receptor (EGFR), which is a major molecular target for treatment of different types of cancer. Radiolabeled C225 has been proven to be appropriate for cancer imaging and treatment. This study comprises an affinity comparison of different C225 conjugates incorporating p-SCN-Bn-NOTA (1), p-SCN-Bn-dipicolyl-TACN (2) and p-SCN-Bn-CHX-A″-DTPA (3). Evaluation of the Ki values using homogenates of A431 cells (EGFRhigh/Her2high expression) revealed minimal loss of affinity for these conjugates compared to unchanged C225. Saturation assays have been applied to compare the binding properties of ([64Cu]Cu-1)3-C225, ([64Cu]Cu-2)2-C225, ([90Y]Y-3)3-C225 and ([111In]In-3)3-C225 on homogenates of different cancer cell lines. The labeled conjugates were found to bind with high specificity and affinity to both the A431 and FaDu (EGFRmedium/Her2low expression) cells, however, the affinity for the FaDu was higher than for the A431 cells. The affinity of ([64Cu]Cu-1)3-C225 and ([64Cu]Cu-2)4-C225 for both EGFR expressing cell lines was somewhat higher than that displayed by ([90Y]Y-3)4-C225 and ([111In]In-3)3-C225. No specific binding was observed in the case of the EGFR-negative MDA-MB-453S cells. Moreover, immunoreactive fractions of more than 80% were determined, indicating that the conjugates are promising candidates for further in vivo evaluation.

  • Abstract in refereed journal
    Nuclear Medicine and Biology 41(2014)7, 635
    DOI: 10.1016/j.nucmedbio.2014.05.037
  • Poster
    2nd International Symposium on TECHNETIUM and other RADIOMETALS in CHEMISTRY and MEDICINE (Terachem 2014), 10.-13.09.2014, Bressanone, Italy

Permalink: https://www.hzdr.de/publications/Publ-20812


In vitro evaluation of 64Cu-labeled GE11-conjugates

Oertel, F.; Starke, F.; Sihver, W.; Steinbach, J.; Pietzsch, H.-J.

The epidermal growth factor receptor (EGFR) is frequently overexpressed in epithelial tumors and consequently represents an important target for cancer diagnosis and therapy. Recently, a novel peptide sequence (GE11, YHWYGYTPQNVI) was identified to bind the EGFR with high affinity in vitro (Kd = 22 nM) as well as in vivo [1]. These promising data suggest that a GE11-conjugate, which is radiolabeled with a positron-emitting radionuclide, may be used for the assessment of EGFR-levels of tumors and metastases by positron emission tomography, thus, identifying patients which can be medicated by anti-EGFR therapy. Therefore, the peptide-conjugates NOTA-linker-GE11, NOTA-linker-GE11-NH2 and TACN-(linker-GE11-NH2)3 (linker = NH-((CH2)2-O)2-(CH2)2-NH-CO-CH2-O-CH2-CO-βAla) were synthesized and radiolabeled with 64Cu at a radiochemical purity of at least 95%. All three radiolabeled GE11-conjugates were stable in buffer as well as in human blood serum. The binding properties of the radiolabeled conjugates were then evaluated in vitro using EGFR-rich (A431, FaDu) and EGFR-negative (MDA-MB-435s) cell preparations. However, as a result of the in vitro studies for all three GE11-conjugates no binding affinity could be determined. These findings may be explained by the highly hydrophobic character of the produced GE11-conjugates with accompanying tendency for aggregation.

Reference
[1] Z. Li, R. Zhao, X. Wu, et al.
FASEB J, 19 (2005), pp. 1978–1985

Involved research facilities

  • PET-Center
  • Abstract in refereed journal
    Nuclear Medicine and Biology 41(2014)7, 634-635
    DOI: 10.1016/j.nucmedbio.2014.05.035
  • Poster
    2nd International Symposium on TECHNETIUM and other RADIOMETALS in CHEMISTRY and MEDICINE (Terachem 2014), 10.-13.09.2014, Bressanone, Italy

Permalink: https://www.hzdr.de/publications/Publ-20811


Bispidines as a platform for targeted multimodal imaging

Comba, P.; Hunoldt, S.; Morgen, M.; Pietzsch, J.; Steinbach, J.; Stephan, H.; Walther, M.

Ligands based on 3,7-diazabicyclo[3.3.1]nonane (bispidine) form very stable coordination compounds, in particular with first row transition metal ions. Considering multiple functionalization, bispidines are promising candidates for pharmaceutical targeting and multimodal imaging. Due to the formation of thermodynamically stable and kinetically inert CuII complexes, penta- and hexadentate bispidine ligands are well suited for 64Cu positron emission tomography imaging and radiotherapy (64Cu/67Cu). The bispidine scaffold paves the way for introducing further functionalities, such as targeting units and fluorescence labels, which broadens the scope regarding pharmaceutical targeting and dual labelling (PET and optical imaging). Several bispidine ligands have been developed in order to improve the radiopharmaceutical behavior as well as possibilities for further beneficial functionalization. Variable denticity (tetra-, penta- and hexadentate) with different donor groups, such as amino, amido, pyridine and/or methoxypyridine functionalities allows for tuning properties such as complexation and lipophilicity. These ligands and the important properties of their CuII complexes, e.g., stabilities, ligand exchange kinetics, serum stability, partition coefficients ([64Cu]Cu-bispidine: n-octanol/water) and biodistribution studies will be reported.

Involved research facilities

  • PET-Center
  • Abstract in refereed journal
    Nuclear Medicine and Biology 41(2014)7, 632-633
    DOI: 10.1016/j.nucmedbio.2014.05.047
  • Poster
    2nd International Symposium on TECHNETIUM and other RADIOMETALS in CHEMISTRY and MEDICINE (Terachem 2014), 10.-13.09.2014, Bressanone, Italy

Permalink: https://www.hzdr.de/publications/Publ-20810


Corporate governance and compliance of companies: changes in risk management?

Stiller, D.; Joehnk, P.

The concept of corporate governance in enterprises is an important topic in business administration. The topic is gaining on importance in the last years through the economic and financial crisis in 2007 and the crisis of public deficit and governmental debt in Europe in 2010. This paper describes current national and international legal provisions and standards of corporate governance. A particular emphasis is placed on the differences and influence factors in risk management between Europe and the United States of America.

Keywords: corporate governance; compliance; risk management; regulation; automotive industry

  • Open Access Logo Journal of International Scientific Publications: Economy & Business 8(2014)547, 554
  • Lecture (Conference)
    13th International Conference Economy & Business, 01.-05.09.2014, Elenite, Bulgaria

Permalink: https://www.hzdr.de/publications/Publ-20809


Scintillator Characterization at Energies Relevant for a Prompt Gamma Detection System in Particle Therapy

Römer, K.; Pausch, G.; Berthel, M.; Dreyer, A.; Enghardt, W.; Golnik, C.; Hueso-González, F.; Kormoll, T.; Petzoldt, J.; Fiedler, F.

The proton therapy in oncology requires instantaneous and reliable particle range verification, which can be done using prompt gamma emissions. The characteristic requirements of prompt gamma detection include the energy range of up to several MeV, increased background due to secondary emissions and high counting rates. Different concepts make use of these prompt gammas for dose verification like collimated systems or Compton cameras. Additionally to prompt gamma imaging, the prompt gamma timing method has been proposed, utilizing the proton time-of-flight inside the body. Those approaches imply different needs on energy-, spatial- or timing-resolution of the detection system. Various scintillator materials with multiple shapes have been characterized with respect to those requirements using classical photomultiplier tubes (PMT) and different experimental setups and locations. The light output, non-linearity and energy resolution were measured using gamma sources. The timing was characterized at the ELBE facility at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), using the bremsstrahlung beam with photons up to 12.5 MeV. Planned measurements at the 3 MV Tandetron accelerator at HZDR will provide information at the energy resolution at therapy relevant energies of 4.4 MeV.

Keywords: Scintillation; Characterization

Involved research facilities

Related publications

  • Poster
    2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (2014 NSS/MIC), 08.-15.11.2014, Seattle, USA
  • Contribution to proceedings
    2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (2014 NSS/MIC), 08.-15.11.2014, Seattle, USA
    Proceedings of 2014 NSS/MIC

Permalink: https://www.hzdr.de/publications/Publ-20808


Model for the Design of a Prompt Gamma Detection System Using Large Scintillators and Digital Silicon Photomultipliers

Römer, K.; Pausch, G.; Rohling, H.; Schöne, S.; Enghardt, W.; Golnik, C.; Hueso-González, F.; Kormoll, T.; Petzoldt, J.; Fiedler, F.

Proton therapy is, due to the well defined penetration depth, advantageous compared to classical radiation therapy in oncology. But range uncertainties can arise easily and have to be corrected for, preferably immediately during irradiation. Prompt gammas are a good means of instantaneous determination of the dose deposition. Detection systems have to cope with the high counting rates, energy region of up to several MeV and increased background due to secondary emissions, while providing reliable information on energy, timing and location of the detected gamma ray. Various concepts utilize these prompt gammas for dose verification like collimated systems, Compton cameras or prompt gamma timing. The digital silicon photomultiplier (dSiPM), as a favorable alternative to PMTs because of good timing performances and no requirement of further electronics, has been modelled in order to understand the complex behavior when working with monolithic scintillation crystals. Especially, the selection of trigger- and validation-parameters may lead to different spectrum shapes. This model will be helpful for finding best parameter settings for the required task, because it determines the photons lost in various processes, the trigger timing information and the spatial map. Comparison of modelled spectra and measured spectra are presented.

Keywords: Scintillation; digital Silicon PMT

  • Poster
    2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (2014 NSS/MIC), 08.-15.11.2014, Seattle, USA
  • Contribution to proceedings
    2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (2014 NSS/MIC), 08.-15.11.2014, Seattle, USA
    Proceedings of 2014 NSS/MIC

Permalink: https://www.hzdr.de/publications/Publ-20807


Kinetic inertness evaluation of copper complexes using gel electrophoresis techniques

Kubeil, M.; Zarschler, K.; Steinbach, J.; Stephan, H.

The development of highly stable radiocopper complexes is one major challenge that seeks to further improved radiopharmaceuticals for medicinal applications. In many cases, radiocopper complexes suffer the fate of dissociation in vivo which is contributed to loss of the radionuclide resulting amongst others in an unspecific accumulation in non-target tissues and thus in poor target-to-background ratios. The kinetic lability has been addressed as major issue for transchelation or dissociation in vivo. Valuable information of kinetic inertness can be derived from non-physiological and non-radiotracer conditions e.g., ligand or metal ion challenge experiments, acid-assisted dissociation studies. Serum stability experiments are more suitable, since they are associated with in vivo conditions. Usually, the method of choice to measure the kinetic inertness involves a time-consuming radio-HPLC procedure. In contrast, we describe two reliable in vitro assays using standard gel electrophoresis techniques which provide a timesaving work-flow for measuring simultaneously a variety of copper-containing chelates. With this procedure, different radiocopper chelates can be evaluated and compared concerning their kinetic inertness using protein challenge assays. Moreover, both experiments are transferable not only to newly designed chelates, but also to conjugates containing targeting molecules such as peptides or proteins.

Keywords: copper complexes; radiocopper; Cu-64; kinetic inertness; transchelation; chelate; chelator; gel electrophoresis; SDS-PAGE; native PAGE; human serum; superoxide dismutase

  • Poster
    2nd International Symposium on TECHNETIUM and OTHER RADIOMETALS in CHEMISTRY and MEDICINE (TERACHEM 2014), 10.-13.09.2014, Bressanone, Italy
  • Abstract in refereed journal
    Nuclear Medicine and Biology 41(2014)7, 633-634
    DOI: 10.1016/j.nucmedbio.2014.05.028

Permalink: https://www.hzdr.de/publications/Publ-20806


Cyclam with N-carbonxyethyl pendant arms as suitable radiocopper chelates

Kubeil, M.; Zarschler, K.; Pietzsch, J.; Stephan, H.; Comba, P.

Cyclam (1,4,8,11-Tetraazacyclotetradecane) and its derivatives are powerful ligands for very stable complexes with (radio)copper(II) [1]. These chelators allow the functionalization of targeting molecules, e.g. peptides and/or fluorescence units, to construct effective radiopharmaceuticals for diagnostic and therapeutic purposes. In this context, 1,4,8,11-tetra(carboxymethyl)-1,4,8,11-tetraazacyclotetradecane (TETA) is used for the development of copper-based target-specific radiopharmaceuticals, although dissociation and transchelation occur in biological systems. In contrast, radiolabeling of the pentadentate cyclam ligands with a different number of N-carboxyethyl groups have not been reported so far. As a consequence, their copper(II) complexes have been synthesized [2]. Herein, we present a comprehensive study, dealing with the influence of the pendant arm length on structural properties, radiolabelling conditions, in vitro and in vivo stability, and compare these results with cyclam ligands bearing N-carboxymethyl pendant arms e.g., CuII-TETA.
The different number of N-carboxyethyl pendant arms at the cyclam backbone strongly influences the structure and stability of the copper complexes. TE2P is ideally suited as a copper(II)-chelating agent due to its fast complexation with radiocopper, the high kinetic inertness towards SOD and human serum as well as the excellent biodistribution behaviour. The facile N-functionalization of TE2P with a specific peptide produces an imaging tool with improved pharmaceutical targeting.

References
1. T. J. Wadas, E. H. Wong,G. R. Weisman,C. J. Anderson, Chem. Rev. 110, 2858 (2010).
2. P. Comba, F. Emmerling, M. Jakob, W. Kraus, M. Kubeil, M. Morgen, J. Pietzsch, H.
Stephan, Dalton Trans. 42, 6142 (2013).

Involved research facilities

  • PET-Center
  • Lecture (Conference)
    5th EuCheMS Chemistry Congress, 31.08.-04.09.2014, Istanbul, Turkey

Permalink: https://www.hzdr.de/publications/Publ-20805


Characterization of circulating microparticle-associated CD39 family ecto-nucleotidases in human plasma

Jiang, Z. G.; Wu, Y.; Csizmadia, E.; Feldbrügge, L.; Enjyoji, K.; Tigges, J.; Toxavidis, V.; Stephan, H.; Müller, C. E.; Mcknight, C. J.; Moss, A.; Robson, S. C.

Phosphohydrolysis of extracellular ATP and ADP is an essential step in purinergic signaling that regulates key pathophysiological processes, such as those linked to inflammation. Classically, this reaction has been known to occur in the pericellular milieu catalyzed by membrane bound cellular ecto-nucleotidases, which can be released in the form of both soluble ecto-enzymes as well as being associated with exosomes. Circulating ecto-nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1/CD39) and adenylate kinase 1 (AK1) activities have been shown to be present in plasma. However, other ecto-nucleotidases have not been characterized in depth. An in vitro ADPase assay was developed to probe the ecto-enzymes responsible for the ectonucleotidase activity in human platelet-free plasma, in combination with various specific biochemical inhibitors. Identities of ecto-nucleotidases were further characterized by chromatography, immunoblotting, and flow cytometry of circulating exosomes. We noted that microparticle-bound ENTPDases and soluble AK1 constitute the highest levels of ecto-nucleotidase activity in human plasma. All four cell membrane expressed E-NTPDases are also found in circulating microparticles in human plasma, inclusive of: CD39, NTPDase 2 (CD39L1), NTPDase 3 (CD39L3), and NTPDase 8. CD39 family members and other ecto-nucleotidases are found on distinct microparticle populations. A significant proportion of the microparticle-associated ecto-nucleotidase activity is sensitive to POM6, inferring the presence of NTPDases, either −2 or/and −3. We have refined ADPase assays of human plasma from healthy volunteers and have found that CD39, NTPDases 2, 3, and 8 to be associated with circulating microparticles, whereas soluble AK1 is present in human plasma. These ecto-enzymes constitute the bulk circulating ADPase activity, suggesting a broader implication of CD39 family and other ecto-enzymes in the regulation of extracellular nucleotide metabolism.

Keywords: Ecto-nucleotidase; CD39; ATP; ADP; Adenosine; Purinergic signaling; TLC

Permalink: https://www.hzdr.de/publications/Publ-20804


The Ti7-Containing, Tetrahedral 36-Tungsto-4-Arsenate(III)[Ti6(TiO6)(AsW9O33)4]20-

Wang, K.-Y.; Bassil, B. S.; Lin, Z. G.; Haider, A.; Cao, J.; Stephan, H.; Viehweger, K.; Kortz, U.

We have prepared the Ti7-containing, tetrahedral 36-tungsto-4-arsenate(III) [Ti6(TiO6)(AsW9O33)4]20- (1) in a simple, one pot procedure. Polyanion 1 contains a novel Ti7-core, comprising a central TiO6 octahedron surrounded by six TiO5 square-pyramids, capped by four {AsIIIW9} trilacunary fragments. The title polyanion is solution-stable, as shown by 183W NMR and mass spectrometry, and exhibits interesting biological properties.

Permalink: https://www.hzdr.de/publications/Publ-20803


Bispidines for dual imaging

Stephan, H.; Walther, M.; Fähnemann, S.; Ceroni, P.; Molloy, J.; Bergamini, G.; Heisig, F.; Müller, C. E.; Kraus, W.; Comba, P.

The efficient transformation of the hexadentate bispidinol 1 into carbamate derivatives yields functional bispidines for the convenient functionalization for targeted imaging. The BODIPY-substituted bispidine 3 combines the coordination site for metal ions (e.g., radioactive 64CuII) with a fluorescent unit. Product 3 was thoroughly characterized by standard analytical methods, single crystal diffraction, radiolabeling and photophysical analysis. The luminescence of ligand 3 was found to be strongly dependent on metal ion coordination: CuII quenches the BODIPY fluorescence, while NiII and ZnII ions do not affect it. It follows that, in imaging applications with the positron emitter 64CuII, residues of its origin from enriched 64Ni and the decay products 64NiII and 64ZnII, efficiently restore the fluorescence of the ligand. This allows for monitoring of the emitted radiation as well as the fluorescence signal. The stability of the 64CuII-3 complex was investigated by transmetalation experiments with ZnII and NiII, using fluorescence and radioactivity detection and the results confirm the high stability of 64CuII-3. In addition, metal complexes of ligand 3 with the lanthanide ions TbIII, EuIII and NdIII are shown to exhibit emission of the BODIPY ligand and the lanthanide ion, thus enabling dual emission detection.

Permalink: https://www.hzdr.de/publications/Publ-20802


2,3-Diaryl-substituted indole based COX-2 inhibitors as leads for imaging tracer development

Laube, M.; Tondera, C.; Sharma, S. K.; Bechmann, N.; Pietzsch, F.-J.; Pigorsch, A.; Köckerling, M.; Wuest, F.; Pietzsch, J.; Kniess, T.

A series of 2,3-diaryl-substituted indoles containing a fluorine or methoxy group was synthesized via Fischer indole synthesis, McMurry cyclization, or Bischler–Möhlau reaction to identify potential leads for positron emission tomography (PET) radiotracer development as well as for optical imaging. All 2,3-diaryl-substituted indoles possess autofluorescent properties with an emission maximum in a range of 443–492 nm, which is acceptable for biological studies in vitro and, in part, in vivo. The molecular structure of compounds 3a and 3j was confirmed by X-ray crystal structure analysis. COX inhibitory activity was evaluated by a fluorescence-based and enzyme immunoassay-based assay. Redox activity of all target compounds was also determined. All synthesized 2,3-diaryl-substituted indoles are inhibitors of COX-2 enzyme in the low micromolar range. Compounds 3e, 3f, 3g and 3m displayed a 30–40% inhibition of COX-2 at 0.1 µM concentration while compounds 3f and 3g also exhibited COX-1 inhibitory activity. Various compounds like 3g showed substantial antioxidative potential (RDIENE=2.85, RHAVA=1.98), an effect that was most measurable with methoxy-substituted compounds. With respect to PET radiotracer synthesis, OMe-containing compound 3j was selected as a promising candidate for carbon-11 labeling, and F-containing compound 3m as a lead for the development of a fluorine-18 labeled derivative.

Involved research facilities

  • PET-Center

Permalink: https://www.hzdr.de/publications/Publ-20801


Effects of pulmonary acid aspiration on the regional pulmonary blood flow within the first hour after injury: an observational study in rats

Richter, T.; Bergmann, R.; Pietzsch, J.; Mueller, M. P.; Koch, T.

INTRODUCTION:

Gastric aspiration events are recognized as a major cause of pneumonitis and the development of acute respiratory distress syndrome. The first peak in the inflammatory response has been observed one hour after acid-induced lung injury in rats. The spatial pulmonary blood flow (PBF) distribution after an acid aspiration event within this time frame has not been adequately studied. We determined therefore PBF pattern within the first hour after acid aspiration.
METHODS:
Anesthetized, spontaneous breathing rats (n= 8) underwent unilateral endobronchial hydrochlorid acid instillation so that the PBF distributions between the injured and non-injured lungs could be compared. The signal intensity of the lung parenchyma after injury was measured by magnetic resonance tomography. PBF distribution was determined by measuring the concentration of [68Ga]-radiolabeled microspheres using positron emission tomography.
RESULTS:
Following acid aspiration, magnetic resonance images revealed increased signal intensity in the injured regions accompanied by reduced oxygenation. PBF was increased in all injured lungs (171 [150; 196], median [25%; 75%]) compared to the blood flow in all uninjured lungs (141 [122; 159], P= 0.0078).
CONCLUSIONS:
From the first minute until fifty minutes after acid-induced acute lung injury, the PBF was consistently increased in the injured lung. These blood flow elevation was accompanied by significant hypoxemia

Keywords: Acute lung injury; respiratory aspiration; positron emission tomography; pulmonary blood flow; magnetic resonance imaging

Involved research facilities

  • PET-Center

Permalink: https://www.hzdr.de/publications/Publ-20800


In Vivo Fluorescence Imaging and Urinary Monoamines as Surrogate Biomarkers of Disease Progression in a Mouse Model of Pheochromocytoma

Ullrich, M.; Bergmann, R.; Peitzsch, M.; Cartellieri, M.; Quin, N.; Erhart-Bornstein, M.; Block, N. L.; Schalley, A. V.; Pietzsch, J.; Eisenhofer, G.; Bornstein, S. R.; Ziegler, C. G.

Pheochromocytoma is a rare but potentially lethal neuroendocrine tumor arising from catecholamine producing chromaffin cells.Especially for metastatic pheochromocytoma,the availability of animal models is essential for developing novel therapies. For evaluating therapeutic outcome in rodent pheochromocytoma models reliable quantification of multiple organ lesions depends on dedicated small animal in vivo imaging, which is still challenging and only available at specialized research facilities. Here, we investigated whether whole-body fluorescence imaging and monitoring of urinary free monoamines provide suitable parameters for measuring tumor progression in a murine allograft model of pheochromocytoma. We generated an mCherry-expressing mouse pheochromocytoma cell line by lentiviral gene transfer. These cells were injected subcutaneously into nude mice to perform whole-body fluorescence imaging of tumor development. Urinary free monoamines were measured by liquid chromatography with tandem mass spectrometry. Tumor fluorescence intensity and urinary outputs of monoamines showed tumor growth-dependent increases (<0.001) over the 30 days of monitoring post tumor engraftment. Concomitantly, systolic blood pressure was increased significantly during tumor growth. Tumor volume correlated significantly (<0.001) and strongly with tumor fluorescence intensity (=0.946) and urinary outputs of dopamine (=0.952), methoxytyramine (=0.947), norepinephrine (=0.756) and normeta-nephrine (=0.949). Dopamine and methoxytyramine outputs allowed for detection of lesions at diameters below 2.3 mm. Our results demonstrate that MPC-mCherry cell tumors are functionally similar to human pheochromocytoma. Both tumor fluorescence intensity and urinary outputs of free monoamines provide precise parameters of tumor progression in this subcutaneous mouse model of pheochromocytoma. This animal model will allow for testing new treatment strategies for chromaffin cell tumors.

Keywords: Pheochromocytoma; Catecholamines; Metanephrines; LC-MS/MS; In vivo fluorescence imaging; Mouse pheochromocytoma cells

Involved research facilities

  • PET-Center

Permalink: https://www.hzdr.de/publications/Publ-20799


Biocompatibility and inflammatory response in vitro and in vivo to gelatin-based biomaterials with tailorable elastic properties

Ullm, S.; Krüger, A.; Tondera, C.; Gebauer, T. P.; Neffe, A. T.; Lendlein, A.; Jung, F.; Pietzsch, J.

Hydrogels prepared from gelatin and lysine diisocyanate ethyl ester provide tailorable elastic properties and degradation behavior. Their interaction with human aortic endothelial cells (HAEC) as well as human macrophages (Mɸ) and granulocytes (Gɸ) were explored. The experiments revealed a good biocompatibility, appropriate cell adhesion, and cell infiltration. Direct contact to hydrogels, but not contact to hydrolytic or enzymatic hydrogel degradation products, resulted in enhanced cyclooxygenase-2 (COX-2) expression in all cell types, indicating a weak inflammatory activation in vitro. Only Mɸ altered their cytokine secretion profile after direct hydrogel contact, indicating a comparably pronounced inflammatory activation. On the other hand, in HAEC the expression of tight junction proteins, as well as cytokine and matrix metalloproteinase secretion were not influenced by the hydrogels, suggesting a maintained endothelial cell function. This was in line with the finding that in HAEC increased thrombomodulin synthesis but no thrombomodulin membrane shedding occurred. First in vivo data obtained after subcutaneous implantation of the materials in immunocompetent mice revealed good integration of implants in the surrounding tissue, no progredient fibrous capsule formation, and no inflammatory tissue reaction in vivo. Overall, the study demonstrates the potential of gelatin-based hydrogels for temporal replacement and functional regeneration of damaged soft tissue.

Keywords: Cyclooxygenases; Cytokines; Endothelial cells; Macrophages; Matrix metalloproteinases; Thrombomodulin

Involved research facilities

  • PET-Center

Permalink: https://www.hzdr.de/publications/Publ-20798


The Feasibility of direct measurement of the 44Ti(α, p)47V and 40Ca(α, p)43Sc reactions in forward kinematics at astrophysically relevant temperatures

Al-Abdullah, T.; Akhmadaliev, S.; Ayranov, M.; Bemmerer, D.; Dressler, R.; Elekes, Z.; Kivel, N.; Schmidt, K.; Schumann, D.; Sobiella, M.; Stowasser, T.; Takacs, M. P.; Zuber, K.

Understanding the synthesis of radioactive 44Ti in the α-rich freeze-out following core-collapse supernovae may help to better interpret such explosive events. The γ-ray lines from the decay of 44Ti have been observed by space-based γ-ray telescopes from two supernova remnants. It is believed that the 44Ti(α,p)47V reaction dominates the destruction of 44Ti, while the 40Ca(α,p)43Sc reaction removes fuel from the main 44Ti production reaction 40Ca(α,γ)44Ti. Here we report on a possible technique to determine both reaction rates at astrophysically relevant energies in forward kinematics. The first reaction will be performed using a 1–10 MBq 44Ti target. Two important concerns are considered to make this study possible: The amount of stable Ti in the radioactive target, which will be prepared via spallation reactions at Paul Scherrer Institute (PSI), and the degree of radioactive contaminations in the experimental setup due to sputtered 44Ti atoms after intensive irradiations. Several online and offline measurements in parallel with Monte Carlo simulations were performed to investigate these issues.

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-20797


Interaction of Slow Highly Charged Ions with Ultrathin Membranes

Wilhelm, R. A.; Gruber, E.; Ritter, R.; Heller, R.; Facsko, S.; Aumayr, F.

Slow highly charged ions (HCI) are known as an efficient tool for surface nano structuring of various insulating and semi-conducting surfaces. We show here that slow HCI can also be used to perforate a free-standing carbon nano membrane (CNM) with a thickness of only 1 nm. In Fig. 1 (left) a helium ion microscopy (HIM) image shows ion induced pores with sizes of up to 15 nm in diameter and corresponding sputter yields of up to a few thousand atoms. Recent energy loss and charge exchange measurements on ions transmitted through a 1 nm thick CNM and free-standing Graphene reveal a strong dependence of the ion energy loss on charge exchange (see Fig. 1 (right)). Surprisingly two distinct exit charge state distributions are observed, i.e. one part of the ions is almost neutralized and the other part remains in very high charge states after transmission.
A simple model for charge state dependent energy loss of slow ions is compared to the mea- sured transmission data. The ions potential and kinetic energy dependence on pore formation is discussed in terms of charge exchange and energy loss.

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    17th International Conference Physics of Highly Charged Ions (HCI2014), 31.08.-05.09.2014, San Carlos de Bariloche, Argentinien
  • Lecture (others)
    Institutsseminar, Institut für Angewandte Physik der TU Wien, 20.02.2015, Wien, Österreich

Permalink: https://www.hzdr.de/publications/Publ-20795


Driving Plasmas with Lasers - from Fundamental Physics to Killing Tumors

Bussmann, M.

Overview on Laser Particle Acceleration fundamentals and related work at HZDR.

Keywords: laser acceleration; overview; summer student program

Involved research facilities

Related publications

  • Lecture (others)
    Lecture Series HZDR Summer Student Program, 04.08.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-20794


Vom Experimentalphysiker zum Theoretiker - Warum geradlinige Lebensläufe langweilig sind

Bussmann, M.

Der Vortrag behandelt die Frage, wie und ob man seine Karriere in der Wissenschaft planen kann und sollte.

Keywords: carreer; science; cv

Involved research facilities

Related publications

  • Lecture (others)
    Praktikerseminar des Fachschaftsrats Physik der TU Dresden, 26.06.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-20793


Beyond “single-shot” simulations - Can we simulate what is measured?

Bussmann, M.; Widera, R.; Huebl, A.; Burau, H.; Pausch, R.; Debus, A.; Schmitt, F.

We present PIConGPU, a highly-scalable particle-in-cell simulation code which allows for large-scale simulation surveys that includes synthetic diagnostics which produce simulation results similar to what is measured in experiments.

Keywords: picong; particle-in-cell; simulation; laser; plasma; synthetic diagnostics

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    3rd Topical Workshop on Novel Acceleration Techniques, 27.-30.04.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-20792


Laser cooling of stored relativistic ion beams with large momentum spreads using a laser system with a wide scanning range

Wen, W.; Winters, D.; Beck, T.; Rein, B.; Walther, T.; Tichelmann, S.; Birkl, G.; Sanchez-Alarcon, R.; Ullmann, J.; Lochmann, M.; Nörtershäuser, W.; Clark, C.; Kozhuharov, C.; Kühl, T.; Sanjari, S.; Litvinov, Y.; Giacomini, T.; Steck, M.; Dimopoulou, C.; Nolden, F.; Stöhlker, T.; Yang, J.; Zhang, D.; Ma, X.; Seltmann, M.; Siebold, M.; Schramm, U.; Bussmann, M.

New results on laser cooling of stored, bunched, relativistic ion beams are presented. For the first time it has been possible to cool an ion beam with large momentum spread without initial electron cooling or scanning of the bunching frequency by using a single cw laser system.

Keywords: laser cooling; ion beams; relativistic; cw laser; scanning; broadband

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-20791


Cooling of Bunched Relativistic Ion Beams using a CW Laser with a Frequency Scanning Range Greater than the Bucket Acceptance

Bussmann, M. H.; Schramm, U.; Seltmann, M.; Siebold, M.; Beck, T.; Birkl, G.; Rein, B.; Tichelmann, S.; Walther, T.; Dimopoulou, C.; Giacomini, T.; Kozhuharov, C.; Kühl, T.; Litvinov, Y. A.; Lochmann, M.; Nörtershäuser, W.; Nolden, F.; Sanchez Alarcon, R. M.; Sanjari, M. S.; Steck, M.; Stöhlker, T.; Ullmann, J.; Winters, D. F. A.; Ma, X.; Wen, W. Q.; Zhang, D.

With new, all solid-state cw laser sources cooling of relativistic ion beams with a large momentum spread has become possible. We present results on laser cooling of relativistic C3+ ion beams at the Experimental Storage Ring at GSI. In the experiment we used a frequency-quadrupled external-cavity diode laser for scanning over a relative ion momentum spread of dp/p ~ 10-5. We could show that laser cooling with such a system is almost independent of beam current and that the momentum spread reached for various bunching harmonics, bucket depths and beam currents always was found to be comparable to the resolution of the resonant Schottky pickup at ESR. We further found a decrease in Schottky power with decreasing momentum spread and that cooling times were only limited by the scanning time of the laser. The laser cooling technique presented here is of great interest for future heavy ion storage rings as it allows to address ion beams with an initially large momentum spread, thus not requiring initial electron cooling.

Keywords: laser cooling; ion beams; relativistic; esr; fair

Involved research facilities

Related publications

  • Poster
    5th International Particle Accelerator Conference, 15.-20.06.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-20790


Cooling Relativistic Ion Beams of initially large Momentum Spread with a fast scanning cw Laser System

Bussmann, M.; Winters, D.; Wen, W.; Dimopoulou, C.; Giacomini, T.; Kozhuharov, C.; Kühl, T.; Litvinov, Y.; Lochmann, M.; Nörtershäuser, W.; Nolden, F.; Sánchez, R.; Sanjari, S.; Steck, M.; Stöhlker, T.; Ullmann, J.; Beck, T.; Birkl, G.; Rein, B.; Tichelmann, S.; Walther, T.; Ma, X.; Zhang, D.; Loeser, M.; Seltmann, M.; Siebold, M.; Schramm, U.

We present new results from a recent experiment on laser cooling of relativistic bunched ion beams at the Experimental Storage Ring at GSI. Our results show laser cooling with a single solid-state cw laser system with a laser frequency scanning range larger than the bucket acceptance. This technique is of great importance for future storage ring facilities such as FAIR and HIAF, as it allows for all-optical beam cooling of initially hot ion beams without the need for pre-electron cooling or stochastic cooling.

Keywords: laser cooling; ion beams; relativistic; esr; fair

Involved research facilities

Related publications

  • Lecture (Conference)
    DPG-Frühjahrstagung der Sektion AMOP (SAMOP), 17.-21.03.2014, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-20789


Laser Cooling of Relativistic Ion Beams with Large Momentum Spreads

Bussmann, M.; Winters, D.; Wen, W.; Dimopoulou, C.; Giacomini, T.; Kozhuharov, C.; Kühl, T.; Litvinov, Y.; Lochmann, M.; Nörtershäuser, W.; Nolden, F.; Sánchez, R.; Sanjari, S.; Steck, M.; Stöhlker, T.; Ullmann, J.; Beck, T.; Birkl, G.; Rein, B.; Tichelmann, S.; Walther, T.; Ma, X.; Zhang, D.; Loeser, M.; Seltmann, M.; Siebold, M.; Schramm, U.

We present new results from a recent experiment on laser cooling of relativistic bunched ion beams at the Experimental Storage Ring at GSI. Our results show laser cooling with a single solid-state cw laser system with a laser frequency scanning range larger than the bucket acceptance. This technique is of great importance for future storage ring facilities such as FAIR and HIRFL, as it allows for all-optical beam cooling of initially hot ion beams without the need for pre-electron cooling.

Keywords: laser cooling; ion beams; relativistic; esr; fair

Involved research facilities

Related publications

  • Lecture (Conference)
    DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM), 30.03.-04.04.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-20788


The Helmholtz Beamline at XFEL - Probing solid density laser-plasma physics with XFELs on the femtosecond scale

Bussmann, M.; Kluge, T.; Huang, L.; Cowan, T. E.

We show that probing the ionization evolution and plasma dynamics in high power laser interaction with matter on the femtosecond and nanometer scale is in reach with state of the art X-ray lasers at facilities such as LCLS, SACLA and the European XFEL.
We have conducted particle-in-cell simulations including radiative and collisional atomic processes to generate absolute predictions for synthetic scattering images using SAXS and RCXDI techniques. We could show that plasma dynamics from the target front side and bulk can be distinguished and plasma instabilities identified and their development could be temporarily involved. Inclduing atomic physics models from SCFly we could furthermore show that the temporal evolution of the ionization dynamics can be probed by resonant scattering.

Keywords: xfel; hibef; helmholtz beamline; scattering; x-ray; laser; plasma; imaging; simulation

Involved research facilities

Related publications

  • Lecture (Conference)
    Strongly Coupled Coulomb Systems, 27.07.-01.08.2014, Santa Fe, NM, United States of America

Permalink: https://www.hzdr.de/publications/Publ-20787


Direct measurement of the magnetic anisotropy field in Mn-Ga and Mn-Co-Ga Heusler films

Fowley, C.; Ouardi, S.; Kubota, T.; Oguz, Y.; Neudert, A.; Lenz, K.; Sluka, V.; Lindner, J.; Law, J. M.; Mizukami, S.; Fecher, G. H.; Felser, C.; Deac, A. M.

The static and dynamic properties of tetragonally distorted Mn–Ga based alloys were investigated. Static magnetic properties are determined in magnetic fields up to 6.5 T using SQUID magnetometry. For the pure Mn1.6Ga film, the saturation magnetisation is 0.36 MA/m and the coercivity is 0.29 T. Partial substitution of Mn by Co results in Mn2.6Co0.3Ga1.1. The saturation magnetisation of those films drops to 0.2 MA/m and the coercivity is increased to 1 T. Time-resolved magneto-optical Kerr effect (TR-MOKE) is used to probe the high-frequency dynamics of Mn–Ga. The ferromagnetic resonance frequency extrapolated to zero-field is found to be 125 GHz with a Gilbert damping, $\alpha$, of 0.019. The anisotropy field is determined from both SQUID and TR-MOKE to be 4.5 T, corresponding to an effective anisotropy density of 0.81 MJ/m3. Given the large anisotropy field of the Mn2.6Co0.3Ga1.1 film, pulsed magnetic fields up to 60 T are used to determine the field strength required to saturate the film in the plane. For this, the extraordinary Hall effect was employed as a probe of the local magnetisation. By integrating the reconstructed in–plane magnetisation curve, the effective anisotropy energy density for Mn2.6Co0.3Ga1.1 is determined to be 1.23 MJ/m3.

Keywords: Heusler alloys; Mn-Ga; Hall Effect; Time resolved MOKE; magneto-optics; magnetotransport; high magnetic fields; anisotropy; perpendicular magnetic anisotropy

Involved research facilities

  • High Magnetic Field Laboratory (HLD)

Permalink: https://www.hzdr.de/publications/Publ-20786


The influence of current collectors on Tayler instability and electro-vortex flows in liquid metal batteries

Weber, N.; Galindo, V.; Priede, J.; Stefani, F.; Weier, T.

The Tayler instability is a kink-type flow instability which occurs when the electrical current through a conducting fluid exceeds a certain critical value. Originally studied in the astrophysical context, the instability was recently shown to be also a limiting factor for the upward scalability of liquid metal batteries. In this paper, we continue our efforts to simulate this instability for liquid metals within the framework of an integro-differential equation approach. The original solver is enhanced by multi-domain support with Dirichlet-Neumann partitioning for the static boundaries. Particular focus is laid on the detailed influence of the axial electrical boundary conditions on the characteristic features of the Tayler instability, and, secondly, on the occurrence of electro-vortex flows and their relevance for okliquid metal batteries.

Keywords: liquid metal battery; simulation; OpenFOAM; magnetohydrodynamics; Tayler instability; electro-vortex flow

Permalink: https://www.hzdr.de/publications/Publ-20785


Plasma-based nanotechnology against corrosion of organ pipes

Pelic, B.; Skorupa, W.

Experiments have been undertaken to explore the improvement of aqueous corrosion of Cu-Zn, by applying plasma immersion ion implantation (PI3).
The atmospheric corrosion of the tongues within the reed pipes which consist of a Cu-20Zn alloy (namely brass) is strongly enhanced by traces of acid vapors (from wooden parts and glue) and also the alloy’s instability caused by dezincification. A significant improvement in corrosion resistance has been achieved by applying a 30 nm aluminum oxide film using pulsed laser deposition (PLD) and implanting nitrogen ions into the near surface and the interface regions. The influence of the implanted N+ into CuZn and F+ into TiAl samples on the corrosion process has been investigated. For the sample evaluation, different characterization methods including scanning electron microscope with energy dispersive X-ray spectroscopy (SEM / EDX), Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS), and Dektak stylus profiling have been applied to determine the chemical composition, the elemental depth profiles, roughness and defect formation of the samples before and after exposure.

Keywords: Plasma immersion ion implantation (PI3); Pulsed laser deposition (PLD); corrosion of organ pipes; Cu-Zn alloys; PbSn alloys

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    Final conference of the EU research project ''EU-PANNA'', 04.09.2014, Berlin, Germany

Permalink: https://www.hzdr.de/publications/Publ-20782


Investigation of the interactions between selected bacteria and selenium oxyanions

Luthardt, P.; Fischer, S.; Fischer, S.; Vogel, M.; Steudtner, R.; Henle, T.

The microbial reduction of soluble selenium cations into its insoluble elemental form presents a unique opportunity to decontaminate industrial waste. We tested two strains of Bacillus sp. (JG-B5T, JG-B41) isolated from a uranium mining waste pile in Johanngeorgenstadt (Saxony) for their potential capacity to reduce selenium. A third species (Shewanella oneidensis) with a known reduction capacity is used as reference organism.
The microbial behavior of the bacteria under the influence of sodium selenite and selenate was observed. This included recording growth curves, pH alteration and changes in redox potential. The bacteria displayed differential growth when confronted with 2.5 mM selenite (Fig. 1) and selenate compared to controls. The content of the water soluble oxyanions was analyzed in the supernatant using inductively coupled plasma optical emission spectrometry. All selected strains have the ability to reduce selenite, whereas a reaction with selenate was not observed.
In addition we have observed and characterized the extracellular matrix focused on organic acids via High Performance Liquid Chromatography during the trial period. So far, the results indicate that two of the selected strains rely on different mechanisms.
The produced particles (Fig. 2) were isolated from the bacterial matrix and analyzed with Scanning electron microscopy with energy dispersive X-ray spectroscopy, by Raman spectroscopy, and Dynamic Light Scattering. With that we can determine their particle size, the type of bonding involved and their elemental compositions. The Raman spectra have already given indications for Se8-ring formation. X-ray analyses will reveal if other elements, like sulfur, are incorporated.After investigating the interaction of the selected strains with selenium in a defined medium, we will perform trials with real wastewater to test and validate our laboratory results under industrial conditions.
Reactions between selenium and microorganisms can significantly influence its transport behavior in the bio- and geosphere. Furthermore these metalloid-bacteria interactions can be used for various biotechnological applications.

Keywords: Selenium; Microbial Reduction; Shewanella oneidensis; Bacillus; Selenite; Selenate

  • Poster
    Selen2014 - Selenium in geological, hydrological and biological systems, 13.-14.10.2014, Karlsruhe, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-20781


Convenient recycling and reuse of bombarded [18O]H2O for the production and the application of [18F]F

Rötering, S.; Franke, K.; Zessin, J.; Brust, P.; Füchtner, F.; Fischer, S.; Steinbach, J.

The limited availability and the increasing demands of [18O]H2O force the reuse of bombarded [18O]H2O for the production of [18F]F at least for the purposes of research. Therefore inorganic and organic contaminants have to be removed from the [18O]water. We present a simple and effective method of [18O]water purification including oxidation and distillation. The obtained recycled [18O]water has comparable properties to unused [18O]water. This was confirmed by a detailed comparison of produced radionuclides and their activities and the application of [18F]F in standardised radiotracer synthesis.

Keywords: purification of used [18O]water; recycling and reuse; production of [18F]fluoride; radiosynthesis; analysis methods

Permalink: https://www.hzdr.de/publications/Publ-20780


Photoemission studies of niobium and lead photocathodes using picosecond UV laser

Xiang, R.; Arnold, A.; Lu, P.; Murcek, P.; Teichert, J.; Vennekate, H.; Barday, R.

We present the results of our investigations on superconducting photocathodes for supercondcuting rf injectors. Bulk niobium and lead film on niobium have been considered as the best candidates. The quantum efficiency (QE) at room temperature has been measured with 258 nm UV laser pulses of 14 ps duration. A QE of 10-4 has been obtained for the lead film. In order to improve the photoemission yield of niobium, new treatment methods, like Cs-activation and implantation with alkali metals, have been applied and the results are reported.

Keywords: photocathode; niobium; lead; quantum efficiency (QE)

Involved research facilities

Related publications

  • Open Access Logo Contribution to proceedings
    the 36th International Free Electron Laser Conference (FEL 2014), 25.-29.08.2014, Basel, Switzerland
    Proceedings of FEL2014
  • Poster
    the 36th International Free Electron Laser Conference (FEL 2014), 25.-29.08.2014, Basel, Switzerland

Permalink: https://www.hzdr.de/publications/Publ-20779


The challenges of regional geochemistry to compositional data analysis from a methodological viewpoint

van den Boogaart, K. G.; Tolosana-Delgado, R.

Regional Geochemistry is an important tool for the detect on of geopotenials (e.g. deposits) and risks (e.g. polution sources) and is an important source of geological insight on large scale. It is mainly concerned with geochemical data, which is inherently compositional. Modern compositional data analysis (CoDa) provides a lot of tools like distribution models, transforms, graphics, compositional geostatistics, imputation, compositional regression and linear models, outlier detection and robustness. However it does not yet provide tools for typical tasks in regional geochemistry, which among others are: maps of single components, anomaly detection and background definition, dealing with below detection limit, dealing with spatially varying geology and land use, working with surveys with too many components to explore all pairwise log ratios, calibration of instruments, collocated compositions, etc.. Ideally CoDa methods should be superior to classical statistical methods for geochemical data and it should thus be possible to simply replace the statistical methods in state-of-the-art geochemical practice by corresponding CoDa tools.The aim of the talk is to give a systematic account of how and why this is not yet occuring. For instance, single components maps are considered a key information in geochemistry, but spurious according to the doctrine of the Aitchison simplex. The compositional alternative would be to work with pairwise log ratios. However such compositional tools have other drawbacks, like e.g. too many pairs, mixing of different information on and no standard literature on their interpretation. Anomaly detection and spa! al factors are not yet sufficiently developed in the methodology research on CoDa. O$ en the application on of standard CoDa tools generates practical problems, like e.g. the identification of anomalies in a multivariate compositon will show a multitude of kinds of anomalies and we are confronted with many different sources and reasons for their occurrence. Par! ally CoDa methods need to be developed for tasks specific to geochemistry, and partly geochemists need to to develop a new thinking for interpreting the results of CoDa methods.From this systematic analysis we have deduced a set of key issues:

  • The composition as a whole holds too much information at once. We need efficient methods to extract informative summaries with respect to geochemical tasks. This includes developing readable CoDa graphics and summaries for more than 30 components and multiple layers.
  • The single component is understood in a completely different way by geochemists and CoDa-statistians. It is necessary to generate a joint view of this problem and then solve it.
  • Enabling CoDa methods for below detection limit and measurement error issues including taylored callibration on for the needs of regional geochemistry.
  • High level key publications of the proper use of compositional methods in a regional geochemistry context as reference for future geochemical publications.
  • Specialized CoDa based so$ ware for geochemistry powerful enough to replace the existing tools.

Keywords: geochemical exploration; CODA; anomaly detection

  • Lecture (Conference)
    GeoMap Workshop, 17.06.-20.09.2014, Olomouc, Česká republika
  • Contribution to proceedings
    Geomap Workshop, 17.-20.6.2014, Olmouc, Česká republika
    GeoMap Workshop Proceedings, Oulmouc: Univerzita Palackého in Olomouc, 978-80-244-4149-8, 14-15

Downloads

Permalink: https://www.hzdr.de/publications/Publ-20778


New Insight into the Photochemical Reaction Mechanism of Uranyl Citrate by Combining NMR Experiment and DFT Calculation

Tsushima, S.; Kretzschmar, J.; Steudtner, R.

A sound understanding of the major reaction mechanisms is crucial to handle uranium containing waste appropriately. This means both the synthesis of unique compounds and the treatment of uranium occurring in or released into the environment. In an environmental context, uranium occurs in two main redox states: mobile U(VI) and immobile U(IV).
Due to both its model character in U(VI) complexation by chelating polycarboxylates and the citrate being a ubiquitous occurring ligand, particularly being important in the citric acid cycle in vivo, the uranyl citrate system itself [1–4] and also its photoreaction [5,6] is already repeatedly investigated, but still not fully understood.
This investigation provides not only further insight into the U(VI)-citrate complexation, but also a better understanding of the (photo-)redox chemistry of uranium in general.
Here we want to present the reaction pathway of the U(VI) citrate complex photooxidation to its degradation products ketoglutaric acid, acetoacetic acid and acetone with concomitant CO2 formation by several decarboxylation steps and the formation of U(IV). The oxidation state of the latter is indicated by NMR showing 1H chemical shifts > 50 ppm and proven by UV-vis. Moreover, the yielded U(IV) appears as soluble complexes of citrate and its degradation products. The identity of the formed compounds was experimentally proven by one- and twodimensional NMR methods and confirmed by DFT calculations.
The photoreaction starts by irradiating the sample with light from a simple light source such as the sun or a commercial mercury lamp. Interestingly, the initial chemical alteration starts by a single electron transfer from a citrate molecule, being hydrogen bonded to the fifth remaining coordination site not occupied by U(VI)–coordinating citrate. Most likely the intermediate, i.e., not observable U(V) disproportionates fast to U(VI) and the aforementioned U(IV).

[1] R. Bramley, W. F. Reynolds, I. Feldman, J. Am. Chem. Soc. 1965, 87, 3329–3332.
[2] E. Ohyoshi, J. Oda, A. Ohyoshi, Bull. Chem. Soc. Jap. 1975, 48, 227–229.
[3] S. P. Pasilis and J. E. Pemberton, Inorg. Chem. 2003, 42, 6793–6800.
[4] A. Günther, R. Steudtner, K. Schmeide, G. Bernhard, Radiochim. Acta 2011, 99, 535–541.
[5] H. D. Burrows and T. J. Kemp, Chem. Soc. Rev. 1974, 3, 139–165.
[6] A. J. Francis and C. J. Dodge, DAE-BRNS Biennial Symposium on Emerging Trends in Separation Science and Technology (SESTEC) 2008 (BNL-80322-2008-CP).

Keywords: uranium; citrate; photoreaction; reaction mechanism; NMR spectroscopy; DFT calculation

  • Poster
    Advanced Techniques in Actinide Spectroscopy 2014 (ATAS 2014), 03.-07.11.2014, Dresden-Rossendorf, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-20777


Nuclear Magnetic Resonance Spectroscopy in Ln/An Research

Kretzschmar, J.; Schott, J.; Tsushima, S.; Barkleit, A.; Paasch, S.; Brunner, E.; Scholz, G.; Brendler, V.

Since signal separation by lanthanide shift reagents [1,2] has been replaced by elaborate pulse sequences and high-field spectrometers, lanthanides have advanced from auxiliaries to real objects of interest, also as inactive analogues for trivalent actinides in consequence of their similar chemistry.
Here we want to report on interactions and structures of the Ln(III) (La3+, Eu3+ and, where applicable, Y3+) with selected systems, i.e., L-lactate [3], inorganic (poly)borates [4] and organoborates [5]. Small organic molecules such as lactate are important as model molecules and potential complexing agents found throughout the biosphere. Borates are ubiquitous in nature. In the context of nuclear waste disposal they occur in remarkable amounts in salt formations being potential host rocks for nuclear waste repositories, but also in boron containing cooling water or borosilicate glass coquilles for spent nuclear fuel. Organoborates are considered due to possible reaction of the former compounds and, additionally, suggested as analogues to model the interaction between Ln/An and borates in general.
Among several possible structures, infrared (IR) and NMR measurements, supported by density functional theory (DFT) calculation, revealed that lactate forms Ln(III) (and Am3+) complexes with both the carboxyl and hydroxyl group involved. Polyborates, i.e., triborate and pentaborate form soluble weak aqueous Ln(III) complexes prior to precipitation as amorphous white solids, whereas condensation to higher polyborates can be excluded. Two signals in both the 89Y and the 11B NMR spectra probably arise from two coordination sites, which may reflect the polyborate species found in the supernatant solution. The organoborates formed by the reaction of boric acid and, e.g., lactate or salicylate also possess a tetra-coordinated boron atom [BO4], considered as the responsible site for Ln(III) interaction in inorganic (poly)borates. Since the (poly)borate/boric acid equilibrium is strongly concentration and pH dependent, their replacement by organic analogues allows investigations at both lower total boron concentrations and pH values.

[1] Hinckley, C. C. J. Am. Chem. Soc. 1969, 91, 5160–5162.
[2] Gansow, O. A.; Willcott, M. R.; Lenkinski, R. E. J. Am. Chem. Soc. 1971, 93, 4295–4297.
[3] Barkleit, A.; Kretzschmar, J.; Tsushima, S.; Acker, M. Dalton Trans. 2014, 43, 11221–11232.
[4] Schott, J.; Kretzschmar, J.; Acker, M.; Eidner, S.; Kumke, M. U.; Drobot, B.; Barkleit, A.; Taut, S.; Brendler, V.; Stumpf, T. Dalton Trans. 2014, 43, 11516–11528.
[5] Schott, J; Kretzschmar, J; Acker, M.; Tsushima, S.; Barkleit, A.; Taut, S.; Brendler, V.; Stumpf, T., Dalton Trans., in preparation.

Keywords: lanthanides; actinides; lanthanum; europium; yttrium; phosphorylated amino acid; boric acid; polyborate; NMR spectroscopy

  • Lecture (Conference)
    Advanced Techniques in Actinide Spectroscopy 2014 (ATAS 2014), 03.-07.11.2014, Dresden-Rossendorf, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-20776


The 40Ca(α,γ)44Ti reaction studied by in-beam γ-spectroscopy and activation

Schmidt, K.; Akhmadaliev, S.; Anders, M.; Bemmerer, D.; Boretzky, K.; Caciolli, A.; Dietz, M.; Elekes, Z.; Fülöp, Z.; Gyürky, G.; Hannaske, R.; Junghans, A. R.; Marta, M.; Menzel, M.-L.; Schwengner, R.; Szücs, T.; Takács, M. P.; Wagner, A.; Wagner, L.; Yakorev, D.; Zuber, K.

The radioactive nuclide 44Ti is believed to be produced in the α-rich freezeout preceding supernova explosions. The γ-rays from its decay have been observed in space-based γ-observatories for the Cassiopeia A and recently also SN 1987A supernova remnants. The rates of the nuclear reactions governing the production and destruction of 44Ti should therefore be known with high precision. Over the last years there have been various studies of the 40Ca(α,γ)44Ti reaction, which is dominating the 44Ti production in supernovae.
Using the α-beam of the 3-MV Tandetron at Dresden, the strengths of 40Ca(α,γ)44Ti resonance triplet at 4.5 MeV laboratory α-energy has been studied by in-beam γ-spectroscopy and activation. In addition, preliminary results of resonance strengths between 3.5 and 3.8 MeV will be presented.
The irradiated samples have been analyzed in the underground laboratory Dresden Felsenkeller. The target stoichiometry has been determined by nuclear reactions and by elastic recoil detection analysis (ERDA), whereby the strength of the Ep = 1.842 MeV resonance in the 40Ca(p,γ)41Sc reaction could be restudied.

Keywords: titanium-44; capture reaction; nuclear astrophysiscs

Involved research facilities

Related publications

  • Poster
    Nuclei in the Cosmos XIII 2014, 07.-11.07.2014, Debrecen, Hungary
  • Poster
    Fifteenth International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, 25.-29.08.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-20775


Primo – Projekterfahrungen im Helmholtz-Zentrum Dresden-Rossendorf

Reschke, E.

Primo ist eines der am meisten eingesetzten Discovery-Systeme weltweit. Im Helmholtz-Zentrum Dresden-Rossendorf entschied man sich für den Einsatz von Primo Total Care (https://www.hzdr.de/primo) Im Bericht werden die Projekterfahrungen dargestellt, von der Entscheidungsfindung bis zur Akzeptanz durch die Nutzer. Insbesondere werden die erfahrenen Vor- und Nachteile der Total Care-Installation dargestellt.

Keywords: Discovery system; Primo Total Care

  • Invited lecture (Conferences)
    Jahrestagung des AK Bibliotheken der Leibnitz-Gemeinschaft, 10.-12.09.2014, Bonn, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-20774


Measuring at relevant concentrations - radiolabelling as a versatile tool for sensitive nanoparticle detection

Schymura, S.; Hildebrand, H.; Dalmiglio, M.; Holzwarth, U.; Gibson, N.; Franke, K.

The employment of radiotracers is a versatile tool for the detection of nano-particulate materials in complex systems such as environmental samples or organisms. With the increasing usage of nanoparticles in applications outside of research laboratories, a careful risk assessment of their release into the environment becomes mandatory. However, the monitoring of nanoparticles in such complex natural systems as geological formations or ground water is nearly impossible using conventional methods, especially at environmentally relevant concentrations. This obstacle can be overcome by radiolabelling, which may be of crucial value in enabling such research.
We have developed various methods of introducing radiotracers into some of the most common nanoparticles, such as Ag, carbon, Silica and TiO2 nanoparticles. The labelling techniques are the synthesis of the nanoparticles using radioactive starting materials, the binding of the radiotracer to the nanoparticles, the activation of the nanoparticles using proton irradiation, the recoil labelling utilizing the recoil of a nuclear reaction to introduce a radiotracer into the nanoparticle, and the in-diffusion of radiotracers into the nanoparticles at elevated temperatures. Using these methods we have produced [105/110mAg]Ag, [124/125/131I]CNTs, [48V]TiO2, [7Be]MWCNT, [7Be]SiO2, [44/45Ti]TiO2, etc.. The methods are adaptable for a wide range of other nanoparticles. The so-labelled nanoparticles can be detected at minimal concentrations well in the ng/L range even with a background of the same element and without complicated sample preparations necessary.
Using our methods one can radiolabel commercial nanoparticle samples for sensitive detection in environmentally relevant trace concentrations.

  • Poster
    International Conference on Safe production and use of nanomaterials, Nanosafe 2014, 18.-20.11.2014, Grenoble, France

Permalink: https://www.hzdr.de/publications/Publ-20773


Environmental mobility of carbon nanotubes

Schymura, S.; Kulenkampff, J.; Franke, K.; Lippmann-Pipke, J.

The environmental mobility of nanoparticles is a key factor for the risk assessment of nanoparticle release into the environment. If the environmental conditions render the nanoparticles mobile, a risk beyond the very near field of the actual release has to be taken into account. However, the lack of suitable detection methods constitutes a severe setback for studies of these effects, especially in the low concentration range environmentally relevant and with a considerable background of the same element. This is particularly significant for the study of carbon based nanoparticles such as carbon nanotubes, as carbon-containing water constituents such as humic or fulvic acids are ubiquitous in many ground and surface waters.
We present the results of our studies using carbon nanotubes labelled with radioactive iodine isotopes, e.g. 124I, 125I, 131I. This allowed us to detect carbon nanotubes in the ng/L range, even against a background of mg/L of fulvic or humic acids. Experiments were conducted to investigate the transport behaviour of carbon nanotubes in dependence of the carbon nanotube type, their modification, the geomatrix material and grain size, and the water composition regarding the presence of natural organic matter and electrolytes. The radiolabelling enabled working with a typical amount of about 100 ng carbon nanotubes per experiment. Experiments using different surfactants allowed the distinguishing between different removal mechanisms.
Moreover, the labelling of carbon nanotubes with 124I, a positron emitter, allowed the use of positron emission tomography (PET) to record 4D data (3 spatial dimension plus time) of nanotube transport inside a column.

  • Lecture (Conference)
    International Conference on Safe production and use of nanomaterials, Nanosafe 2014, 18.-20.11.2014, Grenoble, France

Permalink: https://www.hzdr.de/publications/Publ-20772


Die Bibliothek als Open Access-Kompetenzzentrum in einer außeruniversitären Forschungseinrichtung

Reschke, E.

Open Access zu publizieren, ist noch nicht selbstverständlich für WissenschaftlerInnen in den außeruniversitären Forschungsgemeinschaften. Neue Publikationsmöglichkeiten erfordern neue, prozessbegleitende Services. Der Aufbau eines Open Access Kompetenzzentrums in der Bibliothek ist ein bereits erfolgreicher Weg, die WissenschaftlerInnen umfassend zu informieren und zu unterstützen. Welche Leistungen erbringt das Kompetenzzentrum und wie erwirbt es die notwendige Kompetenz? Im Fallbeispiel 2 soll dargestellt werden, welche administrativen Bereiche das Thema Open Access tangiert, wie diese Bereiche zusammenarbeiten und wie sich dieses Netz für seine Aufgaben qualifiziert.

Keywords: Open Access; Library management

  • Invited lecture (Conferences)
    Open-Access-Tage 2014, 29.-30.09.2014, Köln, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-20771


Comparison of methods for the detection of ¹⁰Be with AMS and a new approach based on a silicon nitride foil stack

Steier, P.; Martschini, M.; Buchriegler, J.; Feige, J.; Lachner, J.; Merchel, S.; Michlmayr, L.; Priller, A.; Rugel, G.; Schmidt, E.; Wallner, A.; Wild, E. M.; Golser, R.

Natural ¹⁰Be (t1/2 = 1.387 ± 0.012 Ma) is produced by cosmic rays and is present on Earth's surface only at ultratrace concentrations (typically 10⁴ to 10¹⁰ atoms/g). Its cosmogenic origin makes it an important tracer for many applications in Earth and environmental sciences. An improved accelerator mass spectrometry (AMS) method has been developed at the Vienna Environmental Research Accelerator (VERA) at the University of Vienna to detect the long-lived radionuclide ¹⁰Be and separate it from its isobar ¹⁰B. Recently installed and projected AMS facilities mainly apply a degrader foil followed by an electrostatic or magnetic separator to remove ¹⁰B from the ion beam. This provides the highest suppression of ¹⁰B, but suffers from significant transmission losses of ¹⁰Be ions. The new technique described here achieves comparable ¹⁰B suppression with a passive absorber, consisting of a stack of silicon nitride foils. Compared to a gas absorber, the smaller energy straggling in foils allows separation at lower energies. For a tandem accelerator operated at 3 MV, the charge state 2 + instead of 3 + can be used, with a stripping yield as high as 55%. This way, a high overall efficiency is gained. The setup is simple to operate, and provides good precision and accuracy. We compare this new approach with other methods used at VERA and at other AMS facilities. The foil stack setup was fully characterized with artificial samples from chemically and isotopically well-defined reagents, and is now routinely applied to real samples in various research projects at VERA. The new method is straightforward to be implemented, and was already adopted at another AMS facility with higher terminal voltage, the potential use at tandem accelerators with lower terminal voltage is under exploration.

Keywords: Beryllium; accelerator mass spectrometry; AMS; foil stack absorber; boron

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-20770


Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors

Gnad, T.; Scheibler, S.; von Kügelgen, I.; Scheele, C.; Kilic, A.; Glöde, A.; Hoffmann, L.; Reverte, L.; Horn, P.; Mutlu, S.; El-Tayeb, A.; Kranz, M.; Deuther-Conrad, W.; Brust, P.; Lidell, M.; Betz, M.; Enerbäck, S.; Schrader, J.; Yegutkin, G.; Mueller, C.; Pfeifer, A.

Brown adipose tissue (BAT) is specialised in energy expenditure making it a potential target for anti-obesity therapies. Following cold-exposure, BAT is activated by the sympathetic nervous system with concomitant release of catecholamines and activation of β-adrenergic receptors. Because BAT therapies based on cold-exposure or β-adrenergic agonists are clinically not feasible, alternative strategies must be explored. Purinergic co-transmission might be involved in sympathetic control of BAT and previous studies reported inhibitory effects of the purinergic transmitter adenosine in BAT from hamster or rat. However, the role of adenosine in human BAT is unknown. Here we show that adenosine activates human and murine brown adipocytes at low nanomolar concentrations. Adenosine is released in BAT during stimulation of sympathetic nerves as well as from brown adipocytes. The adenosine A2A receptor is the most abundant adenosine receptor in human and murine BAT. Pharmacological blockade or genetic loss of A2A2A agonists significantly increases energy expenditure. Moreover, pharmacological stimulation of A2A2A receptor into white fat induces brown-like cells - so called beige adipocytes. Importantly, mice fed a high-fat diet and treated with an A2A agonist are leaner with improved glucose tolerance. Taken together, we demonstrate that adenosine/A2A signalling plays an unexpected physiological role in sympathetic BAT activation and protects mice from diet-induced obesity - findings that reveal new possibilities for developing novel obesity therapies.

Permalink: https://www.hzdr.de/publications/Publ-20769


Project NanoTrack - Untersuchung des Lebenszyklus von Nanopartikeln anhand von [45Ti]TiO2 und [105Ag] Ag0

Franke, K.; Hildebrand, H.; Schymura, S.

Keywords: NanoTrack; Lebenszyklus; Nanopartikeln; Ti-45; TiO2; Ag-105; Ag0

  • Invited lecture (Conferences)
    27th Meeting of the DECHEMA/VCI-Working Party „Responsible Production and Use of Nanomaterials“, 04.09.2014, Frankfurt am Main, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-20768


Range assessment in particle therapy based on prompt γ-ray timing measurements

Golnik, C.; Hueso-González, F.; Müller, A.; Dendooven, P.; Enghardt, W.; Fiedler, F.; Kormoll, T.; Roemer, K.; Petzoldt, J.; Wagner, A.; Pausch, G.

Proton and ion beams open up new vistas for the curative treatment of tumors, but adequate technologies for monitoring the compliance of dose delivery with treatment plans in real time are still missing. Range assessment, meaning the monitoring of therapy-particle ranges in tissue during dose delivery (treatment), is a continuous challenge considered a key for tapping the full potential of particle therapies. In this context the paper introduces an unconventional concept of range assessment by prompt-gamma timing (PGT), which is based on an elementary physical effect not considered so far: therapy particles penetrating tissue move very fast, but still need a finite transit time—about 1–2 ns in case of protons with a 5–20 cm range—from entering the patient’s body until stopping in the target volume. The transit time increases with the particle range. This causes measurable effects in PGT spectra, usable for range verification. The concept was verified by proton irradiation experiments at the AGOR cyclotron, KVICART, University of Groningen. Based on the presented kinematical relations, we describe model calculations that very precisely reproduce the experimental results. As the clinical treatment conditions entail measurement constraints (e.g. limited treatment time), we propose a setup, based on clinical irradiation conditions, capable of determining proton range deviations within a few seconds of irradiation, thus allowing for a fast safety survey. Range variations of 2 mm are expected to be clearly detectable.

Keywords: particle therapy; range assessment; prompt gamma; timing spectroscopy

Permalink: https://www.hzdr.de/publications/Publ-20767


Characterisation of graphite by automated mineral liberation analysis

Sandmann, D.; Haser, S.; Gutzmer, J.

The beneficiation of graphite is very costly and energy intensive and can necessitate multiple processing steps, often including flotation. Products have to satisfy very stringent quality criteria. To decrease beneficiation costs, a careful characterisation of feed and concentrate materials is needed. This study elucidates the additional benefit of methods of automated SEM-based image analysis, such as mineral liberation analysis (MLA), in addition to ‘traditional’ methods [optical microscopy and X-ray powder diffraction (XRD)] for the analyses of graphite raw materials and processing products. Owing to the physical and chemical properties of the mineral graphite, samples require delicate sample preparation as well as particular backscattered electron (BSE) imaging calibration for automated image analysis. These are illustrated in this study. The results illustrate that SEM-based image analysis of graphite feeds and concentrates can provide accurate and reliable information for the graphite beneficiation process. This applies to both mineralogical characteristics and process relevant parameters.

Keywords: Graphite; Beneficiation; SEM-based image analysis; Modal mineralogy; Mineral association; Liberation; MLA

Permalink: https://www.hzdr.de/publications/Publ-20766


Fate and transport of engineered nanoparticles along the exposure pathway wastewater - sludge - plant

Hildebrand, H.; Schymura, S.; Schneider, P.; Lange, T.; Ziegler, K.; Franke, K.

The potential risks accompanying the rising use of nanotechnology are in dire need of a careful assessment. Wastewater treatment plants (WWTP) are in a key position for managing the potential risks of nanoparticles (NP) load in urban and industrial wastewater. They have to deal with the specific conditions of NP polluted wastewater and have to tackle the task of removing NP from the purified water to guarantee maximum safety of the WWTP effluent for the environment and humans. At the same time, WWTPs can potentially act as sources of NP release through the secondary uses of WWT sludge in agriculture and landscaping.
The recently started project “nanoSuppe” aims on the development of a conclusive picture of NP behaviour in WWTPs and their further fate in potential sludge uses up to the possible reintroduction in the food chain by uptake in plants. To reach this goal a strong international consortium from WWTPs, related industries, governmental agencies and research centres is formed. The project is focused on engineered NPs such as TiO2, CeO2, multiwalled carbon nanotubes (MWCNT) and quantum dots which might reach wastewater treatment plants e.g. through the use of consumer products (such as sunscreen) or industrial processes.
The research strategy is comprised of a thorough characterization of NPs in WWTPs from lab to field scale, including the development of predictive models of the exposure and the impact on society and environment. In this context, typical scenarios of municipal and industrial wastewater treatment technologies are evaluated and their impact on the fate of NPs with various degradation and modification levels is investigated. Furthermore, the bioavailability and the possible introduction of NPs into the food chain from the agricultural use of sewage sludge (typical used as fertilizer or for landscaping) is investigated by studying the NP extractability from soils and sediments as the crucial parameter for environmental mobility and transport of NPs and the uptake in and toxicity to various agricultural plants such as cultivated radish.
For evaluation of the transport and behaviour of NPs in highly complex media such as wastewater, sludge or plants, a reliable and sensitive detection method is the crucial parameter. Therefore, radiolabeling strategies for the NPs under study are developed. The use of radiolabeled NPs ensures identification, localisation and quantification of NPs even under the anticipated low environmentally relevant concentrations despite the highly complex media (waste water, sludge, soil, plant) and background levels of natural NPs, colloids or substances of the same elemental composition. For MWCNTs, detection in environments with a high carbon background can be realised.
Within this presentation, research strategies, project partners and first results from the collaborative project “nanoSuppe” are presented and open for discussion.

Keywords: Nanoparticles; Transport; Wastewater treatment; Radiolabeling

  • Poster
    NanoSafe 2014, 18.-20.11.2014, Grenoble, France

Permalink: https://www.hzdr.de/publications/Publ-20765


Investigation of the life cycle of titania NPs using radiolabeling techniques for highly sensitive NP detection

Hildebrand, H.; Franke, K.; Schymura, S.; Freyer, A.; Bilz, E.; Mehnert, R.; Mai, E.; Isaacson, C.; Schug, H.; Schirmer, K.; Ammann, A.; Sigg, L.

Production and application of TiO2-containing nanocomposites such as functional surface coatings have significantly increased in recent years. These coatings are used in a wide field of applications ranging from self-cleaning and scratch resistant surfaces to biocidal coatings. Therefore, knowledge about potential nanoparticle (NP) release due to aging or abrasion of these coatings is essential for safe application of these materials.
Radiolabeling of the NPs provides a method to sensitively detect NPs and is feasible for qualitative and quantitative fate and effects determination. With this detection method, evaluation of NPs fate during aging and abrasion of nanocomposites, estimation of release rates, transport of NPs in the environment and up-take and effects with organisms can be readily quantified.
The joint research project NanoTrack used model surface coatings in an acrylate-based formulation containing TiO2 NPs (d = 21 nm, P25, Evonik Industries). Coatings were produced by application of 25 µm thick nanocomposite layers on a substrate followed by curing and later weathered under standard laboratory test conditions. Due to the low resistivity of this model system, the organic matrix of the surface coating was severely degraded and NPs were partly released. Scanning electron microscopy showed that mostly aggregates and agglomerates of NPs were released and only a small fraction of primary NPs can be expected to be discharged. For industrial nanocomposites (realistic case), the same weathering procedure resulted in release of only small amounts of TiO2-NPs. Nevertheless, radioactivity detection methods proved this release.
Current studies on the environmental fate and effects of nanoparticles are limited by the inability to detect and quantify nanoparticles in complex environmental test systems and radiolabeling nanoparticles may provide a solution to this limitation. Isotopic labeling was developed using a low-temperature diffusive method of radionuclides implementation resulting in [44Ti]TiO2. Chemical composition, particle size distributions and morphology of the radiolabeled NPs remained unaltered compared to the original material. Additionally, [48V]TiO2, which was produced via proton irradiation of TiO2 NPs (Abbas et al., 2010), was applied within the test systems.
For getting knowledge about transport of TiO2, interactions of relevant concentrations of these NPs with environmental media (such as humic acids or natural sediments) were studied. Results show that depending on geochemical conditions, transport of TiO2 in groundwater sediments can be expected, especially in presence of humic acids which act as natural stabilisers for the NPs.
Another important aspect is the ecotoxicological impact of the released NPs. As TiO2 NP aggregate and sediment from the water column, exposure of benthic organisms to TiO2 NP is expected. Exposure of [48V]TiO2 NP to the nematode Plectus aquatilis resulted in bioconcentration of the [48V]TiO2 NPs by the nematode, which indicates that transport of TiO2 NPs up the food chain is possible.
The integrated examination of NPs in surface coatings in terms of production, aging and abrasion, NP release and their fate and transport in the environment provides a data base for risk assessment and validation or possibly adaptation of new nanocomposite production.

Abbas et al. (2010) J Nanopart Res 12:2435-2443.

Keywords: Titania; Radiolabeling; Nanoparticles

  • Lecture (Conference)
    NanoSafe 2014, 18.-20.11.2014, Grenoble, France

Permalink: https://www.hzdr.de/publications/Publ-20764


Tuning perpendicular anisotropy gradient in Co/Pd multilayers by ion irradiation

Greene, P. K.; Osten, J.; Lenz, K.; Fassbender, J.; Jenkins, C.; Arenholz, E.; Endo, T.; Iwata, N.; Liu, K.

The tunability of Ar+ ion irradiation of Co/Pd multilayers has been employed to create depthdependent perpendicular anisotropy gradients. By adjusting the Arþ kinetic energy and fluence, the depth and lateral density of the local structural modification are controlled. First-order reversal curve analysis through X-ray magnetic circular dichroism and conventional magnetometry studies shows that the local structural damage weakens the perpendicular anisotropy near the surface, leading to a magnetization tilting towards the in-plane direction. The ion irradiation method is complementary to and may be used in conjunction with, other synthesis approaches to maximize the anisotropy gradient.

Keywords: perpendicular anisotropy gradient; ion irradiation; Co\Pd multilayer

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-20763


A luminescence line-narrowing spectroscopic study of the uranium(VI) interaction with cementitious materials and titanium dioxide

Tits, J.; Walther, C.; Stumpf, T.; Macé, N.; Wieland, E.

The aim of this work is to assess the processes controlling of UO22+ sorption in calcium silicate hydrates (C-S-H phases) and in hardened cement paste (HCP). This is of particular importance for the assessment of the mobility of this radionuclide in a deep geological repository for low and intermediate level radioactive waste (L/ILW) as this kind of waste is often solidified with cement prior to storage. Broadband luminescence spectroscopy and luminescence line-narrowing spectroscopy were used to study the sorption of UO22+ with TiO2, synthetic C-S-H phases and hardened cement paste (HCP). Broadband luminescence spectra suffered from strong inhomogeneous line broadening resulting from a strongly disordered UO22+ bonding environment. This problem was largely overcome by using luminescence line-narrowing spectroscopy. This technique allowed the unambiguous identification of three different types of UO22+ sorbed species on C-S-H phases and HCP. Comparison with spectra of UO22+ doped TiO2 allowed assignment of these species to a surface complex, an incorporated species and an uranate-like surface precipitate.

Keywords: Uranium; Luminescence-line-narrowing spectroscopy; C-S-H; cement; sorption; incorporation

Permalink: https://www.hzdr.de/publications/Publ-20762


Spectroscopic investigation in high magnetic fields of the dilute nitride GaAsN

Eßer, F.; Drachenko, O.; Schneider, H.; Patanè, A.; Hopkinson, M.; Helm, M.

As a member of the dilute nitride family, GaAsN is a highly interesting material system for many application purposes such as LEDs, lasers, solar cells, and infrared photodetectors because of the tuning possibility of these devices by the variation of the nitrogen content. An accurate description of this new material system involves the knowledge of the band structure and in particular the effective mass. Motivated by the inconsistency of previous results (e.g. [1, 2]), which can be traced down to the particular investigation method, we use several spectroscopy techniques in a series of GaAsN epilayers with 0.1 - 1 % of nitrogen. Cyclotron resonance spectroscopy, being the most direct method, reveals that the cyclotron resonance frequency is not significantly affected by the nitrogen doping and thus the effective mass. Magneto-photoluminescence, on the other hand, stems from several transitions, which are not resolved spectrally, but identified in time-resolved measurements. We discuss the different behaviour of these transitions in magnetic fields up to 7 T (static) and 41 T (pulsed). We find that the diamagnetic shift of the electron-to-carbon impurity transition cannot be always applied reliably to determine the electron effective mass. However, this method has been employed frequently in previous studies, which may explain the contradictory values reported in the literature.

[1] K. Alberi et al. Phys. Rev. Lett. 110, 156405 (2013)
[2] F. Masia et al Phys. Rev. B 73, 073201 (2006)

Keywords: Dilute nitride; GaAsN; effective mass; cyclotron resonance; magneto-photoluminescence; pulsed magnetic field

Involved research facilities

Related publications

  • Lecture (Conference)
    International conference on the physics of semiconductors, 10.-15.08.2014, Austin, TX, USA

Permalink: https://www.hzdr.de/publications/Publ-20761


The Evidence of Quasi-Free Positronium State in GiPS-AMOC Spectra of Glycerol

Zvezhinskiy, D.; Butterling, M.; Wagner, A.; Krause-Rehberg, R.; Stepanov, S. V.

We present the results of processing of age-momentum correlation spectra that were measured for glycerol by the gamma-induced positron spectroscopy facility. Our research has shown that the shape of experimental s(t) curve cannot be explained without introduction of the intermediate state of positronium (Ps), called quasi-free Ps. This state yields the wide Doppler line near zero lifetimes. We discuss the possible properties of this intermediate Ps state from the viewpoint of developed model. The amount of annihilation events produced by quasi-free Ps is estimated to be less than 5% of total annihilations. In the proposed model, quasi-free Ps serves as a precursor for trapped Ps of para- and ortho-states.

Keywords: Positron Annihilation Spectroscopy; Bremsstrahlung; Positronium

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-20760


Phase transitions of anisotropic and exchange origins in TmFe5Al7

Gorbunov, D. I.; Yasin, S.; Andreev, A. V.; Mushnikov, N. V.; Rosenfeld, E. V.; Skourski, Y.; Zherlitsyn, S.; Wosnitza, J.

Magnetization and sound propagation reveal a number of unusual spontaneous and field-induced transformations in ferrimagnetic TmFe5Al7 (TC = 193 K). The rare-earth sublattice was found to provide a uniaxial magnetic anisotropy, whereas the iron sublattice favors an easy-plane anisotropy. A competition between them results in a first-order spin-reorientation transition at 64 K as the magnetic moments rotate from the c axis to the basal plane of a tetragonal structure. The transition is preceded by a first-order magnetization process of type II along the hard axis. Remarkably, the intersublattice Tm-Fe exchange interaction is weakened at the spin-reorientation transition. Concomitantly, the spontaneous magnetic moment disappears, and the ferrimagnetic state changes to antiferromagnetic. With increasing temperature, the strength of the Tm-Fe exchange is recovered, and the ferrimagnetism is restored at 82 K through another first-order phase transformation. Below 40 K, a first-order field-induced transition occurs for a magnetic field applied along the easy [001] axis. It reflects a rotation of the magnetic moments towards the forced ferromagnetic state observed above 30 T. Along the hard [100] axis the ferromagnetic saturation is not reached even at 60 T.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)

Permalink: https://www.hzdr.de/publications/Publ-20757


Observation of anisotropic exchange in a spin ladder by ESR

Čižmár, E.; Ozerov, M.; Krämer, K. W.; Rüegg, C.; Zvyagin, S. A.

We report on high resolution X-band electron spin resonance (ESR) spectroscopy studies of the spinladder material (C5H12N)2CuBr4. Our experiments provide a direct evidence for the presence of anisotropy in (C5H12N)2CuBr4 in contrast to a fully isotropic spin-ladder model employed for this system previously. Low-temperature angular dependence of ESR transitions is analyzed employing a simple spin-1/2 dimer model with the symmetric anisotropic exchange interaction.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)

Permalink: https://www.hzdr.de/publications/Publ-20756


Uranyl sorption onto birnessite: A surface complexation modeling and EXAFS study

Rihs, S.; Gaillard, C.; Reich, T.; Kohler, S. J.

This work investigates the mechanism of the uranyl interaction with birnessite, one of themost common layertype MnO2 mineral at the Earth's surface, by coupling macroscopic (surface complexation experiments) andmicroscopic (EXAFSmeasurements) approaches. The sorption of uranyl on synthetic hexagonal birnessite, the lowpH birnessite form, was studied under various conditions of pH (3–6), electrolyte backgrounds (0.1 M NaClO4, NaNO3 and Na2CO3), and solid/liquid ratios (from0.27 to 4.5 g/L). Sorption isotherms exhibit a complex form indicative of at least two types of sorption sites. EXAFS data reveal the presence of two equatorial O shells at ca. 2.32 Å and 2.46 Å for all the samples, and a Mn shell at ca. 3.38 Å in the low-pH (≤5) samples only. No U–U pair was detected, despite the presence of polynuclear dissolved species in some of the samples.
From the combination of the sorption isotherms and EXAFS results, a structural model for the sorption of uranyl onto hexagonal birnessite is proposed, in which two energetically different sites are involved. At low pH (≤5) a bidentate edge-sharing complex with Mn octahedra of the mineral edges can be inferred, whereas bidentate corner-sharing and/or monodentate complexation to layer vacancies would most likely describe EXAFS features of higher pH samples. A diffuse double layermodel of surface complexationwas developed for describing within the same framework the uranyl sorption against pH, involving both high-affinity (Mn octahedra edge) and lowaffinity (above layer vacancies) sites.
The comparison of the uranyl sorption onto hexagonal birnessite and various related environmental minerals shows that the affinity of uranyl for birnessite largely exceeds the sorption observed on montmorillonite and zeolite and turns out to be comparable to iron oxides, confirming the potential role of phyllomanganates to the control of uranyl mobility in post-oxic acidic environments.

Keywords: EXAFS; U; birnessite

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-20755


Pathways for abiotic reduction in the FeS/Se(IV) and FeS2/Se(IV) systems

Breynaert, E.; Wangermez, W.; Dom, D.; Scheinost, A. C.; Parac-Vogt, T. N.; Kirschhock, C. E. A.; Maes, A.

The geochemical behaviour and bio-availability of selenium have an unexpectedly intricate impact on modern society. While selenium is an essential micronutrient for many living organisms, the window between deficiency and toxicity is very narrow (0.04 ppm ; essential; 0.04 – 0.1 ppm beneficial; 3 ppm toxic). Due to its similarity to sulphur, it is commonly encountered in subsurface deposits such as coal and uranium, phosphate and sulphidic transitionmetal ores. The release of selenium to the environment is closely associated with the economic exploitation of such deposits. Because of its significant contribution to long-term radiation exposure, 79Se is considered as one of the important isotopes in the inventory of the long-lived radioactive waste produced by nuclear industry. In view of redox properties and abundant occurence in reducing soils and sediments, iron sulphides play an important role in the availability of mobile inorganic selenium in the environment.
While previous studies have demonstrated the formation of FeSe and Se0 upon reduction of Se(IV) with respectively iron monsulphides and iron disulphides, the mechanistic pathways explaining the different outcome are missing.
Combination of published results in a wide range of relevant systems [1-5] with new spectroscopic information (XAS and NMR spectroscopy) obtained for specifically synthesized key intermediates allows to rationalise all previous observations. These results allow to outline the different pathways and demonstrate how the intermediary selenium, sulphur and selenosulphur species determine the final outcome of the reactions.
[1] Scheinost et al (2008), ES&T, 42, 1984–1989
[2] Breynaert et al (2008), ES&T, 42, 3595–3601
[3] Scheinost et al (2008), J. Contam. Hydrol., 102, 228-245
[4] Breynaert et al (2010), ES&T, 44, 6649–6655
[5] Kang et al (2011), ES&T, 45, 2704–2710

Keywords: selenium; EXAFS; NMR; nuclear waste

Involved research facilities

Related publications

  • Lecture (Conference)
    Goldschmidt2014, 08.-13.06.2014, Sacramento, USA

Permalink: https://www.hzdr.de/publications/Publ-20754


Retention of selenium by cementitious materials under oxidizing and reducing conditions

Rojo, H.; Tits, J.; Scheinost, A. C.; Wieland, E.

79Se is an important redox-sensitive, dose-determining radionuclide in low and intermediate level radioactive waste repositories [1]. In this type of repository, cementitious materials play a crucial role as barrier for radionuclide migration from the near-field into the host rock. In current sorption databases for the cementitious near-field, only sorption data for Se(IV/VI) have been considered. Robust sorption measurements and a sufficiently detailed mechanistic understanding of the retention of the reduced Se species in a cementitious environment are lacking [2].
The objective of this work is to investigate the immobilisation of Se under the reducing conditions existing in a cement-based repository (-230mV < Eh < -750 mV). Under these conditions, Se(IV) and Se(-II) are the dominating redox states. Note that the selenium sorption behaviour is largely controlled by its oxidation state. Under oxidizing conditions, Se forms the oxyanions SeIVO32- and SeVIO42-. Generally, the adsorption of these oxyanions is expected to be very weak based on the assumption that surface complexation onto negatively charged surfaces solids, such as calcium-silicate-hydrates (C-S-H) in cement paste, is the dominating sorption mechanism [2]. Under reducing conditions, and in an alkaline environment with pH values ranging between 10 < pH < 14, Se is present either as Se(0) or as Se(-II). While Se(0) is controlled by solubility limitation, the sorption behavior of Se(-II) is largely unknown in cementitious environments.
Se(IV) and Se(-II) sorption kinetic studies have been carried out on various synthetic cement components, such as calcium silicate hydrates (C-S-H) and hydrated calcium aluminates (AFm), the principal host phases for radionuclides in hydrated cement. XANES studies allowed characterizing the redox state of selenium in the samples under alkaline conditions.
The sorption tests revealed that the uptake of Se(IV) by C-S-H phases is much stronger than expected. Furthermore, Rd values for Se(IV) on various AFm phases are correlated with their interlayer spacing. The sorption of Se(-II) on the different cementitious materials that are currently being investigated was found to be lower than the sorption of Se(IV).

References
[1] NAGRA (2002). Nagra Technical Report NTB 02-05, Nagra, Wettingen, Switzerland
[2] E. Wieland, L.R. Van Loon (2003). PSI Bericht 03-06, Paul Scherrer Institut, Villigen, Switzerland and Nagra Technical Report NTB 02-20, Nagra, Wettingen, Switzerland.

Keywords: selenium; XANES; cement; nuclear waste

Involved research facilities

Related publications

  • Poster
    Selen2014, 13.-14.10.2014, Karlsruhe, Germany

Permalink: https://www.hzdr.de/publications/Publ-20753


High Pressure Phase Transition of Coffinite, USiO4

Bauer, J. D.; Labs, S.; Weiss, S.; Bayarjargal, L.; Morgenroth, W.; Milman, V.; Perlov, A.; Curtius, H.; Bosbach, D.; Zänker, H.; Winkler, B.

Synchrotron powder diffraction patterns and Raman spectra of synthetic coffinite, USiO4, were collected for pressures up to 35 GPa and are complemented with DFT+Ubased calculations. USiO4 undergoes a first order phase transition from zircon-type (space group I41/amd) to scheelite-type structure (space group I41/a) at 15GPa and ambient temperature. Contrary to earlier reports, the data indicate that this transition is completely reversible upon pressure release. Bulk moduli were obtained from the p−V data for the zircon-type and scheelite-type USiO4 phase. For zircon-type USiO4 the value for B = 186(5)GPa, while for the scheelite-type phase B = 204(9)GPa, where the latter is significantly lower than a value proposed earlier (B = 274(16) GPa1). Lattice dynamical calculations point towards a Γ-point soft mode triggering the pressure-induced phase transition.

Keywords: Coffinite; Raman spectroscopy; phase transformation; scheelite structure; high pressure

Permalink: https://www.hzdr.de/publications/Publ-20752


A radically new suggestion about the electrodynamics of water: Can the pH index and the Debye relaxation be of a common origin?

Volkov, A. A.; Artemov, V. G.; Pronin, A. V.

The structure of pure water is commonly viewed as an openwork matrix of hydrogen-bonded H2O molecules with a Debye relaxation dynamics. The matrix is filled with free ions of low concentration, which makes water a weak electrolyte with pH = 7. Traditionally, the Debye relaxation is considered having no relevance to the dc water conductivity (or the pH index): while the Debye relaxation is caused by the dynamics of intact H2O molecules, the dc conductivity, in contrast, is due to self-dissociation of H2O into H3O+ and OH- ions. Here, we consider a microscopic mechanism, which could unify the Debye and the dc dynamics, namely the Brownian-like motion of strongly interacting ions. The model comprehensively describes the low-energy electrodynamics of water (up to 1011Hz) giving however an unexpected outcome: water behaves as if it had far more free ions than the standard model assumes. High concentration of counter charges results in a polarization structure of water. We recognize full well that such a radical model is contrary to many years of research on the dynamics, thermodynamics, and dielectric properties of water; but the results seem logically consistent and may prove stimulating.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)

Permalink: https://www.hzdr.de/publications/Publ-20751


Multiband transport and nonmetallic low-temperature state of K0.50Na0.24Fe1.52Se2

Ryu, H.; Wolff-Fabris, F.; Warren, J. B.; Uhlarz, M.; Wosnitza, J.; Petrovic, C.

We report evidence for multiband transport and an insulating low-temperature normal state in superconducting K0.50Na0.24Fe1.52Se2 with Tc approximate to 20 K. The temperature-dependent upper critical field Hc2 is well described by a two-band BCS model. The normal-state resistance, accessible at low temperatures only in pulsed magnetic fields, shows an insulating logarithmic temperature dependence as T -> 0 after superconductivity is suppressed. This is similar as for high-Tc copper oxides and granular type-I superconductors, suggesting that the superconductor-insulator transition observed in high magnetic fields is related to intrinsic nanoscale phase separation.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)

Permalink: https://www.hzdr.de/publications/Publ-20750


Nonmetallic low-temperature normal state of K0.7Fe1.46Se1.85Te0.15

Wang, K.; Ryu, H.; Kampert, E.; Uhlarz, M.; Warren, J.; Wosnitza, J.; Petrovic, C.

The normal-state in-plane resistivity below the zero-field superconducting transition temperature Tc and the upper critical field μ0Hc2 (T) was measured by suppressing superconductivity in pulsed magnetic fields for K0.70Fe1.46Se1.85Te0.15. The normal-state resistivity ρab is found to increase logarithmically with decreasing temperature as (T/Tc) → 0. Similar to granular metals, our results suggest that a superconductor-insulator transition below zero-field Tc may be induced in high magnetic fields. This is related to the intrinsic real-space phase-separated states common to all inhomogeneous superconductors.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)

Permalink: https://www.hzdr.de/publications/Publ-20749


Controlling Magnetic Order and Quantum Disorder in Molecule-Based Magnets

Lancaster, T.; Goddard, P. A.; Blundell, S. J.; Foronda, F. R.; Ghannadzadeh, S.; Moeller, J. S.; Baker, P. J.; Pratt, F. L.; Baines, C.; Huang, L.; Wosnitza, J.; Mcdonald, R. D.; Modic, K. A.; Singleton, J.; Topping, C. V.; Beale, T. A. W.; Xiao, F.; Schlueter, J. A.; Barton, A. M.; Cabrera, R. D.; Carreiro, K. E.; Tran, H. E.; Manson, J. L.

We investigate the structural and magnetic properties of two molecule-based magnets synthesized from the same starting components. Their different structural motifs promote contrasting exchange pathways and consequently lead to markedly different magnetic ground states. Through examination of their structural and magnetic properties we show that Cu(pyz)(H2O)(gly)2](ClO4)2 may be considered a quasi-one-dimensional quantum Heisenberg antiferromagnet whereas the related compound [Cu(pyz)(gly), which is formed from dimers of antiferromagnetically interacting Cu2+ spins, remains disordered down to at least 0.03 K in zero field but shows a field-temperature Phase diagram reminiscent of that seen in materials showing a Bose-Einstein condensation of magnons.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)

Permalink: https://www.hzdr.de/publications/Publ-20748


Evolution of the Pauli spin-paramagnetic effect on the upper critical fields of single-crystalline KxFe2-ySe2-zSz

Wolff-Fabris, F.; Lei, H.; Wosnitza, J.; Petrovic, C.

We have studied the temperature dependence of the upper critical fields µ0Hc2 of KxFe2-ySe2-zSz single crystals up to 60 T. The µ0Hc2 for H parallel to ab and H parallel to c decrease with increasing sulfur content. The detailed analysis using Werthamer-Helfand-Hohenberg theory including the Pauli spin-paramagnetic effect shows that µ0Hc2 for H parallel to ab is dominated by the spin-paramagnetic effect, which diminishes with higher S content, whereas µ0Hc2 for H parallel to c shows a linear temperature dependence with an upturn at high fields. The latter observation can be ascribed to multiband effects that become weaker for higher S content. This results in an enhanced anisotropy of µ0Hc2 for high S content due to the different trends of the spin-paramagnetic and multiband effect for H parallel to ab and H parallel to c, respectively.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)

Permalink: https://www.hzdr.de/publications/Publ-20747


DEM-Based Analysis of Interactions between Tectonics and Landscapes in the Ore Mountains and Eger Rift (East Germany and NW Czech Republic)

Andreani, L.; Stanek, K. P.; Gloaguen, R.; Krentz, O.; Domínguez-González, L.

Tectonics modify the base-level of rivers and result in the progressive erosion of landscapes. We propose here a new method to classify landscapes according to their erosional stages. This method is based on the combination of two DEM-based geomorphic indices: the hypsometric integral, which highlights elevated surfaces, and surface roughness, which increases with the topographic elevation and the incision by the drainage network. The combination of these two indices allows one to produce a map of erosional discontinuities that can be easily compared with the known structural framework. In addition, this method can be easily implemented (e.g., in MATLAB) and provides a quick way to analyze regional-scale landscapes. We propose here an example of a region where this approach becomes extremely valuable: the Ore Mountains and adjacent regions. The lack of young stratigraphic markers prevents a detailed analysis of recent fault activity. However, discontinuities in mapped geomorphic indices coupled to the analysis of river longitudinal profiles suggest a tight relationship between erosional discontinuities and main tectonic lineaments.

Keywords: Eger Rift; Ore Mountains (Erzgebirge); geomorphic indices; tectonics; Germany (Saxony); Czech Republic

Permalink: https://www.hzdr.de/publications/Publ-20746


Fermi-surface topology of the iron pnictide LaFe2P2

Blackburn, S.; Prevost, B.; Bartkowiak, M.; Ignatchik, O.; Polyakov, A.; Foerster, T.; Cote, M.; Seyfarth, G.; Capan, C.; Fisk, Z.; Goodrich, R. G.; Sheikin, I.; Rosner, H.; Bianchi, A. D.; Wosnitza, J.

We report on a comprehensive de Haas-van Alphen (dHvA) study of the iron pnictide LaFe2P2. Our extensive density-functional band-structure calculations can well explain the measured angular-dependent dHvA frequencies. As salient feature, we observe only one quasi-two-dimensional Fermi-surface sheet; i.e., a hole-like Fermi-surface cylinder around Gamma, essential for s+/- pairing, is missing. In spite of considerable mass enhancements due to many-body effects, LaFe2P2 shows no superconductivity. This is likely caused by the absence of any nesting between electron and hole bands.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)

Permalink: https://www.hzdr.de/publications/Publ-20745


Optical study of superconducting Pr2CuOx with x similar or equal to 4

Chanda, G.; Lobo, R. P. S. M.; Schachinger, E.; Wosnitza, J.; Naito, M.; Pronin, A. V.

Superconducting Pr2CuOx, x similar or equal to 4 (PCO), films with T' structure and a Tc of 27 K have been investigated by various optical methods in a wide frequency (7 - 55 000 cm-1) and temperature (2 - 300 K) range. The optical spectra do not reveal any indication of a normal-state gap formation. A Drude-like peak centered at zero frequency dominates the optical conductivity below 150 K. At higher temperatures, it shifts to finite frequencies. The detailed analysis of the low-frequency conductivity reveals that the Drude peak and a far-infrared (FIR) peak centered at about 300 cm-1 persist at all temperatures. The FIR-peak spectral weight is found to grow at the expense of the Drude spectral weight with increasing temperature. The temperature dependence of the penetration depth follows a behavior typical for d-wave superconductors. The absolute value of the penetration depth for zero temperature is 1.6 mu m, indicating a rather low density of the superconducting condensate.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)

Permalink: https://www.hzdr.de/publications/Publ-20744


Neutron and EPR study of Cu(tn)Cl2 - A two-dimensional spatially anisotropic triangular-lattice antiferromagnet

Tarasenko, R.; Orendáčová, A.; Čižmár, E.; Mataš, S.; Orendáč, M.; Zeleňák, V.; Pavlík, V.; Siemensmeyer, K.; Zvyagin, S. E.; Wosnitza, J.; Feher, A.

We have studied the temperature dependence of the lattice parameters and the influence of spin anisotropy on the electron paramagnetic spectra of Cu(tn)Cl2, an S = 1/2 quasi-two-dimensional spatially-anisotropic triangular-lattice Heisenberg antiferromagnet. The variation of the resonance fields with temperature reflects the presence of an easy-plane exchange anisotropy with Jz/Jx,y < 1 and g-factor anisotropy, gz/gx,y > 1.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)

Permalink: https://www.hzdr.de/publications/Publ-20743


Ultrasonic investigations of the spin ices Dy2Ti2O7 and Ho2Ti2O7 in and out of equilibrium

Erfanifam, S.; Zherlitsyn, S.; Yasin, S.; Skourski, Y.; Wosnitza, J.; Zvyagin, A. A.; Mcclarty, P.; Moessner, R.; Balakrishnan, G.; Petrenko, O. A.

We report ultrasound studies of spin-lattice and single-ion effects in the spin-ice materials Dy2Ti2O7 (DTO) and Ho2Ti2O7 (HTO) across a broad field range up to 60 T, covering phase transformations, interactions with low-energy magnetic excitations, and single-ion effects. In particular, a sharp dip observed in the sound attenuation in DTO at the gas-liquid transition of the magnetic monopoles is explained based on an approach involving negative relaxation processes. Furthermore, quasiperiodic peaks in the acoustic properties of DTO due to nonequilibrium processes are found to be strongly affected by macroscopic thermal-coupling conditions: the thermal runaway observed in previous studies in DTO can be suppressed altogether by immersing the sample in liquid helium. Crystal-electric-field effects having a higher energy scale lead to a renormalization of the sound velocity and sound attenuation at very high magnetic fields. We analyze our observations using an approach based on an analysis of exchange-striction couplings and single-ion effects.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)

Permalink: https://www.hzdr.de/publications/Publ-20742


Observation of spatially modulated laser-driven proton beams from micrometer thick targets

Zeil, K.; Metzkes, J.; Kroll, F.; Obst, L.; Kraft, S.; Kluge, T.; Bussmann, M.; Cowan, T. E.; Sauerbrey, R.; Schramm, U.

The advent of a new generation of high repetition rate Petawatt (PW) laser systems in combination with recent experimentally achieved proton energies of up to 45 MeV from ultra-short pulse (~ 50 fs) facilities is expected to strongly advance the application of laser-plasma based accelerators for ions, e.g. in medicine. In our presentation, we report on the experimental observation of spatially modulated proton beams emitted from micrometer thick targets which were irradiated with ultrashort (30 fs) laser pulses of a peak intensity of 5•1020W/cm2. The net-like proton beam modulations were recorded using stacks of radio-chromic films and the investigation of different target systems for a laser energy range of 0.9 to 2.9 J revealed a clear dependence on laser energy and target thickness for the onset and strength of the modulations. Numerical simulations suggest that intensity-dependent instabilities in the laser-produced plasma at the target front side lead to electron beam break-up or filamentation, then serving as the source of the observed proton beam modulations.
We propose that these results on laser intensity dependent plasma instabilities may have implications for the scaling of present acceleration mechanisms, such as target normal sheath acceleration, to higher proton energies and hence higher laser powers. Furthermore a brief overview of the recent laser and target area upgrade for laser-driven ion acceleration experiments at the HZDR will be given.

  • Lecture (Conference)
    16th Advanced Accelerator Concepts Workshop (AAC 2014), 13.-18.07.2014, San Jose, United States of America

Permalink: https://www.hzdr.de/publications/Publ-20741


Pages: [1.] [2.] [3.] [4.] [5.] [6.] [7.] [8.] [9.] [10.] [11.] [12.] [13.] [14.] [15.] [16.] [17.] [18.] [19.] [20.] [21.] [22.] [23.] [24.] [25.] [26.] [27.] [28.] [29.] [30.] [31.] [32.] [33.] [34.] [35.] [36.] [37.] [38.] [39.] [40.] [41.] [42.] [43.] [44.] [45.] [46.] [47.] [48.] [49.] [50.] [51.] [52.] [53.] [54.] [55.] [56.] [57.] [58.] [59.] [60.] [61.] [62.] [63.] [64.] [65.] [66.] [67.] [68.] [69.] [70.] [71.] [72.] [73.] [74.] [75.] [76.] [77.] [78.] [79.] [80.] [81.] [82.] [83.] [84.] [85.] [86.] [87.] [88.] [89.] [90.] [91.] [92.] [93.] [94.] [95.] [96.] [97.] [98.] [99.] [100.] [101.] [102.] [103.] [104.] [105.] [106.] [107.] [108.] [109.] [110.] [111.] [112.] [113.] [114.] [115.] [116.] [117.] [118.] [119.] [120.] [121.] [122.] [123.] [124.] [125.] [126.] [127.] [128.] [129.] [130.] [131.] [132.] [133.] [134.] [135.] [136.] [137.] [138.] [139.] [140.] [141.] [142.] [143.] [144.] [145.] [146.] [147.] [148.] [149.] [150.] [151.] [152.] [153.] [154.] [155.] [156.] [157.] [158.] [159.] [160.] [161.] [162.] [163.] [164.] [165.] [166.] [167.] [168.] [169.] [170.] [171.] [172.] [173.] [174.] [175.] [176.] [177.] [178.] [179.] [180.] [181.] [182.] [183.] [184.] [185.] [186.] [187.] [188.] [189.] [190.] [191.] [192.] [193.] [194.] [195.] [196.] [197.] [198.] [199.] [200.] [201.] [202.] [203.] [204.] [205.] [206.] [207.] [208.] [209.] [210.] [211.] [212.] [213.] [214.] [215.] [216.] [217.] [218.] [219.] [220.] [221.] [222.] [223.] [224.] [225.] [226.] [227.] [228.] [229.] [230.] [231.] [232.] [233.] [234.] [235.] [236.] [237.] [238.] [239.] [240.] [241.] [242.] [243.] [244.] [245.] [246.] [247.] [248.] [249.] [250.] [251.] [252.] [253.] [254.] [255.] [256.] [257.] [258.] [259.] [260.] [261.] [262.] [263.] [264.] [265.] [266.] [267.] [268.] [269.] [270.] [271.] [272.] [273.] [274.] [275.] [276.] [277.] [278.] [279.] [280.] [281.] [282.] [283.] [284.] [285.] [286.] [287.] [288.] [289.] [290.] [291.] [292.] [293.] [294.] [295.] [296.] [297.] [298.] [299.] [300.] [301.] [302.] [303.] [304.] [305.] [306.] [307.] [308.] [309.] [310.] [311.] [312.] [313.] [314.] [315.] [316.] [317.] [318.] [319.] [320.] [321.] [322.] [323.] [324.] [325.] [326.] [327.] [328.] [329.] [330.] [331.] [332.] [333.] [334.] [335.] [336.] [337.] [338.] [339.] [340.] [341.] [342.] [343.] [344.] [345.] [346.] [347.] [348.] [349.] [350.]