Nonstatistical Effects in Neutron Resonance Parameters

P. E. Koehler¹, F.Bečvář², J. A. Harvey¹, M. Krtička², and K. H. Guber³

¹Physics Division, Oak Ridge National Laboratory
 ²Charles University, Faculty of Mathematics and Physics
 ³Nuclear Science and Technology Division, Oak Ridge National Laboratory

- Neutron widths
- Radiation widths

This work was supported by the U.S. DOE Office of Nuclear Physics, by the NNSA Nuclear Criticality Safety Program, and by Czech Research Plans MSM-021620859 and INGO-LA08015.

Consensus View from Last ~50 Years:

Reduced Neutron Widths Follow at Porter-Thomas Distribution (PTD)

PTD derived from 3 fundamental assumptions:

Time-reversal invariance holds ($\gamma_{\lambda c}$ real).

Single channel (elastic scattering) for neutrons.

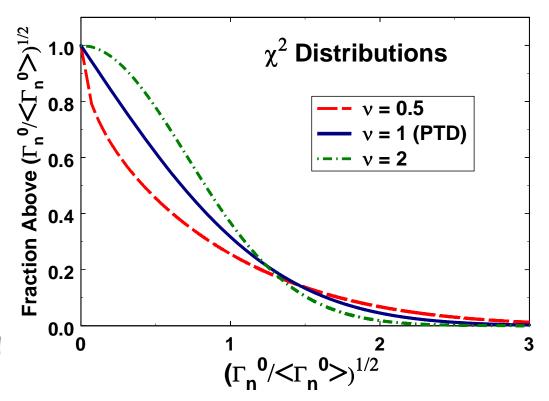
Widths are "statistical".

Compound nucleus model, central-limit theorem \Rightarrow reduced width amplitudes $(\gamma_{\lambda c})$ Gaussian distributed with zero mean \Rightarrow Reduced neutron widths, $\Gamma_n^0 = 2P\gamma_n^2 = \Gamma_n/\sqrt{E_n}$ (s wave), follow a χ^2 distribution with one degree of freedom (v = 1).

$$P(x,\nu) = \frac{\nu}{2G(\nu/2)} (\frac{\nu x}{2})^{\nu/2-1} \exp(-\frac{\nu x}{2}) \qquad x = \Gamma_{\rm n}^{\rm 0/<\Gamma_{\rm n}^{\rm 0}>}$$

Random Matrix Theory

- Predicts both eigenvector (e.g., Γ_n^0) and eigenvalue (e.g. D, Δ_3) distributions.
- Gaussian orthogonal ensemble (GOE) should apply to highly excited states of heavy nuclides (i.e., near neutron threshold).
- Krieger and Porter showed that "level independence" and "form invariance" could replace "statistical" assumption.



Ideal Data Set for Testing the PTD: Γ_n^0 values for all s-wave resonances of a given J^{π}

Problems

- Purity.
 i.e., no p-wave resonances in s-wave set.
- Completeness.
 No missing resonances.
 e.g., due to finite detection threshold.
- Limited number of resonances.
 Data spread out over broad distribution.
 Always fighting limited statistical precision.

Effect of Missing Small Widths

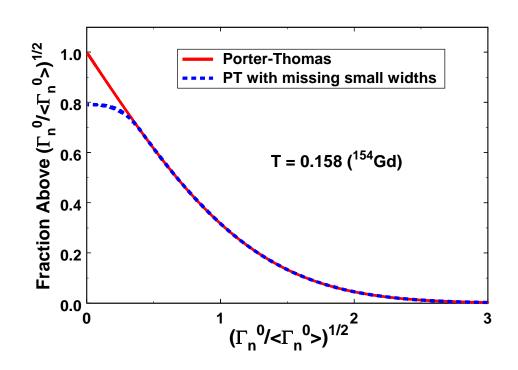
 Missing small widths changes shape of the distribution.

$$\Gamma_n^0/<\Gamma_n^0>=T*E/E_{max}$$
.

 If it's assumed that all widths were observed, obtain larger v from maximum-likelihood (ML) analysis.

$$v_{true} = 1.0$$

$$v_{ML} = 1.9$$



Experiment threshold must be accounted for in comparison to theory.

Effect of Missing Small Widths

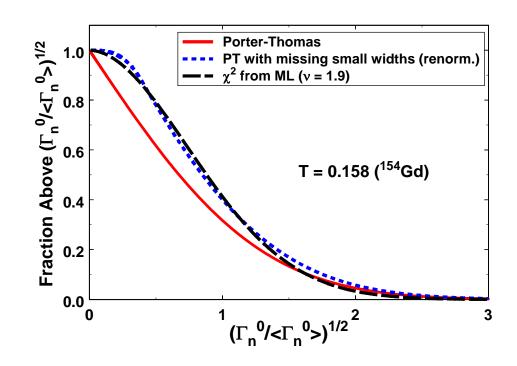
 Missing small widths changes shape of the distribution.

$$\Gamma_n^0/<\Gamma_n^0>=T*E/E_{max}$$
.

 If it's assumed that all widths were observed, obtain larger v from maximum-likelihood (ML) analysis.

$$v_{true}$$
 = 1.0

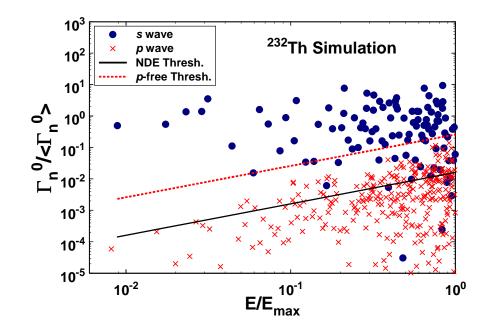
$$v_{ML} = 1.9$$



Experiment threshold must be accounted for in comparison to theory.

Effect of p-wave Contamination

- Added p-wave widths smaller than s-wave ones.
 Simulation for ²³²Th (assuming GOE).
 - $\Gamma^0_{\mathrm{n,s}}$ ~ constant $\Gamma^0_{\mathrm{n,p}}$ ~ E
- Assuming all widths above NDE threshold are s wave results in smaller v from ML analysis.



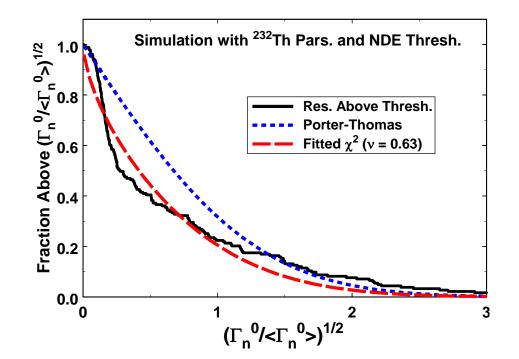
$$v_{\text{true}} = 1.0$$

$$v_{ML} = 0.6$$

Comparison to theory must assess purity of the data.

Effect of p-wave Contamination

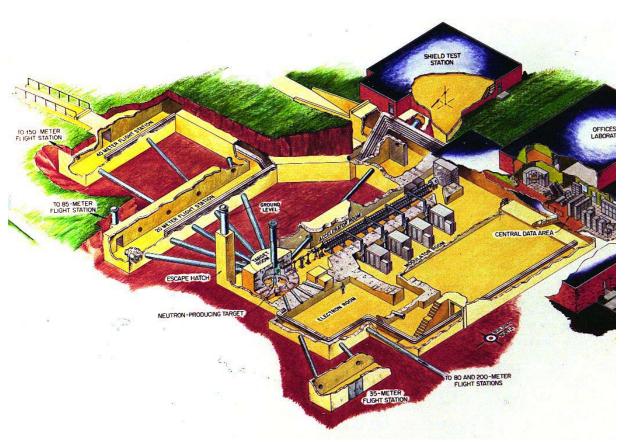
- Added p-wave widths smaller than s-wave ones.
 Simulation for ²³²Th (assuming GOE).
 Γ⁰_{n,s} ~ constant
- Assuming all widths above NDE threshold are s wave results in smaller v from ML analysis.



$$v_{\text{true}} = 1.0$$

$$v_{MI} = 0.6$$

Comparison to theory must assess purity of the data.



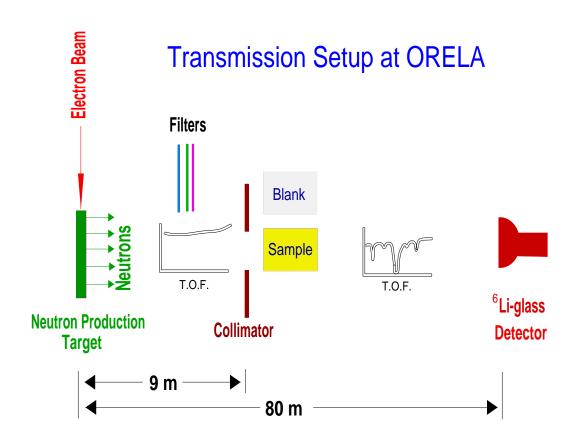
Typical Run Parameters

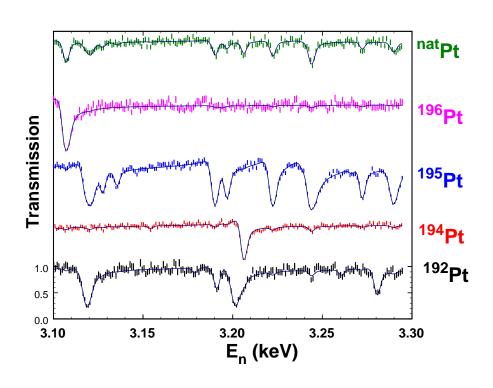
Rep. rate = 525 Hz Δt = 8 ns P = 8 kW E_n=10 eV - 500 keV

 (n,γ) with C_6D_6 on F.P. 6 and 7 @ 40 m

 σ_{t} with ⁶Li-glass on F.P. 1 @ 80 m

 (n,α) with CIC on F.P. 11 @ 10 m

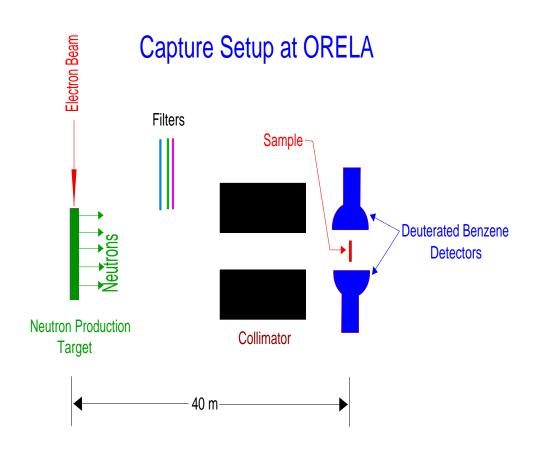


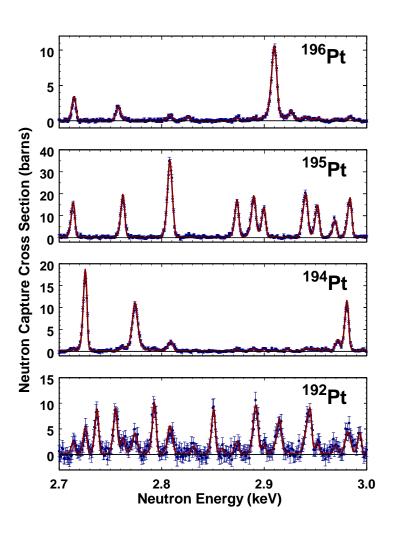


 $Depth \sim g\Gamma_n$

Asymetric shape => s-wave

Only in rare cases can both Γ_{γ} and $g\Gamma_{n}$ be determined from transmission alone





$$A_{\gamma} = g\Gamma_{n}\Gamma_{\gamma}/(\Gamma_{n}+\Gamma_{\gamma})$$

Only in rare cases (e.g., $\Gamma_{\gamma} + \Gamma_{n} > \Delta E$) can both Γ_{γ} and $g\Gamma_{n}$ be determined from (n,γ) alone.

Resonance Parameters from R-Matrix Analysis

To test the PTD, need E and Γ_n for all resonances of a given J^{π} .

Obtainable from Total Cross-Section Data

Target Spin	Relative size of $g\Gamma_{n}$			
	Small	Intermediate	Large	Very Large
0	Nothing	E, gΓ _n	E, g $\Gamma_{ m n}$, (g), (Γ_{γ}) ,(J) $^{\pi}$	E, g Γ_n , (g), (J) π
>0	Nothing	E, g $\Gamma_{ m n}$	E, g Γ_n , (Γ_γ) , π	E, g $\Gamma_{\rm n}$, (J) $^{\pi}$

Obtainable from Capture Cross-Section Data

Target Spin	Relative size of $g\Gamma_{n}$			
	Small	Intermediate	Large	Very Large
0	E, g $\Gamma_{ m n}$	Ε, Α _γ	Ε, Α _γ	E, g $\Gamma_{\rm n}$, (g), (Γ_{γ}) , $(J)^{\pi}$
>0	E, g $\Gamma_{ m n}$	Ε, Α,	Ε, Α _γ	E, g Γ_n , (Γ_y) , π

Typical case: Can obtain Γ_n^0 only for subset of s-wave resonances, only if have both capture and total cross-section data, and only for zero-spin targets.

Testing the PTD Using 192,194Pt+n ORELA Data

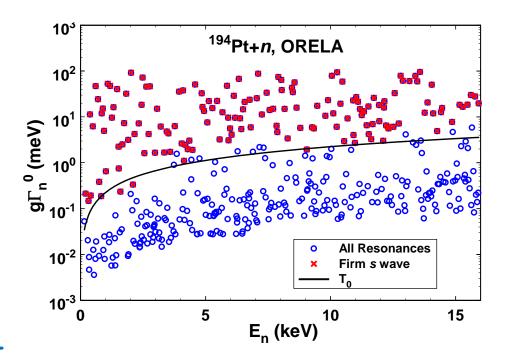
- 192,194,196 Pt+n ORELA data better in many ways. More resonances. Better sensitivity (~10x). Better separation of s and p waves ($S_0 \approx 10 S_1$). Better J^{π} assignments.
- analysis.

 Used energy-dependent threshold.

 Maximizes statistical significance while eliminating p-wave contamination.

 Analysis threshold T₀ much higher than experimental one.

Improved Maximum-Likelihood



Testing the PTD using ^{192,194,196}Pt+n ORELA Data (Phys. Rev. Lett. 105, 072502 (2010))

 Maximum-Likelihood (ML) analysis.

$$^{192}Pt: v = 0.57\pm0.16$$
 $^{194}Pt: v = 0.47\pm0.19$
 $^{196}Pt: v = 0.60\pm0.28$

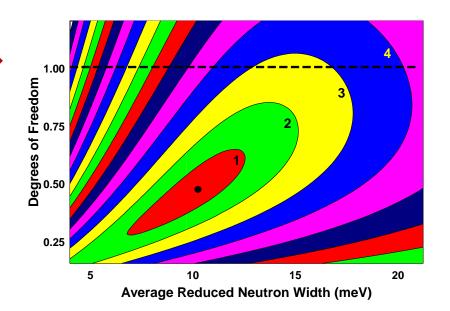
 Additional calculations to determine confidence level (CL) for rejecting PTD.
 Monte Carlo simulation to

determine CL as function of $\langle \Gamma_n^0 \rangle$.

Two new statistics to limit range of $\langle \Gamma_n^0 \rangle$.

Auxiliary ML analysis to verify that p-wave contamination is negligibly small (0.069 for ¹⁹²Pt, 0.0047% for ¹⁹⁴Pt).

$$z(\nu, \mathrm{E}[\Gamma_{\lambda_{\mathrm{n}}}^{0}]) = 2^{\frac{1}{2}} \left[\ln L_{\mathrm{max}} - \ln L\left(\nu, \mathrm{E}[\Gamma_{\lambda_{\mathrm{n}}}^{0}]\right) \right]^{\frac{1}{2}}$$



Testing the PTD using ^{192,194,196}Pt+n ORELA Data (Phys. Rev. Lett. 105, 072502 (2010))

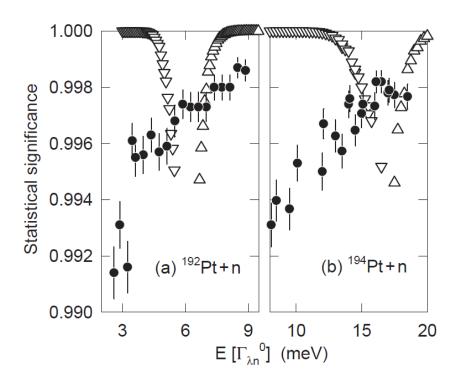
 Maximum-Likelihood (ML) analysis.

192Pt: v = 0.57±0.16 194Pt: v = 0.47±0.19 196Pt: v = 0.60±0.28

 Additional calculations to determine confidence level (CL) for rejecting PTD.

Monte Carlo simulation to determine CL as function of $\langle \Gamma_n^0 \rangle$.

Two new statistics to limit range of $\langle \Gamma_n^0 \rangle$. Auxiliary ML analysis to verify that p-wave contamination is negligibly small (0.069 for 192 Pt, 0.0047% for 194 Pt).



Testing the PTD using ^{192,194,196}Pt+n ORELA Data (Phys. Rev. Lett. 105, 072502 (2010))

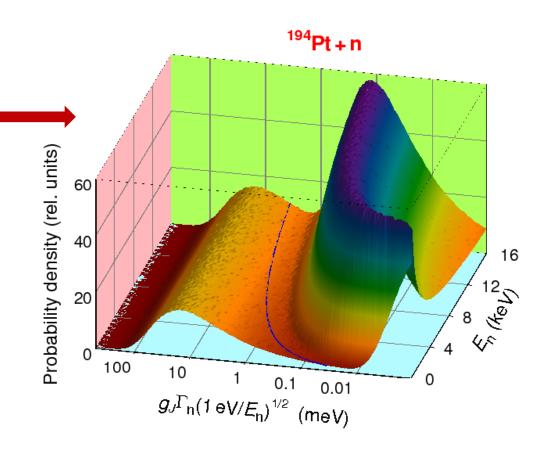
Maximum-Likelihood (ML) analysis.
 ¹⁹²Pt: v = 0.57±0.16
 ¹⁹⁴Pt: v = 0.47±0.19
 ¹⁹⁶Pt: v = 0.60±0.28

 Additional calculations to determine confidence level (CL) for rejecting PTD.

Monte Carlo simulation to determine CL as function of $\langle \Gamma_n^0 \rangle$.

Two new statistics to limit range of $\langle \Gamma_n^0 \rangle$.

Auxiliary ML analysis to verify that p-wave contamination is negligibly small (0.069 for ¹⁹²Pt. 0.0047% for ¹⁹⁴Pt).

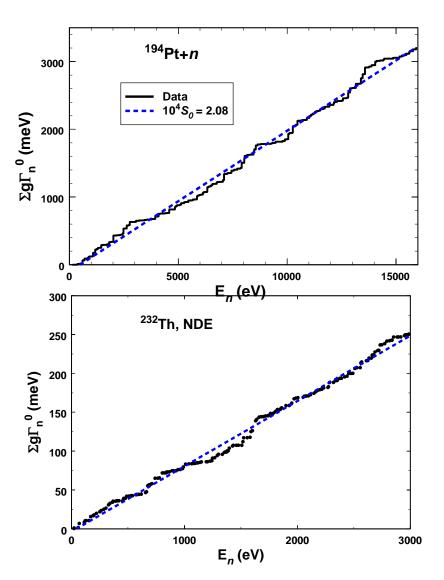


PTD rejected at 99.997% confidence level

Possible explanations

- TRIV and unknown (e.g. inelastic) extra neutron channel ruled out. Lead to v>1, but v<1 observed.
- Widths not statistical. But typical nonstatistical signatures absent in data (e.g., steps in $\Sigma\Gamma_n^0$ vs. E_n).
- Might be signature of collective effect (e.g., Y. Alhassid and A. Novoselsky, Phys. Rev. C 45, 1677 (1992)).
 Model calculations for low excitations yielded transition

strength distributions with v<1 as system became more collective. But why would highly excited states in 193,195 Pt be collective?



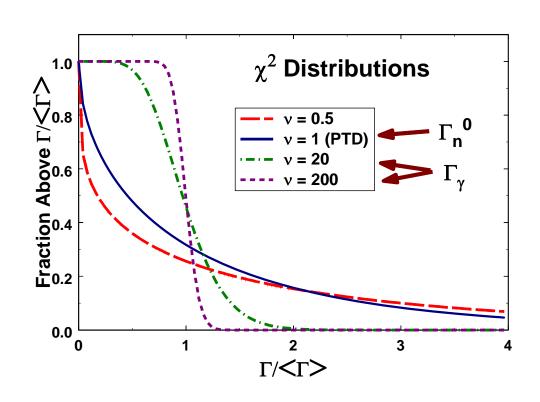
Form invariance or level independence assumptions violated?

- Level independence and form invariance assumptions shown to yield same results (and more) as "statistical" assumption.
- But, what does violating these assumptions mean and how could they cause v=0.5?

Γ_{γ} Distributions

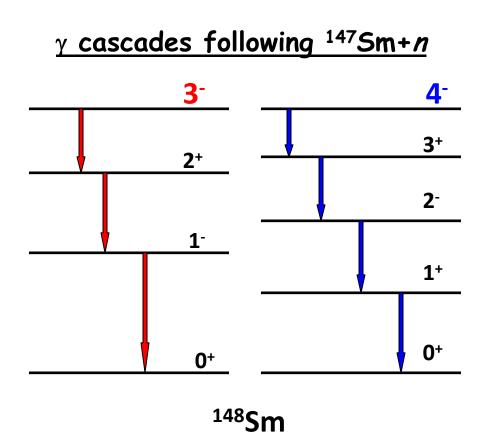
- Partial widths $\Gamma_{\gamma i}$ follow PTD.
- Obtain $\Gamma_{\gamma} = \sum \Gamma_{\gamma i}$ from R-matrix analyses.
- Assuming averages the same, Γ_{γ} follows χ^2 dist. with ν equal to number of independent transitions.

 Γ_{γ} dists. very narrow.



- Expect: Higher J ⇒ larger M
 ⇒ more coincidences and
 softer singles spectrum.
- First demonstrated by Coceva et al., Nucl. Phys. A117, 586 (1968).
- Implemented with improvements at ORELA.
 New C₆D₆ CINDORELA apparatus.
 Gates optimized during replay.
 Multiple gates on singles and coincidences.

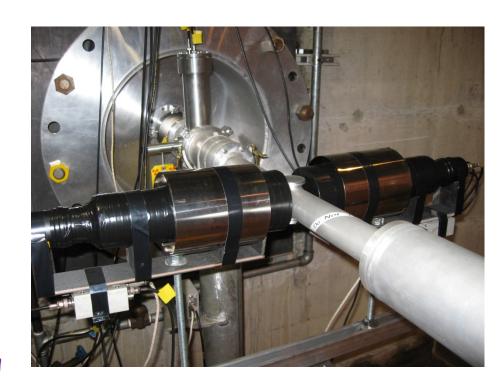
Parities better separated using overall singles pulse-height shapes.



- Expect: Higher J ⇒ larger M
 ⇒ more coincidences and softer singles spectrum.
- First demonstrated by Coceva et al., Nucl. Phys. A117, 586 (1968).
- Implemented with improvements at ORELA. New C₆D₆ CINDORELA apparatus.

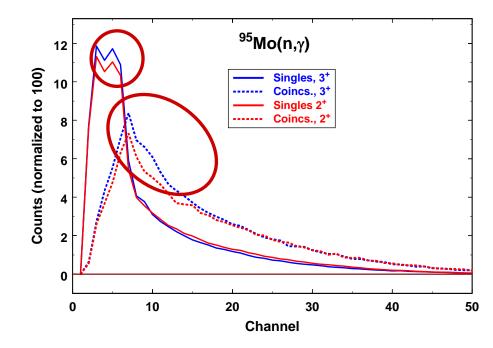
Gates optimized during replay. Multiple gates on singles and coincidences.

Parities better separated using overall singles pulse-height shapes.



- Expect: Higher J ⇒ larger M
 ⇒ more coincidences and
 softer singles spectrum.
- First demonstrated by Coceva et al., Nucl. Phys. A117, 586 (1968).
- Implemented with improvements at ORELA.
 New C₆D₆ CINDORELA apparatus.
 Gates optimized during replay.
 Multiple gates on singles and coincidences.
 Parities better separated using overall singles pulse-height

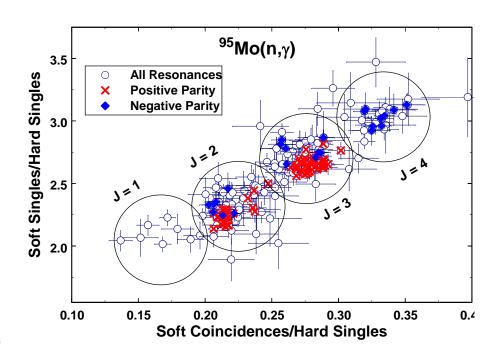
shapes.



- Expect: Higher J ⇒ larger M
 ⇒ more coincidences and
 softer singles spectrum.
- First demonstrated by Coceva et al., Nucl. Phys. A117, 586 (1968).
- Implemented with improvements at ORELA. New C₆D₆ CINDORELA apparatus.
 Gates optimized during repl

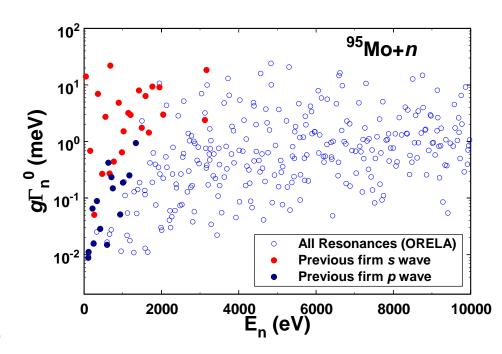
Gates optimized during replay. Multiple gates on singles and coincidences.

Parities better separated using overall singles pulse-height shapes.



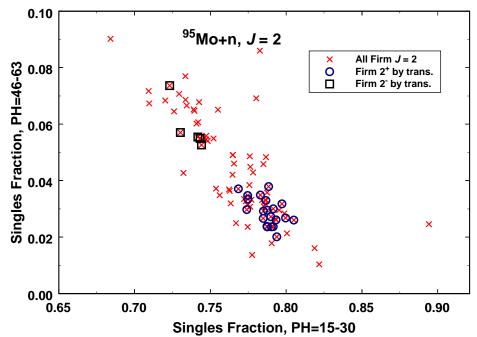
- Expect: Higher J ⇒ larger M
 ⇒ more coincidences and
 softer singles spectrum.
- First demonstrated by Coceva et al., Nucl. Phys. A117, 586 (1968).
- Implemented with improvements at ORELA. New C₆D₆ CINDORELA apparatus. Gates optimized during replay. Multiple gates on singles and coincidences.

Parities better separated using overall singles pulse-height shapes.



- Expect: Higher J ⇒ larger M
 ⇒ more coincidences and
 softer singles spectrum.
- First demonstrated by Coceva et al., Nucl. Phys. A117, 586 (1968).
- Implemented with improvements at ORELA.
 New C₆D₆ CINDORELA apparatus.
 Gates optimized during replay.
 Multiple gates on singles and coincidences.
 Parities better separated using overall singles pulse-height

shapes.



CINDORELA Results

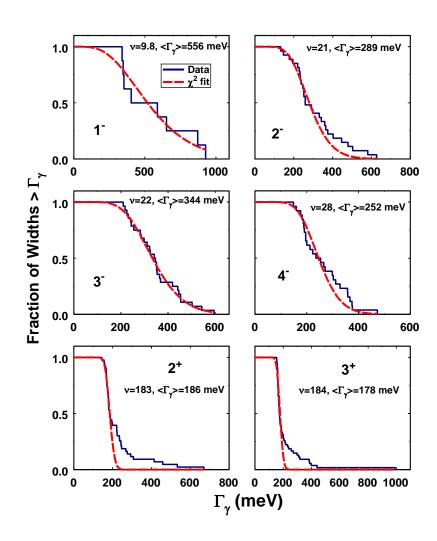
• Firm J^{π} 's for 220 of 314 resonances observed for En<10 keV.

Previously: 32 of 107.

 95 Mo very difficult test case: Peak of p- and minimum of s-wave neutron strength functions, so six J^{π} 's possible.

• Separate Γ_{γ} and Γ_{n} distributions for 1-, 2-, 2+, 3-, 3+, and 4- resonances.

Best Γ_{γ} data ever obtained.



95Mo Average Resonance Parameters from ORELA

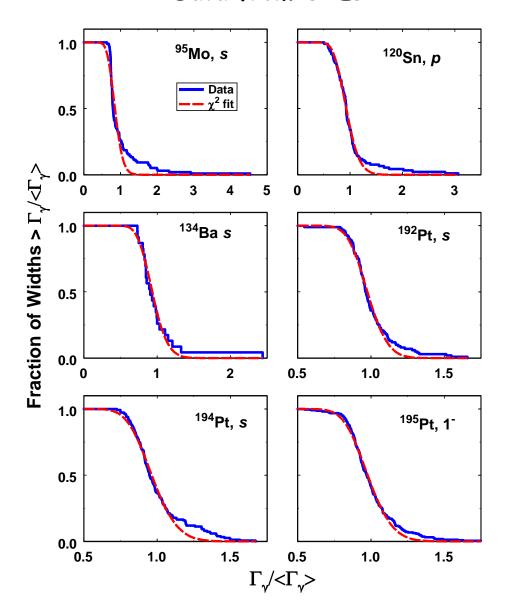
J^π	<i>D_{I J}</i> (eV)	10 ⁴ S _{IJ}	$<\Gamma_{\text{vIJ}}>$ (meV)
1-	627	0.17	556
2-	153	0.98	289
2+	134	0.17	186
3-	148	1.05	344
3 ⁺	120	0.32	178
4-	148	0.80	252

	Mughabghab	ORELA
<i>D_o</i> (eV)	81±14	63.3
<i>D</i> ₁ (eV)	37.7±4.3	46.2
10 ⁴ S ₀	0.47±0.17	0.49
10 ⁴ S ₁	6.89±1.77	3.0
$<\Gamma_{v0}>$ (meV)	162±7	120 - 134
$<\Gamma_{v1}$ > (meV)	210±40	148 - 627

Extra Component to Γ_{γ} Distributions?

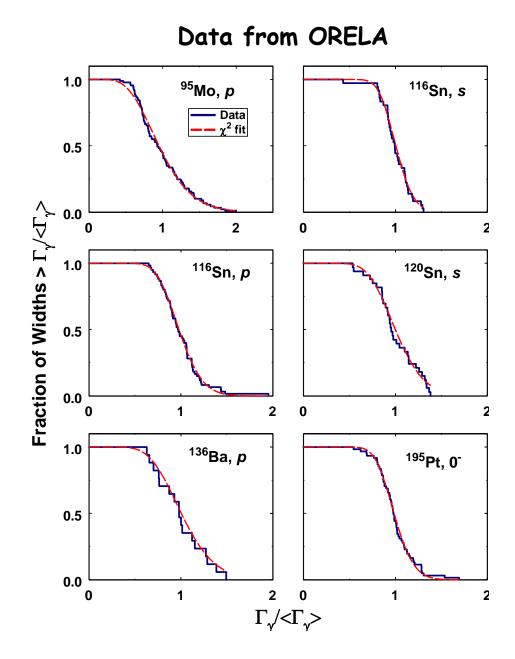
- Simplest model: Γ_{γ} follow a χ^2 distribution with $\nu\sim20-200$.
 - v = number of channels.
- Data for several cases have extra tail at larger Γ_{γ} . Size of tail decreases with A.
- Data for several other cases shows no need for extra tail.

Data from ORELA



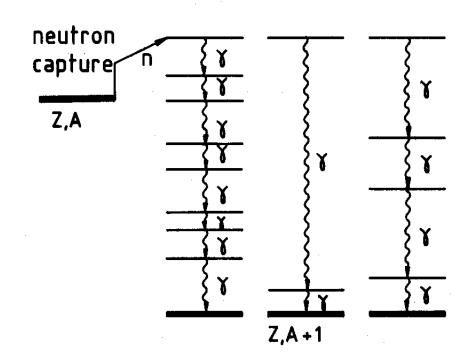
Extra Component to Γ_{γ} Distributions?

- Simplest model: Γ_{γ} follow a χ^2 distribution with $\nu\sim20-200$. ν = number of channels.
- Data for several cases have extra tail at larger Γ_{γ} . Size of tail decreases with A.
- Data for several other cases shows no need for extra tail.



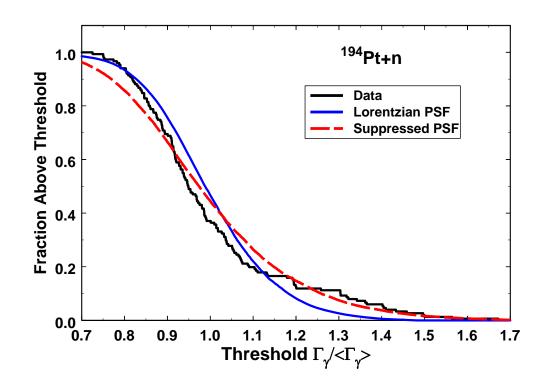
Improving PSF Models Using Neutron Resonance $\Gamma_{\!\scriptscriptstyle \gamma}$ Data

- Compare measured Γ_{γ} distributions to DICEBOX simulations. Vary PSF and LD models to obtain agreement with data.
- Must agree with both distribution shape as well as its average.
- Avoids some confounding uncertainties.



Improving PSF Models Using Neutron Resonance Γ_{γ} Data

- Compare measured Γ_{γ} distributions to DICEBOX simulations.
 - Vary PSF and LD models to obtain agreement with data.
- Must agree with both distribution shape as well as its average.
- Avoids some confounding uncertainties.

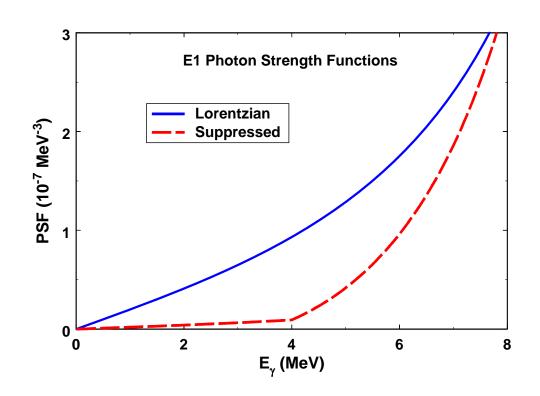


Improving PSF Models Using Neutron Resonance $\Gamma_{\!\scriptscriptstyle \gamma}$ Data

- Compare measured Γ_{γ} distributions to DICEBOX simulations. Vary PSF and LD models to obtain agreement with
- Must agree with both distribution shape as well as its average.

data.

Avoids some confounding uncertainties.



Improving PSF Models Using Neutron Resonance Γ_{γ} Data

- Compare measured Γ_{γ} distributions to DICEBOX simulations.
 - Vary PSF and LD models to obtain agreement with data.
- Must agree with both distribution shape as well as its average.
- Avoids some confounding uncertainties.

A*	$<\Gamma_{\gamma}>$ (meV)		
		PSF	
	Meas.	Lorentzian	Suppressed
¹⁹³ Pt	62±6	108	22
¹⁹⁵ Pt	77±10	330	32
¹⁹⁶ Pt (0 ⁻)	109±16	160	17
¹⁹⁶ Pt (1 ⁻)	128±15	180	27
¹⁹⁷ Pt	85±12	330	47

Conclusions 1

- Assumptions and ingredients of the statistical model (SM) can be tested and improved using $\Gamma_{\rm n}$ and $\Gamma_{\rm y}$ distributions from neutron resonance measurements.
- Γ_{γ} distributions sensitive to photon strength function (and level density) model used in the SM.

Detailed simulations of cascade needed (DICEBOX). Model must reproduce both $\langle \Gamma_{\gamma} \rangle$ and fluctuations. Indication of an extra component in Γ_{γ} distributions for some nuclides.

Conclusions 2

- SM assumption that reduced widths follow a Porter-Thomas distribution (PTD) shown to be incorrect in several cases.
- Best case so far: Γ_n⁰ data for ^{192,194,196}Pt.
 PTD excluded at 99.997% confidence level.
 ν≈0.5 (PTD has ν = 1).
 Might be signature of collective effect (e.g., Y. Alhassid and A. Novoselsky, Phys. Rev. C 45, 1677 (1992)).
- Other cases (e.g., 147 Sm and 232 Th), v changes from 1 to \approx 2. No known model, but perhaps related to doorway effects.
- Is RMT wrong, or are these just special cases (e.g., unusual nuclear structure).

Impact On Applications (e.g., Astrophysics, Nuclear Energy)

- PSF has large impact on calculated cross sections of nuclides beyond measurement.
- v of $\Gamma_{\rm n}{}'$ distribution affects calculated cross sections and important parameters for applications.

Width fluctuation correction depends on v. For $\Gamma_{c'}/\Gamma_{c}=1$, $S_{cc'}=v/(v+1)$.

Effects self shielding correction for reactors, etc.

Future Prospects

Need high quality neutron capture and total cross sections.

New resonance parameters should be used to test theory instead of using theory to correct data.

Need careful R-matrix analysis.

Very important to indicate which J^{π} assignments are firm (independent of theory being tested).

• New techniques for determining J^{π} 's should be extremely valuable (and are not too difficult to implement).