Selected publications

Publications

2024

Towards tailoring hydrophobic interaction with uranyl(VI) oxygen for C-H activation

Tsushima, S.(1); Kretzschmar, J.(2); Doi, H.; Okuwaki, K.(3); Kaneko, M.(4); et al. (7 authors)(5)


Cold denaturation of DNA origami nanostructures

Dornbusch, D.(9); Hanke, M.; Tomm, E.; Grundmeier, G.; Keller, A.; et al. (7 authors)(10)


2023

Large-Scale Formation of DNA Origami Lattices on Silicon

Tapio, K.(14); Kielar, C.(15); Parikka, J. M.(16); Keller, A.(17); Järvinen, H.(18); et al. (7 authors)(19)


Molecular Adhesion of a Pilus-derived Peptide Involved in Pseudomonas aeruginosa Biofilm Formation on non-polar ZnO Surfaces

Prüßner, T.; Meinderink, D.(23); Zhu, S.; Orive, A. G.(24); Kielar, C.(25); et al. (9 authors)(26)


Fate of Oxidation States at Actinide Centers in Redox-Active Ligand Systems Governed by Energy Levels of 5f Orbitals

Takeyama, T.(32); Tsushima, S.(33); Gericke, R.(34); Kaden, P.(35); März, J.(36); et al. (6 authors)(37)


Superstructure-dependent stability of DNA origami nanostructures in the presence of chaotropic denaturants

Hanke, M.; Dornbusch, D.(40); Tomm, E.; Grundmeier, G.; Fahmy, K.; et al. (6 authors)(41)


Interaction between the transferrin protein and plutonium (and thorium), what’s new?

Zurita, C.; Tsushima, S.(43); Lorenzo Solari, P.; Menut, D.; Dourdain, S.; et al. (8 authors)(44)


Special Issue “Advances in Monitoring Metabolic Activities of Microorganisms by Calorimetry”

Matulis, D.; Wadsö, L.; Fahmy, K.(46)


Distinct Effects of Chemical Toxicity and Radioactivity on Metabolic Heat of Cultured Cells Revealed by “Isotope-Editing”

Oertel, J.; Sachs, S.(48); Flemming, K.; Hassan Obeid, M.; Fahmy, K.(49)


Utility of redox-active ligands for reversible multi-electron transfer in uranyl(VI) complexes

Takeyama, T.; Tsushima, S.(51); Takao, K.


Interdisciplinary biophysical studies of membrane proteins bacteriorhodopsin and rhodopsin

Fahmy, K.(53); Sakmar, T.


2022

Simple Growth–Metabolism Relations Are Revealed by Conserved Patterns of Heat Flow from Cultured Microorganisms

Fahmy, K.(55)


Lanmodulin peptides – unravelling the binding of the EF-Hand loop sequences stripped from the structural corset

Gutenthaler, S. M.(57); Tsushima, S.(58); Steudtner, R.(59); Gailer, M.; Hoffmann-Röder, A.; et al. (7 authors)(60)


Anion-specific structure and stability of guanidinium-bound DNA origami

Hanke, M.; Dornbusch, D.(63); Hadlich, C.; Roßberg, A.; Hansen, N.; et al. (9 authors)(64)


Salting-Out of DNA Origami Nanostructures by Ammonium Sulfate

Hanke, M.; Hansen, N.; Ruiping, C.; Grundmeier, G.; Fahmy, K.(68); et al. (6 authors)(69)


Fully Chelating N3O2-Pentadentate Planar Ligands Designed for Strongest and Selective Capture of Uranium from Seawater

Mizumachi, T.; Sato, M.; Kaneko, M.; Takeyama, T.; Tsushima, S.(71); et al. (6 authors)(72)


Hydrophobic Core Formation and Secondary Structure Elements in Uranyl(VI)–Binding Peptides

Tsushima, S.(74); Takao, K.


Synthesis and characterization of a uranyl(vi) complex with 2,6-pyridine-bis(methylaminophenolato) and its ligand-centred aerobic oxidation mechanism to a diimino derivative

Takeyama, T.; Iwatsuki, S.; Tsushima, S.(76); Takao, K.


Interaction of Th(IV), Pu(IV) and iron(III) with ferritin protein : how similar ?

Zurita, C.; Tsushima, S.(78); Lorenzo Solari, P.; Jeanson, A.; Creff, G.; et al. (6 authors)(79)


2021

Effects of Substituents on the Molecular Structure and Redox Behavior of Uranyl(V/VI) Complexes with N3O2‑Donating Schiff Base Ligands

Takeyama, T.(81); Tsushima, S.(82); Takao, K.(83)


DNA-Mediated Stack Formation of Nanodiscs

Subramanian, M.; Kielar, C.; Tsushima, S.(85); Fahmy, K.(86); Oertel, J.


Effect of PAA-induced surface etching on the adhesion properties of ZnO nanostructured films

Meinderink, D.; Kielar, C.; Sobol, O.; Ruhm, L.; Rieker, F.; et al. (9 authors)(88)


Fluorite-like hydrolyzed hexanuclear coordination clusters of Zr(IV) and Hf(IV) with syn-syn bridging N,N,N-trimethylglycine in soft crystal structures exhibiting cold-crystallization

Matsuoka, M.; Tsushima, S.(90); Takao, K.


How does iron storage protein ferritin interact with plutonium (and thorium) ?

Zurita, C.; Tsushima, S.(92); Bresson, C.(93); Garcia-Cortes, M.(94); Solari, P. L.(95); et al. (8 authors)(96)


2020

A metabolic switch regulates the transition between growth and diapause in C. elegans

Penkov, S.; Raghuraman, B. K.; Erkut, C.; Oertel, J.; Galli, R.; et al. (12 authors)(100)


C. elegans possess a general program to enter cryptobiosis that allows dauer larvae to survive different kinds of abiotic stress

Gade, V. R.; Traikov, S.; Oertel, J.; Fahmy, K.; Kurzchalia, T. V.


Protein-Assisted Room-Temperature Assembly of Rigid, Immobile Holliday Junctions and Hierarchical DNA Nanostructures

Ramakrishnan, S.; Subramaniam, S.; Kielar, C.; Grundmeier, G.; Stewart, A. F.; et al. (6 authors)(103)


Essential Role of Heterocyclic Structure of N-Alkylated 2-Pyrrolidone Derivatives for Recycling Uranium from Spent Nuclear Fuels

Inoue, T.; Kazama, H.; Tsushima, S.(105); Takao, K.(106)


Crystallization of colourless hexanitratoneptunate(IV) with anhydrous H+ countercations trapped into hydrogen bond polymer with diamide linkers

Takao, K.(108); März, J.(109); Matsuoka, M.; Mashita, T.; Kazama, H.; et al. (6 authors)(110)


2019

Crystallization of Anhydrous Proton from Acidic Aqueous Solution with Diamide Building Block

Kazama, H.; Tsushima, S.; Takao, K.


Lanthanide–induced conformational change of methanol dehydrogenase involving coordination change of cofactor pyrroloquinoline quinone

Tsushima, S.(114)


Calcium binding to a disordered domain of a type III-secreted protein from a coral pathogen promotes secondary structure formation and catalytic activity

Hoyer, E.; Knöppel, J.; Liebmann, M.; Steppert, M.; Raiwa, M.; et al. (12 authors)(116)


Photocatalytic Oxygenation of Cyclohexene Initiated by Excitation of [UO2(OPCyPh2)4]2+ under Visible Light

Mashita, T.; Tsushima, S.(118); Takao, K.(119)


Body size-dependent energy storage causes Kleiber’s law scaling of the metabolic rate in planarians

Thommen, A.; Werner, S.; Frank, O.; Philipp, J.; Knittelfelder, O.; et al. (11 authors)(121)


Crystal Structure of Regularly Th-Symmetric [U(NO3)6]2− Salts with Hydrogen Bond Polymers of Diamide Building Blocks

Takao, K.; Kazama, H.; Ikeda, Y.; Tsushima, S.


Cm3+/ Eu3+ Induced Structural, Mechanistic and Functional Implications for Calmodulin

Drobot, B.(125); Schmidt, M.(126); Mochizuki, Y.(127); Abe, T.; Okuwaki, K.; et al. (13 authors)(128)


2018

Ultrafast transient absorption spectroscopy of UO22+ and [UO2Cl]+

Haubitz, T.; Tsushima, S.; Steudtner, R.; Drobot, B.; Geipel, G.; et al. (7 authors)(136)


Controlling the lability of uranyl(VI) through intramolecular π-π Stacking

Mashita, T.; Tsushima, S.; Takao, K.


DNA-encircled lipid bilayers

Iric, K.; Subramanian, M.; Oertel, J.; Agarwal, N. P.; Matthies, M.; et al. (10 authors)(139)


Layer-by-Layer assembly of heparin and peptide-polyethylene glycol conjugates to form hybrid nanothin films of biomatrices

Thomas, A. K.; Wieduwild, R.; Zimmermann, R.; Lin, W.; Friedrichs, J.; et al. (9 authors)(141)


The oxidation of borohydrides by photoexcited [UO2(CO3)3]4−

Takao, K.(143); Tsushima, S.(144)


2017

Molecular and Crystal Structures of Uranyl Nitrate Coordination Polymers with Double-headed 2-Pyrrolidone Derivatives

Kazama, H.; Tsushima, S.; Ikeda, Y.; Takao, K.


Dipolar Relaxation Dynamics at the Active Site of an ATPase Regulated by Membrane Lateral Pressure

Fischermeier, E.; Pospíšil, P.; Sayed, A.; Hof, M.; Solioz, M.; et al. (6 authors)(147)


2016

The molecular switching mechanism at the conserved D(E)RY motif in class-A GPCRs

Sandoval, A.; Eichler, S.; Madathil, S.; Reeves, P. J.; Fahmy, K.; et al. (6 authors)(149)


Rational Structure-Based Rescaffolding Approach to de Novo Design of Interleukin 10 (IL-10) Receptor-1 Mimetics

Ruiz-Gómez, G.; Hawkins, J. C.; Philipp, J.; Künze, G.; Wodtke, R.; et al. (8 authors)(151)


Mechanism of attenuation of uranyl toxicity by glutathione in Lactococcus lactis

Obeid, M. H.; Oertel, J.; Solioz, M.; Fahmy, K.


Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion

Oertel, J.; Keller, A.; Prinz, J.; Schreiber, B.; Hübner, R.; et al. (8 authors)(154)


Uranyl(VI) binding by bis(2-hydroxyaryl)diimine and bis(2-hydroxyaryl)diamine ligand derivatives. Synthetic, X-ray, DFT and solvent extraction studies

Jeazet, H. B. T.; Gloe, K.; Doert, T.; Mizera, J.; Kataeva, O. N.; et al. (10 authors)(156)


2015

A single-strand annealing protein clamps DNA to detect and secure homology

Ander, M.; Subramaniam, S.; Fahmy, K.; Stewart, F.; Schäffer, E.


2014

The Role of Phospholipid Headgroup Composition and Trehalose in the Desiccation Tolerance of Caenorhabditis elegans

Abusharkh, S. E.; Erkut, C.; Oertel, J.; Kurzchalia, T. V.; Fahmy, K.


Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation

Petrovska, I.; Nüske, E.; Munder, M. C.; Kulasegaran, G.; Malinovska, L.; et al. (11 authors)(160)


Paramagnetic Decoration of DNA origami Nanostructures by Eu3+ Coordination

Opherden, L.; Oertel, J.; Barkleit, A.; Fahmy, K.; Keller, K.


Experimental and Theoretical Approaches to Redox Innocence of Ligands in Uranyl Complexes: What is Formal Oxidation State of Uranium in Reductant of Uranyl(VI)?

Takao, K.; Tsushima, S.; Ogura, T.; Tsubomura, T.; Ikeda, Y.


Uranium(VI) Chemistry in Strong Alkaline Solution: Speciation and Oxygen Exchange Mechanism

Moll, H.; Rossberg, A.; Steudtner, R.; Drobot, B.; Müller, K.; et al. (6 authors)(164)



Content from Sidebar

Contact

Prof. Dr. Karim Fahmy

Head
Biophysics
k.fahmyAthzdr.de
Phone: +49 351 260 2952
+49 351 260 3601


URL of this article
https://www.hzdr.de/db/Cms?pOid=12082


Links of the content

(1) https://orcid.org/0000-0002-4520-6147
(2) https://orcid.org/0000-0001-5042-8134
(3) https://orcid.org/0000-0002-4510-5717
(4) https://orcid.org/0000-0001-5428-2144
(5) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(38885);
(6) https://orcid.org/0000-0002-7310-5183
(7) https://orcid.org/0000-0002-0952-1334
(8) https://doi.org/10.1039%2FD4CC01030B
(9) https://orcid.org/0000-0002-3635-4690
(10) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(37593);
(11) https://orcid.org/0000-0002-8752-5824
(12) https://orcid.org/0000-0002-3002-6098
(13) https://doi.org/10.1039%2FD3CC05985E
(14) https://orcid.org/0000-0001-6932-9742
(15) https://orcid.org/0000-0002-3002-6098
(16) https://orcid.org/0000-0003-0897-1461
(17) https://orcid.org/0000-0001-7139-3110
(18) https://orcid.org/0009-0000-8672-3645
(19) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(37834);
(20) https://orcid.org/0000-0002-8752-5824
(21) https://orcid.org/0000-0002-1698-5591
(22) https://doi.org/10.1021%2Facs.chemmater.2c03190
(23) https://orcid.org/0000-0002-2755-6514
(24) https://orcid.org/0000-0002-9217-5574
(25) https://orcid.org/0000-0002-3002-6098
(26) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(37817);
(27) https://orcid.org/0009-0002-9530-8587
(28) https://orcid.org/0000-0001-6373-0877
(29) https://orcid.org/0000-0001-7139-3110
(30) https://orcid.org/0000-0003-2550-4048
(31) https://doi.org/10.1002%2Fchem.202302464
(32) https://orcid.org/0000-0001-6827-2799
(33) https://orcid.org/0000-0002-4520-6147
(34) https://orcid.org/0000-0003-4669-0206
(35) https://orcid.org/0000-0002-9414-2936
(36) https://orcid.org/0000-0003-4960-3745
(37) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(37759);
(38) https://orcid.org/0000-0002-0952-1334
(39) https://doi.org/10.1002%2Fchem.202302702
(40) https://orcid.org/0000-0002-3635-4690
(41) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(37550);
(42) https://doi.org/10.1039%2Fd3nr02045b
(43) https://orcid.org/0000-0002-4520-6147
(44) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(37207);
(45) https://doi.org/10.1002%2Fchem.202300636
(46) https://orcid.org/0000-0002-8752-5824
(47) https://doi.org/10.3390%2Fmicroorganisms11051204
(48) https://orcid.org/0000-0001-9097-9299
(49) https://orcid.org/0000-0002-8752-5824
(50) https://doi.org/10.3390%2Fmicroorganisms11030584
(51) https://orcid.org/0000-0002-4520-6147
(52) https://doi.org/10.1039%2FD3QI00189J
(53) https://orcid.org/0000-0002-8752-5824
(54) https://doi.org/10.1007%2Fs12551%2D022%2D01003%2Dy
(55) https://orcid.org/0000-0002-8752-5824
(56) https://doi.org/10.3390%2Fmicroorganisms10071397
(57) https://orcid.org/0000-0002-8412-3328
(58) https://orcid.org/0000-0002-4520-6147
(59) https://orcid.org/0000-0002-3103-9587
(60) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(34763);
(61) https://orcid.org/0000-0003-1245-0466
(62) https://doi.org/10.1039%2Fd2qi00933a
(63) https://orcid.org/0000-0002-3635-4690
(64) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(34562);
(65) https://orcid.org/0000-0002-4520-6147
(66) https://orcid.org/0000-0002-8752-5824
(67) https://doi.org/10.1016%2Fj.csbj.2022.05.037
(68) https://orcid.org/0000-0002-8752-5824
(69) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(34343);
(70) https://doi.org/10.3390%2Fijms23052817
(71) https://orcid.org/0000-0002-4520-6147
(72) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(34209);
(73) https://doi.org/10.1021%2Facs.inorgchem.2c00306
(74) https://orcid.org/0000-0002-4520-6147
(75) https://doi.org/10.1039%2FD1CP05401E
(76) https://orcid.org/0000-0002-4520-6147
(77) https://doi.org/10.1039%2FD2DT00325B
(78) https://orcid.org/0000-0002-4520-6147
(79) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(33096);
(80) https://doi.org/10.1107%2FS1600577521012340
(81) https://orcid.org/0000-0001-6827-2799
(82) https://orcid.org/0000-0002-4520-6147
(83) https://orcid.org/0000-0002-0952-1334
(84) https://doi.org/10.1021%2Facs.inorgchem.1c01449
(85) https://orcid.org/0000-0002-4520-6147
(86) https://orcid.org/0000-0002-8752-5824
(87) https://doi.org/10.3390%2Fmolecules26061647
(88) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(32327);
(89) https://doi.org/10.1016%2Fj.ijadhadh.2021.102812
(90) https://orcid.org/0000-0002-4520-6147
(91) https://doi.org/10.1016%2Fj.ica.2021.120622
(92) https://orcid.org/0000-0002-4520-6147
(93) https://orcid.org/0000-0002-0835-9371
(94) https://orcid.org/0000-0002-7554-8236
(95) https://orcid.org/0000-0003-3637-2669
(96) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(31457);
(97) https://orcid.org/0000-0003-2366-7628
(98) https://orcid.org/0000-0003-2880-0280
(99) https://doi.org/10.1002%2Fchem.202003653
(100) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(31882);
(101) https://doi.org/10.1186%2Fs12915%2D020%2D0760%2D3
(102) https://doi.org/10.1038%2Fs41598%2D020%2D70311%2D8
(103) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(31862);
(104) https://doi.org/10.3390%2Fmolecules25215099
(105) https://orcid.org/0000-0002-4520-6147
(106) https://orcid.org/0000-0002-0952-1334
(107) https://doi.org/10.1246%2Fbcsj.20200061
(108) https://orcid.org/0000-0002-0952-1334
(109) https://orcid.org/0000-0003-4960-3745
(110) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(30059);
(111) https://orcid.org/0000-0002-4520-6147
(112) https://doi.org/10.1039%2FC9RA10090C
(113) https://doi.org/10.1021%2Facs.cgd.9b01214
(114) https://orcid.org/0000-0002-4520-6147
(115) https://doi.org/10.1039%2FC9CP03953H
(116) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(29100);
(117) https://doi.org/10.1038%2Fs41598%2D019%2D42898%2D0
(118) https://orcid.org/0000-0002-4520-6147
(119) https://orcid.org/0000-0002-0952-1334
(120) https://doi.org/10.1021%2Facsomega.9b00635
(121) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(28627);
(122) https://doi.org/10.7554%2FeLife.38187
(123) https://doi.org/10.1002%2Fanie.201811731
(124) https://doi.org/10.1002%2Fange.201811731
(125) https://orcid.org/0000-0003-1245-0466
(126) https://orcid.org/0000-0002-8419-0811
(127) https://orcid.org/0000-0002-7310-5183
(128) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(27504);
(129) https://orcid.org/0000-0003-3409-1791
(130) https://orcid.org/0000-0002-5166-4849
(131) https://orcid.org/0000-0002-9708-6175
(132) https://orcid.org/0000-0002-3879-5019
(133) https://orcid.org/0000-0002-0520-3611
(134) https://orcid.org/0000-0002-4520-6147
(135) https://doi.org/10.1039%2FC9CP03750K
(136) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(27588);
(137) https://doi.org/10.1021%2Facs.jpca.8b05567
(138) https://doi.org/10.1039%2FC8DT02600A
(139) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(27364);
(140) https://doi.org/10.1039%2FC8NR06505E
(141) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(27352);
(142) https://doi.org/10.1021%2Facsami.8b02014
(143) https://orcid.org/0000-0002-0952-1334
(144) https://orcid.org/0000-0002-4520-6147
(145) https://doi.org/10.1039%2Fc8dt00559a
(146) https://doi.org/10.1021%2Facs.inorgchem.7b02250
(147) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(24433);
(148) https://doi.org/10.1002%2Fanie.201611582
(149) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(23809);
(150) https://doi.org/10.1016%2Fj.bpj.2016.06.004
(151) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(23528);
(152) https://doi.org/10.1371%2Fjournal.pone.0154046
(153) https://doi.org/10.1128%2FAEM.00538%2D16
(154) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(23429);
(155) https://doi.org/10.1038%2Fsrep26718
(156) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(21183);
(157) https://doi.org/10.1016%2Fj.poly.2015.01.005
(158) https://doi.org/10.1371%2Fjournal.pbio.1002213
(159) https://doi.org/10.1021%2Fla502654j
(160) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(20296);
(161) https://doi.org/10.7554%2FeLife.02409
(162) https://doi.org/10.1021%2Fla501112a
(163) https://doi.org/10.1021%2Fic5006314
(164) https://www.hzdr.de/db/javascript:%20PublShowMoreAuthors(19321);
(165) https://doi.org/10.1021%2Fic402664n
(166) https://www.hzdr.de/db/Cms?pOid=11732
(167) https://www.hzdr.de/db/Cms?pOid=11727
(168) https://www.hzdr.de/db/Cms?pOid=11724
(169) https://www.hzdr.de/db/Cms?pOid=11723
(170) https://www.hzdr.de/db/Cms?pOid=11729
(171) https://www.hzdr.de/db/Cms?pOid=11726
(172) https://www.hzdr.de/db/Cms?pOid=11730
(173) https://www.hzdr.de/db/Cms?pOid=11720
(174) https://www.hzdr.de/db/Cms?pOid=11719
(175) https://www.hzdr.de/db/Cms?pOid=11733