Nonstatistical Effects in Neutron Resonance Parameters P. E. Koehler¹, F.Bečvář², J. A. Harvey¹, M. Krtička², and K. H. Guber³ ¹Physics Division, Oak Ridge National Laboratory ²Charles University, Faculty of Mathematics and Physics ³Nuclear Science and Technology Division, Oak Ridge National Laboratory - Neutron widths - Radiation widths This work was supported by the U.S. DOE Office of Nuclear Physics, by the NNSA Nuclear Criticality Safety Program, and by Czech Research Plans MSM-021620859 and INGO-LA08015. ### Consensus View from Last ~50 Years: ## Reduced Neutron Widths Follow at Porter-Thomas Distribution (PTD) PTD derived from 3 fundamental assumptions: Time-reversal invariance holds ($\gamma_{\lambda c}$ real). Single channel (elastic scattering) for neutrons. #### Widths are "statistical". Compound nucleus model, central-limit theorem \Rightarrow reduced width amplitudes $(\gamma_{\lambda c})$ Gaussian distributed with zero mean \Rightarrow Reduced neutron widths, $\Gamma_n^0 = 2P\gamma_n^2 = \Gamma_n/\sqrt{E_n}$ (s wave), follow a χ^2 distribution with one degree of freedom (v = 1). $$P(x,\nu) = \frac{\nu}{2G(\nu/2)} (\frac{\nu x}{2})^{\nu/2-1} \exp(-\frac{\nu x}{2}) \qquad x = \Gamma_{\rm n}^{\rm 0/<\Gamma_{\rm n}^{\rm 0}>}$$ ### Random Matrix Theory - Predicts both eigenvector (e.g., Γ_n^0) and eigenvalue (e.g. D, Δ_3) distributions. - Gaussian orthogonal ensemble (GOE) should apply to highly excited states of heavy nuclides (i.e., near neutron threshold). - Krieger and Porter showed that "level independence" and "form invariance" could replace "statistical" assumption. # Ideal Data Set for Testing the PTD: Γ_n^0 values for all s-wave resonances of a given J^{π} ### **Problems** - Purity. i.e., no p-wave resonances in s-wave set. - Completeness. No missing resonances. e.g., due to finite detection threshold. - Limited number of resonances. Data spread out over broad distribution. Always fighting limited statistical precision. ### Effect of Missing Small Widths Missing small widths changes shape of the distribution. $$\Gamma_n^0/<\Gamma_n^0>=T*E/E_{max}$$. If it's assumed that all widths were observed, obtain larger v from maximum-likelihood (ML) analysis. $$v_{true} = 1.0$$ $$v_{ML} = 1.9$$ Experiment threshold must be accounted for in comparison to theory. ### Effect of Missing Small Widths Missing small widths changes shape of the distribution. $$\Gamma_n^0/<\Gamma_n^0>=T*E/E_{max}$$. If it's assumed that all widths were observed, obtain larger v from maximum-likelihood (ML) analysis. $$v_{true}$$ = 1.0 $$v_{ML} = 1.9$$ Experiment threshold must be accounted for in comparison to theory. ### Effect of p-wave Contamination - Added p-wave widths smaller than s-wave ones. Simulation for ²³²Th (assuming GOE). - $\Gamma^0_{\mathrm{n,s}}$ ~ constant $\Gamma^0_{\mathrm{n,p}}$ ~ E - Assuming all widths above NDE threshold are s wave results in smaller v from ML analysis. $$v_{\text{true}} = 1.0$$ $$v_{ML} = 0.6$$ Comparison to theory must assess purity of the data. ### Effect of p-wave Contamination - Added p-wave widths smaller than s-wave ones. Simulation for ²³²Th (assuming GOE). Γ⁰_{n,s} ~ constant - Assuming all widths above NDE threshold are s wave results in smaller v from ML analysis. $$v_{\text{true}} = 1.0$$ $$v_{MI} = 0.6$$ Comparison to theory must assess purity of the data. ### Typical Run Parameters Rep. rate = 525 Hz Δt = 8 ns P = 8 kW E_n=10 eV - 500 keV (n,γ) with C_6D_6 on F.P. 6 and 7 @ 40 m σ_{t} with ⁶Li-glass on F.P. 1 @ 80 m (n,α) with CIC on F.P. 11 @ 10 m $Depth \sim g\Gamma_n$ Asymetric shape => s-wave Only in rare cases can both Γ_{γ} and $g\Gamma_{n}$ be determined from transmission alone $$A_{\gamma} = g\Gamma_{n}\Gamma_{\gamma}/(\Gamma_{n}+\Gamma_{\gamma})$$ Only in rare cases (e.g., $\Gamma_{\gamma} + \Gamma_{n} > \Delta E$) can both Γ_{γ} and $g\Gamma_{n}$ be determined from (n,γ) alone. ### Resonance Parameters from R-Matrix Analysis To test the PTD, need E and Γ_n for all resonances of a given J^{π} . #### Obtainable from Total Cross-Section Data | Target Spin | Relative size of $g\Gamma_{n}$ | | | | |-------------|--------------------------------|----------------------|---|--------------------------------------| | | Small | Intermediate | Large | Very Large | | 0 | Nothing | E, gΓ _n | E, g $\Gamma_{ m n}$, (g), (Γ_{γ}) ,(J) $^{\pi}$ | E, g Γ_n , (g), (J) π | | >0 | Nothing | E, g $\Gamma_{ m n}$ | E, g Γ_n , (Γ_γ) , π | E, g $\Gamma_{\rm n}$, (J) $^{\pi}$ | #### Obtainable from Capture Cross-Section Data | Target Spin | Relative size of $g\Gamma_{n}$ | | | | |-------------|--------------------------------|-------------------|-------------------|--| | | Small | Intermediate | Large | Very Large | | 0 | E, g $\Gamma_{ m n}$ | Ε, Α _γ | Ε, Α _γ | E, g $\Gamma_{\rm n}$, (g), (Γ_{γ}) , $(J)^{\pi}$ | | >0 | E, g $\Gamma_{ m n}$ | Ε, Α, | Ε, Α _γ | E, g Γ_n , (Γ_y) , π | Typical case: Can obtain Γ_n^0 only for subset of s-wave resonances, only if have both capture and total cross-section data, and only for zero-spin targets. ### Testing the PTD Using 192,194Pt+n ORELA Data - 192,194,196 Pt+n ORELA data better in many ways. More resonances. Better sensitivity (~10x). Better separation of s and p waves ($S_0 \approx 10 S_1$). Better J^{π} assignments. - analysis. Used energy-dependent threshold. Maximizes statistical significance while eliminating p-wave contamination. Analysis threshold T₀ much higher than experimental one. Improved Maximum-Likelihood ## Testing the PTD using ^{192,194,196}Pt+n ORELA Data (Phys. Rev. Lett. 105, 072502 (2010)) Maximum-Likelihood (ML) analysis. $$^{192}Pt: v = 0.57\pm0.16$$ $^{194}Pt: v = 0.47\pm0.19$ $^{196}Pt: v = 0.60\pm0.28$ Additional calculations to determine confidence level (CL) for rejecting PTD. Monte Carlo simulation to determine CL as function of $\langle \Gamma_n^0 \rangle$. Two new statistics to limit range of $\langle \Gamma_n^0 \rangle$. Auxiliary ML analysis to verify that p-wave contamination is negligibly small (0.069 for ¹⁹²Pt, 0.0047% for ¹⁹⁴Pt). $$z(\nu, \mathrm{E}[\Gamma_{\lambda_{\mathrm{n}}}^{0}]) = 2^{\frac{1}{2}} \left[\ln L_{\mathrm{max}} - \ln L\left(\nu, \mathrm{E}[\Gamma_{\lambda_{\mathrm{n}}}^{0}]\right) \right]^{\frac{1}{2}}$$ ## Testing the PTD using ^{192,194,196}Pt+n ORELA Data (Phys. Rev. Lett. 105, 072502 (2010)) Maximum-Likelihood (ML) analysis. 192Pt: v = 0.57±0.16 194Pt: v = 0.47±0.19 196Pt: v = 0.60±0.28 Additional calculations to determine confidence level (CL) for rejecting PTD. Monte Carlo simulation to determine CL as function of $\langle \Gamma_n^0 \rangle$. Two new statistics to limit range of $\langle \Gamma_n^0 \rangle$. Auxiliary ML analysis to verify that p-wave contamination is negligibly small (0.069 for 192 Pt, 0.0047% for 194 Pt). ## Testing the PTD using ^{192,194,196}Pt+n ORELA Data (Phys. Rev. Lett. 105, 072502 (2010)) Maximum-Likelihood (ML) analysis. ¹⁹²Pt: v = 0.57±0.16 ¹⁹⁴Pt: v = 0.47±0.19 ¹⁹⁶Pt: v = 0.60±0.28 Additional calculations to determine confidence level (CL) for rejecting PTD. Monte Carlo simulation to determine CL as function of $\langle \Gamma_n^0 \rangle$. Two new statistics to limit range of $\langle \Gamma_n^0 \rangle$. Auxiliary ML analysis to verify that p-wave contamination is negligibly small (0.069 for ¹⁹²Pt. 0.0047% for ¹⁹⁴Pt). PTD rejected at 99.997% confidence level ### Possible explanations - TRIV and unknown (e.g. inelastic) extra neutron channel ruled out. Lead to v>1, but v<1 observed. - Widths not statistical. But typical nonstatistical signatures absent in data (e.g., steps in $\Sigma\Gamma_n^0$ vs. E_n). - Might be signature of collective effect (e.g., Y. Alhassid and A. Novoselsky, Phys. Rev. C 45, 1677 (1992)). Model calculations for low excitations yielded transition strength distributions with v<1 as system became more collective. But why would highly excited states in 193,195 Pt be collective? ## Form invariance or level independence assumptions violated? - Level independence and form invariance assumptions shown to yield same results (and more) as "statistical" assumption. - But, what does violating these assumptions mean and how could they cause v=0.5? ## Γ_{γ} Distributions - Partial widths $\Gamma_{\gamma i}$ follow PTD. - Obtain $\Gamma_{\gamma} = \sum \Gamma_{\gamma i}$ from R-matrix analyses. - Assuming averages the same, Γ_{γ} follows χ^2 dist. with ν equal to number of independent transitions. Γ_{γ} dists. very narrow. - Expect: Higher J ⇒ larger M ⇒ more coincidences and softer singles spectrum. - First demonstrated by Coceva et al., Nucl. Phys. A117, 586 (1968). - Implemented with improvements at ORELA. New C₆D₆ CINDORELA apparatus. Gates optimized during replay. Multiple gates on singles and coincidences. Parities better separated using overall singles pulse-height shapes. - Expect: Higher J ⇒ larger M ⇒ more coincidences and softer singles spectrum. - First demonstrated by Coceva et al., Nucl. Phys. A117, 586 (1968). - Implemented with improvements at ORELA. New C₆D₆ CINDORELA apparatus. Gates optimized during replay. Multiple gates on singles and coincidences. Parities better separated using overall singles pulse-height shapes. - Expect: Higher J ⇒ larger M ⇒ more coincidences and softer singles spectrum. - First demonstrated by Coceva et al., Nucl. Phys. A117, 586 (1968). - Implemented with improvements at ORELA. New C₆D₆ CINDORELA apparatus. Gates optimized during replay. Multiple gates on singles and coincidences. Parities better separated using overall singles pulse-height shapes. - Expect: Higher J ⇒ larger M ⇒ more coincidences and softer singles spectrum. - First demonstrated by Coceva et al., Nucl. Phys. A117, 586 (1968). - Implemented with improvements at ORELA. New C₆D₆ CINDORELA apparatus. Gates optimized during repl Gates optimized during replay. Multiple gates on singles and coincidences. Parities better separated using overall singles pulse-height shapes. - Expect: Higher J ⇒ larger M ⇒ more coincidences and softer singles spectrum. - First demonstrated by Coceva et al., Nucl. Phys. A117, 586 (1968). - Implemented with improvements at ORELA. New C₆D₆ CINDORELA apparatus. Gates optimized during replay. Multiple gates on singles and coincidences. Parities better separated using overall singles pulse-height shapes. - Expect: Higher J ⇒ larger M ⇒ more coincidences and softer singles spectrum. - First demonstrated by Coceva et al., Nucl. Phys. A117, 586 (1968). - Implemented with improvements at ORELA. New C₆D₆ CINDORELA apparatus. Gates optimized during replay. Multiple gates on singles and coincidences. Parities better separated using overall singles pulse-height shapes. ### CINDORELA Results • Firm J^{π} 's for 220 of 314 resonances observed for En<10 keV. Previously: 32 of 107. 95 Mo very difficult test case: Peak of p- and minimum of s-wave neutron strength functions, so six J^{π} 's possible. • Separate Γ_{γ} and Γ_{n} distributions for 1-, 2-, 2+, 3-, 3+, and 4- resonances. Best Γ_{γ} data ever obtained. ## 95Mo Average Resonance Parameters from ORELA | J^π | <i>D_{I J}</i> (eV) | 10 ⁴ S _{IJ} | $<\Gamma_{\text{vIJ}}>$ (meV) | |-----------------------|-----------------------------|---------------------------------|-------------------------------| | 1- | 627 | 0.17 | 556 | | 2- | 153 | 0.98 | 289 | | 2+ | 134 | 0.17 | 186 | | 3- | 148 | 1.05 | 344 | | 3 ⁺ | 120 | 0.32 | 178 | | 4- | 148 | 0.80 | 252 | | | Mughabghab | ORELA | |--------------------------------|------------|-----------| | <i>D_o</i> (eV) | 81±14 | 63.3 | | <i>D</i> ₁ (eV) | 37.7±4.3 | 46.2 | | 10 ⁴ S ₀ | 0.47±0.17 | 0.49 | | 10 ⁴ S ₁ | 6.89±1.77 | 3.0 | | $<\Gamma_{v0}>$ (meV) | 162±7 | 120 - 134 | | $<\Gamma_{v1}$ > (meV) | 210±40 | 148 - 627 | # Extra Component to Γ_{γ} Distributions? - Simplest model: Γ_{γ} follow a χ^2 distribution with $\nu\sim20-200$. - v = number of channels. - Data for several cases have extra tail at larger Γ_{γ} . Size of tail decreases with A. - Data for several other cases shows no need for extra tail. #### Data from ORELA # Extra Component to Γ_{γ} Distributions? - Simplest model: Γ_{γ} follow a χ^2 distribution with $\nu\sim20-200$. ν = number of channels. - Data for several cases have extra tail at larger Γ_{γ} . Size of tail decreases with A. - Data for several other cases shows no need for extra tail. ## Improving PSF Models Using Neutron Resonance $\Gamma_{\!\scriptscriptstyle \gamma}$ Data - Compare measured Γ_{γ} distributions to DICEBOX simulations. Vary PSF and LD models to obtain agreement with data. - Must agree with both distribution shape as well as its average. - Avoids some confounding uncertainties. ## Improving PSF Models Using Neutron Resonance Γ_{γ} Data - Compare measured Γ_{γ} distributions to DICEBOX simulations. - Vary PSF and LD models to obtain agreement with data. - Must agree with both distribution shape as well as its average. - Avoids some confounding uncertainties. ## Improving PSF Models Using Neutron Resonance $\Gamma_{\!\scriptscriptstyle \gamma}$ Data - Compare measured Γ_{γ} distributions to DICEBOX simulations. Vary PSF and LD models to obtain agreement with - Must agree with both distribution shape as well as its average. data. Avoids some confounding uncertainties. ### Improving PSF Models Using Neutron Resonance Γ_{γ} Data - Compare measured Γ_{γ} distributions to DICEBOX simulations. - Vary PSF and LD models to obtain agreement with data. - Must agree with both distribution shape as well as its average. - Avoids some confounding uncertainties. | A* | $<\Gamma_{\gamma}>$ (meV) | | | |-------------------------------------|---------------------------|------------|------------| | | | PSF | | | | Meas. | Lorentzian | Suppressed | | ¹⁹³ Pt | 62±6 | 108 | 22 | | ¹⁹⁵ Pt | 77±10 | 330 | 32 | | ¹⁹⁶ Pt (0 ⁻) | 109±16 | 160 | 17 | | ¹⁹⁶ Pt (1 ⁻) | 128±15 | 180 | 27 | | ¹⁹⁷ Pt | 85±12 | 330 | 47 | ### Conclusions 1 - Assumptions and ingredients of the statistical model (SM) can be tested and improved using $\Gamma_{\rm n}$ and $\Gamma_{\rm y}$ distributions from neutron resonance measurements. - Γ_{γ} distributions sensitive to photon strength function (and level density) model used in the SM. Detailed simulations of cascade needed (DICEBOX). Model must reproduce both $\langle \Gamma_{\gamma} \rangle$ and fluctuations. Indication of an extra component in Γ_{γ} distributions for some nuclides. ### Conclusions 2 - SM assumption that reduced widths follow a Porter-Thomas distribution (PTD) shown to be incorrect in several cases. - Best case so far: Γ_n⁰ data for ^{192,194,196}Pt. PTD excluded at 99.997% confidence level. ν≈0.5 (PTD has ν = 1). Might be signature of collective effect (e.g., Y. Alhassid and A. Novoselsky, Phys. Rev. C 45, 1677 (1992)). - Other cases (e.g., 147 Sm and 232 Th), v changes from 1 to \approx 2. No known model, but perhaps related to doorway effects. - Is RMT wrong, or are these just special cases (e.g., unusual nuclear structure). # Impact On Applications (e.g., Astrophysics, Nuclear Energy) - PSF has large impact on calculated cross sections of nuclides beyond measurement. - v of $\Gamma_{\rm n}{}'$ distribution affects calculated cross sections and important parameters for applications. Width fluctuation correction depends on v. For $\Gamma_{c'}/\Gamma_{c}=1$, $S_{cc'}=v/(v+1)$. Effects self shielding correction for reactors, etc. ## **Future Prospects** Need high quality neutron capture and total cross sections. New resonance parameters should be used to test theory instead of using theory to correct data. Need careful R-matrix analysis. Very important to indicate which J^{π} assignments are firm (independent of theory being tested). • New techniques for determining J^{π} 's should be extremely valuable (and are not too difficult to implement).