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• PTD derived from 3 fundamental assumptions: 

Time-reversal invariance holds (γλc

 

real).
 Single channel (elastic scattering) for neutrons.

 Widths are “statistical”.
 Compound nucleus model, central-limit theorem reduced width 

amplitudes (γλc) Gaussian distributed with zero mean Reduced 
neutron widths, Γn

0 = 2Pγn2 = Γn/√En (s wave), follow a χ2 distribution 
with one degree of freedom (ν = 1). 

Consensus View from Last ~50 Years:

Reduced Neutron Widths Follow at Porter-Thomas 
Distribution (PTD)

x
 

= Γn
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Random Matrix Theory

• Predicts both eigenvector 
(e.g., Γn

0) and eigenvalue
 (e.g. D, Δ3

 

) distributions.

• Gaussian orthogonal 
ensemble (GOE) should 
apply to highly excited 
states of heavy nuclides 
(i.e., near neutron 
threshold).

• Krieger and Porter showed 
that “level independence”

 and “form invariance”
 

could 
replace “statistical”

 assumption.
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Ideal Data Set for Testing the PTD:
 Γn

0
 

values for all s-wave resonances of a given Jπ

• Purity. 
i.e., no p-wave resonances in s-wave set.

• Completeness. 
No missing resonances.

 e.g., due to finite detection threshold.

• Limited number of resonances.
 Data spread out over broad distribution.

 Always fighting limited statistical precision.

Problems



Effect of Missing Small Widths

• Missing small widths 
changes shape of the 
distribution.

 
Γn

0/<

 
Γn

0 >=T*E/Emax

 

.

• If it’s assumed that all 
widths were observed, 
obtain larger ν

 
from 

maximum-likelihood 
(ML) analysis.

 
νtrue

 

= 1.0

 
νML

 

= 1.9

Experiment threshold must be 
accounted for in comparison to theory.
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Effect of Missing Small Widths

• Missing small widths 
changes shape of the 
distribution.

 
Γn

0/<

 
Γn
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.

• If it’s assumed that all 
widths were observed, 
obtain larger ν

 
from 

maximum-likelihood 
(ML) analysis.

 
νtrue

 

= 1.0

 
νML

 

= 1.9

Experiment threshold must be 
accounted for in comparison to theory.
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Effect of p-wave Contamination

• Added p-wave widths 
smaller than s-wave 
ones.

 Simulation for 232Th 
(assuming GOE).

 Γ0
n,s

 

~ constant
 Γ0

n,p

 

~ E
• Assuming all widths 

above NDE threshold are 
s wave results in 
smaller ν

 
from ML 

analysis.
 

νtrue

 

= 1.0
 

νML

 

= 0.6
Comparison to theory must assess purity of the data.
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Typical Run Parameters

Rep. rate = 525 Hz
Δt

 

= 8 ns
 P = 8 kW
 En

 

=10 eV
 

–
 

500 keV

(n,γ) with C6

 

D6

 

on F.P. 
6 and 7 @ 40 m

σt

 

with 6Li-glass on 
F.P. 1 @ 80 m

(n,α) with CIC on F.P. 
11 @ 10 m
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Depth~gΓn

Asymetric
 

shape =>
 s-wave

Only in rare cases can 
both Γγ

 

and gΓn

 

be 
determined from 
transmission alone
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Aγ

 

= gΓn

 

Γγ

 

/(Γn

 

+Γγ

 

)

Only in rare cases 
(e.g., Γγ

 

+Γn

 

> ΔE) can 
both Γγ

 

and gΓn

 

be 
determined from (n,γ) 
alone.
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Resonance Parameters from R-Matrix Analysis

To test the PTD, need E and Γn

 

for all resonances of a given Jπ.

Typical case: Can obtain Γn
0

 

only for subset of s-wave 
resonances, only if have both capture and total cross-

 section data, and only for zero-spin targets.



Testing the PTD Using 192,194Pt+n ORELA Data

• 192,194,196Pt+n ORELA data 
better in many ways.

 More resonances.
 Better sensitivity (~10x).

 Better separation of s and p
 waves (S0

 

≈10S1

 

).
 Better Jπ

 

assignments.
• Improved Maximum-Likelihood 

analysis.
 Used energy-dependent 

threshold.
 Maximizes statistical 

significance while eliminating p-
 wave contamination.

 Analysis threshold T0

 

much 
higher than experimental one.
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Testing the PTD using 192,194,196Pt+n ORELA Data
 (Phys. Rev. Lett. 105, 072502 (2010))

• Maximum-Likelihood (ML) 
analysis.
192Pt: ν

 

= 0.57±0.16
194Pt: ν

 

= 0.47±0.19 
196Pt: ν

 

= 0.60±0.28
• Additional calculations to 

determine confidence level (CL) 
for rejecting PTD.

 Monte Carlo simulation to 
determine CL as function of 
<Γn

0>.
 Two new statistics to limit 

range of <Γn
0>.

 Auxiliary ML analysis to verify 
that p-wave contamination is 
negligibly small (0.069 for 
192Pt, 0.0047% for 194Pt).
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Testing the PTD using 192,194,196Pt+n ORELA Data
 (Phys. Rev. Lett. 105, 072502 (2010))

• Maximum-Likelihood (ML) 
analysis.
192Pt: ν

 

= 0.57±0.16
194Pt: ν

 

= 0.47±0.19 
196Pt: ν

 

= 0.60±0.28
• Additional calculations to 

determine confidence level (CL) 
for rejecting PTD.

 Monte Carlo simulation to 
determine CL as function of 
<Γn

0>.
 Two new statistics to limit 

range of <Γn
0>.

 Auxiliary ML analysis to verify 
that p-wave contamination is 
negligibly small (0.069 for 
192Pt, 0.0047% for 194Pt).

PTD rejected at 99.997% confidence level



Possible explanations

• TRIV and unknown (e.g. inelastic) 
extra neutron channel ruled out.

 Lead to ν>1, but ν<1 observed.
• Widths not statistical.

 But typical nonstatistical
 signatures absent in data (e.g., 

steps in ΣΓn
0

 

vs. En

 

).
• Might be signature of collective 

effect (e.g., Y. Alhassid
 

and A. 
Novoselsky, Phys. Rev. C 45, 
1677 (1992)).

 Model calculations for low 
excitations yielded transition 
strength distributions with ν<1 as 
system became more collective.

 But why would highly excited 
states in 193,195Pt be collective?
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Form invariance or level independence assumptions 
violated?

• Level independence and form invariance assumptions shown to 
yield same results (and more) as “statistical”

 
assumption.

• But, what does violating these assumptions mean and how 
could they cause ν=0.5?



Γγ
 

Distributions

• Partial widths
 

Γγi

 
follow PTD.

• Obtain Γγ

 

=∑
 

Γγi

 

from 
R-matrix analyses.

• Assuming averages 
the same,

 
Γγ

 

follows χ2

 dist. with ν
 

equal to 
number of 
independent 
transitions.

 
Γγ

 

dists. very narrow.
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4‐

Using γ-cascade Information to Assign Jπ

• Expect: Higher J larger M 
more coincidences and 

softer singles spectrum.
• First demonstrated by Coceva

 et al., Nucl. Phys. A117, 586 
(1968).

• Implemented with 
improvements at ORELA.

 New C6

 

D6

 

CINDORELA 
apparatus.

 Gates optimized during replay.
 Multiple gates on singles and 

coincidences.
 Parities better separated using 

overall singles pulse-height 
shapes. 148Sm

3‐

2+

1‐

0+

3+

2‐

1+

0+

γ
 

cascades following 147Sm+n
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CINDORELA Results

• Firm Jπ’s
 

for 220 of 314 resonances 
observed for En<10 keV.

 Previously: 32 of 107.

95Mo very difficult test case: Peak 
of p-

 

and minimum of s-wave 
neutron strength functions, so six 
Jπ’s

 

possible.

• Separate Γγ

 

and Γn

 

distributions for 
1-, 2-, 2+, 3-, 3+, and 4-

 resonances.
 Best Γγ

 

data ever obtained.
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95Mo Average Resonance Parameters from ORELA

Jπ Dl J

 

(eV) 104SlJ <ΓγlJ

 

> (meV)
1‐ 627 0.17 556
2‐ 153 0.98 289
2+ 134 0.17 186
3‐ 148 1.05 344
3+ 120 0.32 178
4‐ 148 0.80 252

Mughabghab ORELA
D0

 

(eV) 81±14 63.3
D1

 

(eV) 37.7±4.3 46.2
104S0 0.47±0.17 0.49
104S1 6.89±1.77 3.0

<Γγ0

 

> (meV) 162±7 120 ‐
 

134
<Γγ1

 

> (meV) 210±40 148 ‐
 

627



Extra Component to 
Γγ

 

Distributions?

• Simplest model: Γγ

 
follow a χ2

 

distribution 
with ν~20-200.

 ν

 
= number of channels.

• Data for several cases 
have extra tail at 
larger Γγ

 

.
 Size of tail decreases 

with A.

• Data for several other 
cases shows no need for 
extra tail.
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Improving PSF Models Using Neutron Resonance Γγ

 

Data

• Compare measured Γγ

 
distributions to DICEBOX 
simulations.

 Vary PSF and LD models 
to obtain agreement with 
data.

• Must agree with both 
distribution shape as well 
as its average.

• Avoids some confounding 
uncertainties.
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Improving PSF Models Using Neutron Resonance Γγ

 

Data

• Compare measured Γγ

 
distributions to DICEBOX 
simulations.

 Vary PSF and LD models 
to obtain agreement with 
data.

• Must agree with both 
distribution shape as well 
as its average.

• Avoids some confounding 
uncertainties.

A* <Γγ

 

> (meV)

PSF

Meas. Lorentzian Suppressed
193Pt 62±6 108 22
195Pt 77±10 330 32

196Pt (0‐) 109±16 160 17
196Pt (1‐) 128±15 180 27

197Pt 85±12 330 47



Conclusions 1

• Assumptions and ingredients of the statistical model (SM) can be
 tested and improved using Γn

 

and Γγ

 

distributions from neutron 
resonance measurements.

• Γγ

 

distributions sensitive to photon strength function (and level 
density) model used in the SM.

 
Detailed simulations of cascade needed (DICEBOX).

 Model must reproduce both <
 

Γγ

 

> and fluctuations.
 Indication of an extra component in Γγ

 

distributions for some 
nuclides.



Conclusions 2

• SM assumption that reduced widths follow a Porter-Thomas 
distribution (PTD) shown to be incorrect in several cases.

• Best case so far: Γn
0

 

data for 192,194,196Pt.
 PTD excluded at 99.997% confidence level.
 ν≈0.5 (PTD has ν =1).

 Might be signature of collective effect (e.g., Y. Alhassid
 

and A. 
Novoselsky, Phys. Rev. C 45, 1677 (1992)).

• Other cases (e.g., 147Sm and 232Th), ν

 
changes from 1 to ≈2.

 No known model, but perhaps related to doorway effects.

• Is RMT wrong, or are these just special cases (e.g., unusual nuclear 
structure).



Impact On Applications
 (e.g., Astrophysics, Nuclear Energy)

• PSF has large impact on calculated cross sections of nuclides beyond 
measurement.

• ν

 
of Γn

l

 

distribution affects calculated cross sections and important 
parameters for applications.

 
Width fluctuation correction depends on ν.

 For Γc’

 

/Γc

 

=1, Scc’

 

=ν/(ν+1).
 

Effects self shielding correction for reactors, etc.



Future Prospects

• Need high quality neutron capture and total cross sections.
 

New resonance parameters should be used to test theory instead of 
using theory to correct data.

• Need careful R-matrix analysis .
 

Very important to indicate which Jπ

 

assignments are firm 
(independent of theory being tested).

• New techniques for determining Jπ’s
 

should be extremely valuable 
(and are not too difficult to implement).
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