Analysis of 77 Se(n, γ) Spectra With Emphasis on Cascade Decays

Georg Schramm

Forschungzentrum Dresden-Rossendorf (FZD) Institute of Radiation Physics (FWK)

31/08/2010

1 Motivation and Introduction

2 The $^{77}\mathrm{Se}(\mathrm{n},\gamma)$ Experiment

3 Data Analysis - Simulation of Gamma Cascades

Motivation and Introduction

Why photon strength functions?

• photon strength functions and level densities are main ingredients for statistical treatment of photon nuclei interaction

Experiments for deducing strength functions

- in the past discrepancies between gamma strength deduced from neutron capture and photon scattering
- twin experiment $^{77}\mathrm{Se}(\mathrm{n},\gamma)$ and $^{78}\mathrm{Se}(\gamma,\gamma')$ to study photon strength function in the compound nucleus $^{78}\mathrm{Se}$
- s-wave neutron capture on ground state of 77 Se $(\frac{1}{2}^-)$ and photo excitation of ground state of 78 Se (0^+) lead both to excited 1^- states in 78 Se
- this presentation is about the analysis of the $^{77}\mathrm{Se}(\mathrm{n},\gamma)$ data

Motivation and Introduction

Why photon strength functions?

• photon strength functions and level densities are main ingredients for statistical treatment of photon nuclei interaction

Experiments for deducing strength functions

- in the past discrepancies between gamma strength deduced from neutron capture and photon scattering
- twin experiment $^{77}\mathrm{Se}(\mathrm{n},\gamma)$ and $^{78}\mathrm{Se}(\gamma,\gamma')$ to study photon strength function in the compound nucleus $^{78}\mathrm{Se}$
- s-wave neutron capture on ground state of 77 Se $(\frac{1}{2}^-)$ and photo excitation of ground state of 78 Se (0^+) lead both to excited 1^- states in 78 Se
- this presentation is about the analysis of the $^{77}\mathrm{Se}(\mathrm{n},\gamma)$ data

(n,γ) Experiment at the Budapest Research Reactor

- research reactor $P = 10 \,\mathrm{MW}$
- $\Phi_{\text{max}} = 2.2 \cdot 10^{14} \, \text{cm}^{-2} \text{s}^{-1}$
- neutron beam is guided to cold neutron source (CNS)
- beam size: $2 \, \text{cm} \times 2 \, \text{cm}$
- at the target: $\Phi = 5 \cdot 10^7 \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$ in the cold range
- experiment performed in October 2009 with Anti-Compton shielded HPGe detector of FZD

Figure: Budapest Research Reaktor http://www.iki.kfki.hu/nuclear/images/BKR.jpg

Response and Efficiency Correction

- detector efficiency and response correction is needed to analyse experimental spectra
- response of the BGO shielded HPGe detector was simulated with GEANT4 by Ralph Massarczyk
- efficiency correction done by Evert Birgersson

Gamma Cascades following Neutron Capture

• instead of decaying directly to the ground state, the excited compound nucleus deexcites mostly in a cascade, emitting more than one γ

Why is a cascade simulation necessary?

- for deducing the neutron capture cross section from capture experiments, the average multiplicity of γ 's is needed
- simulation can provide insight into the influence of gamma strength function and level density on the γ continuum

How to simulate a casacade?

• Monte Carlo simulation using the partial radiative widths Γ_{if} of an excited level i

Problem

- up to $S_n \approx 300000$ nuclear levels in ⁷⁸Se
- only very few levels and Γ_{if} are known
- \Rightarrow statistical treatment using strength function and level density needed

Why is a cascade simulation necessary?

- for deducing the neutron capture cross section from capture experiments, the average multiplicity of γ 's is needed
- simulation can provide insight into the influence of gamma strength function and level density on the γ continuum

How to simulate a casacade?

• Monte Carlo simulation using the partial radiative widths Γ_{if} of an excited level i

Problem

- up to $S_n \approx 300000$ nuclear levels in ⁷⁸Se
- only very few levels and Γ_{if} are known
- \Rightarrow statistical treatment using strength function and level density needed

Why is a cascade simulation necessary?

- for deducing the neutron capture cross section from capture experiments, the average multiplicity of γ 's is needed
- simulation can provide insight into the influence of gamma strength function and level density on the γ continuum

How to simulate a casacade?

• Monte Carlo simulation using the partial radiative widths Γ_{if} of an excited level i

Problem:

- up to $S_n \approx 300000$ nuclear levels in ⁷⁸Se
- only very few levels and Γ_{if} are known
- ⇒ statistical treatment using strength function and level density needed

Why is a cascade simulation necessary?

- for deducing the neutron capture cross section from capture experiments, the average multiplicity of γ 's is needed
- simulation can provide insight into the influence of gamma strength function and level density on the γ continuum

How to simulate a casacade?

• Monte Carlo simulation using the partial radiative widths Γ_{if} of an excited level i

Problem:

- up to $S_n \approx 300000$ nuclear levels in ⁷⁸Se
- only very few levels and Γ_{if} are known
- \Rightarrow statistical treatment using strength function and level density needed

Statistical Treatment of γ Decay

average spectral distribution per unit γ energy of primary γ 's of type XL from an excited level λ with spin JBartholomew 1973 [Bartholomew et al., 1973]:

$$\nu_{i\lambda XL}^{J}(E_{\gamma}) = E_{\gamma}^{2L+1} \frac{f_{XL}(E_{\gamma})}{\overline{\Gamma}_{\text{tot},\lambda}} \frac{\sum_{I=|J-L|}^{J+L} \varrho(E_{\lambda} - E_{\gamma}, I)}{\varrho(E_{\lambda}, J)}$$
(1)

f_{XL}	gamma strength function for XL transition
$\varrho(E,J)$	density of levels with spin J at energy E
$\Gamma_{{ m tot},\lambda}$	total radiative width

Table: Symbols for average spectral distribution of primary γ 's

Scheme of the Simulation

- algorithm similar to DICEBOX of F.Becvar [Becvar, 1998]
- treat nucleus in energy bins
- calculate level density for all J in all bins
- use information of known discrete levels in lower bins up to $E_{\rm crit}$
- calculate transition probabilities P_{if} for an excited bin i for all allowed transition to final bins f
- use E1, M1, E2 transitions, neglect levels with spins J > 4

initial bin

Ingredients for Cascade Simulation

level density:

Constant Temperature Model $\varrho(E, J) = f(J) \cdot \frac{1}{T} e^{(E-E_0)/T}$ $f(J) = e^{J^2/(2\sigma^2)} - e^{(J+1)^2/(2\sigma^2)}$ $T = 850 \text{ keV}, E_0 = -140 \text{ keV}$

E1 strength:

Junghans et. al model three Lorentzians [Junghans et al., 2008] $\beta = 0.271, \gamma = 27.1^{\circ}$

M1 strength:

three Gaussians (deduced from K.Heyde data)

Simulated $^{77}\mathrm{Se}(\mathrm{n},\gamma)$ Spectrum

Simulated $^{77}\mathrm{Se}(\mathrm{n},\gamma)$ Spectrum II

Simulated $^{77}Se(n,\gamma)$ Spectrum III

(n,γ) Cross Section

• knowing the total number of γ 's in the spectrum and the γ multiplicity ($m=3.44\pm0.5$), the $\sigma_{\rm n\gamma}$ can be calculated

(n,γ) cross section

$$\sigma_{\rm n\gamma} = 43.8 \, \rm b$$

- uncertainty of $\sigma_{n\gamma}$ due to the uncertainty of m is approximately $15\%~(6.4\,\mathrm{b})$
- Atlas of Neutron Resonaces [Mughabghab, 2006]: $\sigma_{n\gamma} = 41.5 \pm 4.2 \, b$
- \Rightarrow validation of cascade simulation

(n,γ) Cross Section

• knowing the total number of γ 's in the spectrum and the γ multiplicity ($m=3.44\pm0.5$), the $\sigma_{\rm n\gamma}$ can be calculated

(n,γ) cross section

$$\sigma_{\rm n\gamma} = 43.8 \,\rm b$$

- uncertainty of $\sigma_{n\gamma}$ due to the uncertainty of m is approximately 15% (6.4b)
- Atlas of Neutron Resonaces [Mughabghab, 2006]: $\sigma_{n\gamma} = 41.5 \pm 4.2 \, b$
- $\bullet \Rightarrow$ validation of cascade simulation

Summary and Outlook

- With the help of a statistical γ cascade simulation using binned quantities, the $^{77}Se(n,\gamma)$ experiment was analysed.
- The comparison of simulated and experimental γ continuum gives insight about the level density (T).
- Using the simulated average multiplicity, the (n,γ) cross section could be calculated.

- The simulation will be used to correct inelastic photon scattering experiments (γ, γ') to analyse the second part of the twin experiment.
- From 78 Se (γ, γ') a dipole strength function will be extracted which can be used to recheck the (n,γ) analysis.

Thanks to all Collaborators

- FZD, Institute of Radiation Physics: D.Bemmerer, R.Beyer, E.Birgersson, F.Dönau, E.Grosse, R.Hannaske, A.Hartmann, A.R.Junghans, M.Kempe, T.Kögler, A.Matic, K.-D.Schilling, R.Schwengner, A. Wagner, The ELBE Crew
- IKI Budapest, Department of Nuclear Research: T.Belgya, Z.Kis, L.Szentmiklósi, K.Takács, J.Weil

Bibliography

Bartholomew, G. et al. (1973). Gamma ray strength functions.

 $Advances\ in\ Nuclear\ Physics,\ 7.$

Becvar, F. (1998).

Simulation of cascades in complex nuclei with emphasis on assessment of uncertainties of cascade-related quantities.

Nuclear Instruments and Methods in Physics, A 417.

Junghans, A. et al. (2008).

Photon data shed new light upon the GDR spreading width in heavy nuclei.

Physics Letters B, 670.

Mughabghab, S. F. (2006).

Atlas of neutron resonances, volume 5.

Elsevier.