Evidence for the Scissors Mode in ¹⁶⁰Tb from the Two-Step Gamma Cascades measurement

J. Kroll¹, M. Krtička¹, F. Bečvář¹ and I. Tomandl²

¹ Faculty of Mathematics and Physics, Charles University, Prague

² Nuclear Physics Institute of the Czech Academy of Science, Řež

Outline

Experimental setup for the TSCs measurement

Simulations of gamma decay

Main results

Conclusions

Experimental setup for the TSCs measurement

Data processing

From information about $E_{\gamma 1}$ and $E_{\gamma 2}$ and detection time difference, one can retrieve virtually background-free TSC spectra.

Experimental setup for the TSCs measurement (3)

 $S_n = 6.375 \text{ MeV}$

 $E_{\gamma 1}$

Simulations of gamma decay – DICEBOX (1)

- 1. Below a **critical energy** E_{crit} the energies E, spins J, parities π and the decay properties of all levels are taken from known data
- 2. Above the critical energy E_{crit} the energies E, spins J and parities π of levels are obtained by random discretization of an *a priory* known level density

$$\rho(E,J,\pi)$$

3. Partial radiation widths $\Gamma_{i\gamma f}$ for transitions between initial (i) and final (f) levels are generated according to the formula:

$$\Gamma_{i\gamma f} = \sum_{XJ} y_{ifXJ}^2 (E_i - E_f)^{2J+1} \frac{f^{(XJ)}(E_i - E_f)}{\rho(E_i, J_i, \pi_i)}$$

4. Partial radiation widths $\Gamma_{i\gamma f}$ for different initial and/or final levels are statistically independent.

Simulations of gamma decay – DICEBOX (2)

Simulations of gamma decay – DICEBOX (3)

- 1. Below a **critical energy** E_{crit} the energies E, spins J, parities π and the decay properties of all levels are taken from known data
- 2. Above the critical energy E_{crit} the energies E, spins J and parities π of levels are obtained by random discretization of an *a priory* known level density

$$\rho(E,J,\pi)$$

3. Partial radiation widths $\Gamma_{i\gamma f}$ for transitions between initial (i) and final (f) levels are generated according to the formula:

$$\Gamma_{i\gamma f} = \sum_{XJ} y_{ifXJ}^2 E_i - E_f)^{2J+1} \frac{f^{(XJ)}(E_i - E_f)}{\rho(E_i, J_i, \pi_i)}$$

4. Partial radiation widths $\Gamma_{i\gamma f}$ for different initial and/or final levels are statistically independent.

Simulations of gamma decay – DICEBOX (4)

Simulations of gamma decay – LD (1)

- 1. Below a **critical energy** E_{crit} the energies E, spins J, parities π and the decay properties of all levels are taken from known data
- 2. Above the critical energy E_{crit} the energies E, spins J and parities π of levels are obtained by random discretization of an *a priory* known level density

3. Partial radiation widths $\Gamma_{i\gamma f}$ for transitions between initial (i) and final (f) levels are generated according to the formula:

$$\Gamma_{i\gamma f} = \sum_{XJ} \underbrace{y_{ifXJ}^2}_{Y_{ifXJ}} E_i - E_f)^{2J+1} \frac{f^{(XJ)}(E_i - E_f)}{\rho(E_i, J_i, \pi_i)}$$

4. Partial radiation widths $\Gamma_{i\gamma f}$ for different initial and/or final levels are statistically independent.

Simulations of gamma decay – LD (2)

- (1) T. von Egidy, H.H. Schmidt and A.N. Behkami, Nucl. Phys., A481 (1988) 189
- (2) T. von Egidy and D. Bucurescu, Phys. Rev. C72, (2005) 044311

Simulations of gamma decay – PSFs (1)

- 1. Below a **critical energy** E_{crit} the energies E, spins J, parities π and the decay properties of all levels are taken from known data
- 2. Above the critical energy E_{crit} the energies E, spins J and parities π of levels are obtained by random discretization of an *a priory* known level density

3. Partial radiation widths $\Gamma_{i\gamma f}$ for transitions between initial (i) and final (f) levels are generated according to the formula:

$$\Gamma_{i\gamma f} = \sum_{XJ} y_{ifXJ}^2 E_i - E_f)^{2J+1} \underbrace{f^{(XJ)}(E_i - E_f)}_{\rho(E_i, J_i, \pi_i)}$$

4. Partial radiation widths $\Gamma_{i\gamma f}$ for different initial and/or final levels are statistically independent.

Simulations of gamma decay – PSFs (2)

The energy of the SM is 2.6, 3.0 and 3.6 MeV, damping width is 0.6 MeV and the total $\Sigma B(M1)\uparrow \approx 5 \,\mu_N^2$.

Results (1)

Experimental binned TSC spectra.

The bin width is 100 keV.

Individual experimental TSC spectra display distinct resonance-like structures at 2.6 MeV and 3.6 MeV.

Results (2)

No resonance structure in M1.

Results (3)

SM used for *M*1 PSF on the energy $E_{\rm SM}$ = 3.0 MeV, $\Gamma_{\rm SM}$ = 0.6 MeV and $\sigma_{\rm SM}$ = 1.0 mb.

The double-humped structure still not reproduced!

Results (4)

SM in M1 PSF: E_{SM} = 2.6 MeV, Γ_{SM} = 0.6 MeV and σ_{SM} = 1.0 MeV

SM in M1 PSF: $E_{SM} = 3.6$ MeV, $\Gamma_{SM} = 0.6$ MeV and $\sigma_{SM} = 1.0$ MeV

Results (5)

Lorentz-shape resonance structure with $E_{\rm R}$ = 2.6 MeV, $\Gamma_{\rm R}$ = 0.6 MeV and $\sigma_{\rm SM}$ = 1.0 mb is postulated in *E*1 PSF. For *M*1 it is supposed non-resonance shape.

The observed structures cannot be reproduced by the presence of local maximum of *E*1 PSF neither at 2.6 nor at 3.6 MeV!

Results (6)

Reaction	(γ, γ΄)	(³ He, x γ)	(³ He, x γ)	(n, γγ)	(n, γγ)
Nuclei	e-e ¹	^{160,161,162} Dy ²	^{163,164} Dy ³	¹⁶³ Dy ⁴	¹⁶⁰ Tb
E _{SM} (MeV)	~3.0	2.6 – 2.8	~2.8	~3.0	2.6 - 2.8 $(3.6 - 3.8)$
Γ _{SM} (MeV)		1.2 – 1.6	0.8 - 0.9	0.6 (0.5 – 0.7)	0.4 – 0.9
σ _{SM} (mb)		0.3 - 0.4	0.5 – 0.7	0.9 (0.8 – 1.0)	0.4 – 0.9
$\Sigma B(M1) (\mu_N^2)$	~3	~7	5 - 8	~6	~6 (3 – 9)

¹ Kneissl, Pitz and Zilges, Prog. Part. Nucl. Phys. 37 (1996) 349

² Guttormsen et al. Phys. Rev. C 68, 064306 (2003)

³ Nyhus et al., Phys. Rev. C 81, 024325 (2010)

⁴ Krticka, et al., Phys. Rev. Lett. 92, 172501 (2004)

Conclusions

- ➤ Double-humped structure in experimental TSC spectra clearly indicates that the *M*1 SM plays an important role in gamma deexcitation of ¹⁶⁰Tb.
- ➤ The E1 origin of the resonance-like structures in the TSC spectra is unambiguously excluded.
- The energy of the SM is very likely $E_{\rm SM} = 2.6 \pm 0.1$ MeV but the value $E_{\rm SM} = 3.6 \pm 0.1$ MeV cannot be completely excluded. The damping width of the SM has to be $\Gamma_{\rm SM} = 0.5 0.9$ MeV. The best agreement is obtained with the strength of the mode $\Sigma B(M1) \uparrow = 6 \pm 1 \, \mu_{\rm N}^2$.

Thank you for your attention!