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bound-electron laser
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Sinusoidal electron trajectory in undulator

small longitudinal oscillation
leads to odd higher harmonics
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Co-moving coordinate system

Computation by Shintake

Text

into laboratory system

In each time steps, new wavefront is generated from the 
particle, and propagates outward by the following 
equations: 
 

  
       (5) 
 

 
where P is the coordinate of the grid point. 
  Followings are snapshots from the simulator. 

3.2  Static Field 
One important example is the static field of a rest 

particle. Even when the particle rests, wavefronts are 
generated from the particle, and propagate outward. Since 
time derivation of E is zero, thus the magnetic field is zero, 
as a result, the pointing vector becomes zero. Therefore, 
there is no energy loss, and only the information is 
transferred. 

3.3  Synchrotron Radiation 
When a charge particle runs along a circular trajectory, 

it generates spiral shape electric field as shown in Fig. 4. 
The field lines are condensed in bright spiral zone, where 
the electric field is very high. Increasing particle velocity, 
the bright zone becomes narrower, which corresponds to 
short impulse field, which has wide frequency spectrum. 
This is the synchrotron radiation.  

3.4  Undulator Radiation 
When a charged particle runs through an undulator, it is 

periodically deflected due to series of transverse magnetic 
field. In each bending, particle generates radiation in the 
direction of motion. Since the particle velocity is slightly 
lower than the speed of the light, wavelength of the 
accumulated periodic radiation becomes very short due to 
Doppler effects. This is clearly shown in Fig. 5. 

4 DISCUSSION 
The extension to 3D is straight forward. Problem will 

be extension to multi-particle problem. However, as seen 
in the snapshot of the undulator radiation, at the location 
where the radiation power is, we have much data point 
(node point), which provide enough spatial resolution. 
This is a kind of auto-zooming function. This will be 
suitable to particle tracking of short bunch and high 
frequency field problem, like CSR. 

5 REFERENCES 
[1] R. Y. TSIEN, “Picture of Dynamic Electric Fields”, 

AJP Vol. 40, January 1972 
[2] T. Shintake, “Simulation of field lines generated by a 

moving charge”, private note 1984 March 19 at KEK, 
not published. 

Fig. 5   Undulator radiation, v = 0.9c, K = 1. Snapshot 
from the Radiation 2D. 

 
Fig. 3 Static field. Snapshot from the 
Radiation 2D. 

 
Fig. 4   Synchrotron radiation at v = 0.9c. Snapshot 
from the Radiation 2D. 
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Radiation power in laboratory system is the same:

P = −dW

dt
= −dW

∗

dt∗
= P

∗ ⇒ P =
e
2
c γ

2
K

2
k

2
u

12πε0(1 + K2/2)2

Line shape of undulator radiation
Electron passing an undulator with Nu periods produces wave train with Nu oscillations.
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Higher harmonics of undulator radiation
Complicated issue and not the topic of my FEL lecture

For details see J.A. Clarke, The Science and Technology of Undulators and Wigglers

Model calculation for a detector at θ = 0 with very small aperture

small undulator parameter
only first harmonic

large undulator parameter
harmonics 1, 3, 5, 7...

 radiation at angles θ > 0 has also even harmonics 
(see Clarke)
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Theory of the Low-Gain FEL

Energy transfer from electron to light wave

Differential equations of the low-gain FEL

The pendulum equations

FEL gain, Madey theorem

Higher harmonics
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Question: can there be a continuous energy transfer from electron beam to light wave?
Electron energy W = γmec

2 changes in time dt by

dW = v · F dt = −evx(t)Ex(t) dt

Average electron speed in z direction v̄z = c

�
1− 1

2γ2 (1 + K
2
/2)

�
< c

Electron and light travel times for half period of undulator:

tel = λu/(2v̄z) , tlight = λu/(2c)

Continuous energy transfer happens if ω�(tel − tlight) = π

z

vxvx

vxvx
Ex

Ex

electron trajectoryelectron trajectory

light wave
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slippage of light wave
1 optical wavelength
 per undulator period
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From the condition ω�(tel − tlight) = π compute light wavelength

λ� =
λu

2γ2

�
1 +

K
2

2

�

Identical with undulator radiation wavelength in forward direction (θ = 0)

Remark: ω�(tel − tlight) = 3π, 5π . . . also possible
⇒ generation of odd harmonics (λ�/3 , λ�/5 . . .)

Note however: ω�(tel − tlight) = 2π, 4π . . . yields zero net energy transfer from
electron to light wave
⇒ even harmonics (λ�/2 , λ�/4 . . .) are not present
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Definition of FEL bucket

electrons in left half
remove energy from 

light wave (bad)

FEL bucket

ζ
0 λ/2- λ/2

ζ

FEL bucket

Montag, 21. Mai 2012



Differential equations of the low-gain FEL

Energy transfer from an electron to the light wave

dW

dt
= −evx(t)Ex(t) = −e

cK

γ
cos(kuz)E0 cos(k�z − ω�t + ψ0)

≡ −ecKE0

2γ
[cos ψ + cos χ]

Ponderomotive phase ψ rapidly oscillating phase χ

ψ = (k� + ku)z(t)− ω�t + ψ0 χ = (k� − ku)β̄ct− ω�t + ψ0

Continuous energy transfer from electron to light wave if ψ is constant
Optimum value ψ = 0

Neglect longitudinal oscillation, so vz ≈ v̄z

The condition ψ = const can only be fulfilled for a certain wavelength

ψ(t) = (k� + ku)v̄zt− k�c t + ψ0 = const ⇔ dψ

dt
= (k� + ku)v̄z − k�c = 0
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Insert v̄z and use ku � k� to compute light wavelength:

λ� =
λu

2γ2

�
1 +

K
2

2

�

Condition for sustained energy transfer yields wavelength of undulator radiation at θ = 0
⇒ spontaneous undulator radiation can ”seed”a SASE FEL

What about phase χ? The term cos χ averages to zero

χ(z) = ψ(z)− 2kuz ⇒ cos χ(z) ∝ cos(2kuz)
t 0 0.001 t1 3. t1

0 1 2 3

1

1

z/ λ u

cos ψ

cos χ
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FEL case:  ψ0 = 0
energy transfer from electron to light wave 

          Reference particle:  ψ0 = - π/2  
zero energy transfer between electron and light wave   

electron trajectory 

light wave

          Laser-acceleration:  ψ0 = - π
energy transfer from light wave to electron

Internal bunch coordinate zeta and ponderomotive phase psi  

bucket center at ζ = 0, ψ = - π/2
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The pendulum equations

Lasing process in undulator is started by monochromatic light of wavelength λ�

Resonance electron energy Wr = γr mec
2 defined by

λ� =
λu

2γ2
r

�
1 +

K
2

2

�
⇒ γr =

�
λu

2λ�

�
1 +

K2

2

�

(Electrons with energy W = Wr emit undulator radiation with wavelength λ = λ�)

Consider off-resonance electron γ �= γr , define relative energy deviation

η =
γ − γr

γr
(0 < |η|� 1)

Ponderomotive phase no longer constant for η �= 0. Also η changes due to interaction
with radiation field

dψ

dt
= 2kuc η

dη

dt
= − eE0K

2mecγ
2
r

cos ψ
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Define shifted phase ϕ = ψ + π/2 to see analogy with mathematical pendulum

FEL
dϕ

dt
= 2kuc · η

dη

dt
= − eE0K

2mecγ
2
r

· sinϕ

pendulum
dϕ

dt
=

1
m�2

· L
dL

dt
= −m g · sinϕ

–π 0 π

0

R otation

φ

Oscillation

angle φ

an
gu

la
r m

om
en

tu
m

 L

φ

separatrix

fixpoint

Small angles: sinϕ ≈ ϕ pendulum carries out a harmonic oscillation:
ϕ(t) = ϕ0 cos(ωt) , L(t) = −m �

2
ω ϕ0 sin(ωt) ⇒ elliptic phase space curves

Large angular momentum motion unharmonic. Very large angular momentum: rotation
(unbounded motion)
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FEL phase space curves

γ = γr γ > γr
h0 0.

1 0.5 0 0.5 1
phase  φ / π

0

η 
= 

∆W
 / 

W
h0 0.4

1 0.5 0 0.5 1
phase  φ / π

0

On resonance (γ = γr): net energy transfer zero

Above resonance (γ > γr): positive net energy transfer from electron beam to light
wave
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Gain Function of Low-Gain FEL

Madey Theorem: the FEL gain curve is proportional to the negative derivative of the
line-shape curve of undulator radiation
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spectral line of undulator gain of FEL
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The normalized lineshape curve of undulator radiation and the gain curve of a typical
low-gain FEL
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FEL gain function

Note: gain of FEL amplifier is G(ω)+1

Montag, 21. Mai 2012



One-dimensional Theory of the High-Gain FEL

Microbunching

Basic Elements of the 1D FEL Theory

Radiation Field and Space Charge Field

The Coupled First-Order Differential Equations of the High-Gain FEL

The Third-Order Equation of the High-Gain FEL

General analytic solution of the third-order equation
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Microbunching

Essential feature of high-gain FEL: very many electrons radiate coherently
Radiation grows quadratically with the number of particles PN = N

2
P1

big problem: concentration of ≈ 109 electrons into a tiny volume is impossible,
Lbunch � λ�

x 
 [

m
m

]

ζ

0.2

0.1

0

–0.1

–0.2

(a)

x 
 [

m
m

]

ζ

0.2

0.1

0

–0.1

–0.2

(b)

x 
 [

m
m

]

λ!

0.2

0.1

0

–0.1

–0.2

(c)

ζ

Simulation of microbunching by Sven Reiche, UCLA (code GENESIS)
 

Electrons losing energy to light wave travel on a sinus orbit of larger amplitude than
electrons gaining energy from light wave
Result: modulation of longitudinal velocity
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Microbunching and exponential gain

Simulation of 
microbunching
(Sven Reiche)

Measured FEL pulse energy
at 98 nm wavelength

length of undulator
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Basic elements of the one-dimensional FEL theory

1D FEL theory: dependency of bunch charge density and electromagnetic fields on
transverse coordinates x, y is neglected. Also betatron oscillations and diffraction of
the light wave are disregarded.

Complex notation

Ẽx(z, t) = Ẽx(z) exp[ik�z − iω�t] Ex(z, t) = Re
�

Ẽx(z) exp[ik�z − cω�t]
�

Complex amplitude function Ẽx(z), grows slowly with z

Analytic description of high-gain FEL

(1) coupled pendulum equations, describing phase-space motion of particles under the
influence of electric field of light wave

(2) inhomogeneous wave equation for electric field of light wave

(3) evolution of a microbunch structure coupled with longitudinal space charge forces

– Typeset by FoilTEX – 27
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Initial conditions:
uniform charge distribution in bunch at z = 0, lasing process started by seed laser

Interaction with periodic light wave gradually produces density modulation
periodic in ponderomotive phase ψ (resp. internal bunch coordinate ζ with period λ�)

ρ̃(ψ, z) = ρ0 + ρ̃1(z)eiψ
j̃(ψ, z) = j0 + j̃1(z)eiψ

Oscillatory part in longitudinal velocity is neglected: z(t) = β̄c t

Higher harmonics are ignored

Radiation field
Wave equation for Ex field

�
∂

2

∂z2
− 1

c2

∂
2

∂t2

�
Ex(z, t) = µ0

∂jx

∂t
+

1
ε0

∂ρ

∂x

1D FEL theory: charge density independent of x ⇒ neglect ∂ρ/∂x

High-gain FEL: complex amplitude Ẽx(z) depends on path length z in undulator

Ex(z, t) = Ẽx(z) exp[ik�(z − ct)] Ẽx(0) = E0
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First goal: find differential equation for field amplitude Ẽx(z)

Slowly varying amplitude (SVA) approximation:
change of amplitude within one light wavelength (growth rate) is small
change of growth rate is negligible

���Ẽ�
x(z)

��� λ� �
���Ẽx(z)

��� ⇒
���Ẽ�

x(z)
���� k�

���Ẽx(z)
���

���Ẽ��
x(z)

��� � k�

���Ẽ�
x(z)

��� ⇒ Ẽ
��
x(z) is negligible

Result: Differential equation for slowly varying amplitude

dẼx

dz
= −iµ0

2k�
· ∂jx

∂t
· exp[−ik�(z − ct)]

Question: What is the transverse current jx?

j = ρv ⇒ jx = jz vx/vz ≈ jz
K

γ
cos(kuz)

dẼx

dz
= −iµ0K

2k�γ
· ∂jz

∂t
exp[−ik�(z − ct)] cos(kuz)
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∂j̃z

∂t
=

∂j̃z

∂ψ

∂ψ

∂t
= −iω� j̃1 e

iψ = −iω� j̃1 exp[ik�(z − ct) + ikuz] .

The derivative of the transverse field becomes

dẼx

dz
= −µ0cK

2γ
j̃1 exp[ik�(z − ct) + ikuz] exp[−i(k�z − ct)]

e
ikuz + e

−ikuz

2

= −µ0cK

4γ
j̃1 {1 + exp(i2kuz)}

The phase factor exp[i2kuz] carries out two oscillations per undulator period λu and
averages to zero

dẼx

dz
= −µ0cK

4γ
· j̃1
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Space charge field

Electric field created by modulated charge density is computed using
Maxwell equation ∇ · E = ρ/ε0

Rapidly oscillating field:

∂Ez

∂z
=

ρ̃1(z)
ε0

exp[i((k� + ku)z − ω�t)]

Amplitude of longitudinal electric field is

Ẽz = − i

ε0(k� + ku)
ρ̃1 ≈ −

iµ0c
2

ω�
· j̃1

Ẽz = −iµ0c
2

ω�
· j̃1
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The Coupled First-Order Differential Equations

Low-gain FEL:
Evolution of ponderomotive phase ψ and of relative energy deviation η

described by pendulum equations (note that we use z = β̄ c t as our quasi-time)

dψ

dz
= 2kuη ,

dη

dz
= − eE0K̂

2mec
2γ2

r

cos ψ

High-gain FEL: field amplitude is z dependent

�
dη

dz

�

light wave

= − eK̂

2mec
2γ2

r

Re(Ẽxe
iψ)

Add energy change due to interaction with space charge field:

�
dη

dz

�

space charge

= − e

mec
2γr

Re(Ẽze
iψ)
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Combining the two effects yields

dη

dz
= − e

mec
2γr

Re

��
K̂Ẽx

2γr
+ Ẽz

�
e
iψ

�

Goal: study phase space motion of electrons as in low-gain case, but take growth of field
amplitude Ẽx(z) into account and also evolution of space charge field Ẽz(z). Both are
related to modulation amplitude j̃1(z) of electron beam current density:

dẼx

dz
= −µ0cK

4γ
· j̃1(z) Ẽz(z) = −iµ0c

2

ω�
· j̃1(z)

Obvious task: compute j̃1 for a given arrangement of electrons in phase space
Subdivide electron bunch into longitudinal slices of length λ�

corresponding to slices of length 2π in phase variable ψ

Distribution function for N particles per slice

S(ψ) =
N�

n=1

δ(ψ − ψn) ψ, ψn ∈ [0, 2π]
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We consider first the special case of a perfectly uniform longitudinal distribution of the
electrons in the bunch and continue the function S(ψ) periodically. The more realistic
case of a random longitudinal particle distribution is investigated later.

Fourier series

S(ψ) =
c0

2
+ Re

� ∞�

k=1

ck exp(i k ψ)

�
, ck =

1
π

� 2π

0
S(ψ) exp(i k ψ)dψ

The modulated current density at the first harmonic is

j̃1 = −e c ne
2
N

N�

n=1

exp(−iψn)
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Coupled first-order equations

j̃1 = −nee c
2
N

N�

n=1

exp(−iψn)

dẼx

dz
= −µ0c

�K
4γ

· j̃1

dψn

dz
= 2kuηn , n = 1...N

dηn

dz
= − e

mec
2γr

Re

��
�KẼx

2γr
− iµ0c

2

ω�
· j̃1

�
exp(iψn)

�

Coupled first-order equations describe time evolution of
1) modulated current density
2) light wave amplitude Ẽx

3) ponderomotive phase ψn of electron number n (n = 1 . . . N)
4) relative energy deviation ηn = (γn − γr)/γr

Many-body problem without analytical solution
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The Third-Order Equation of the High-Gain FEL

Main physics of high-gain FEL is contained in the coupled first-order equations
Drawback: they can only be solved numerically. Goal: find differential equation
containing only the electric field amplitude Ẽx(z) of light wave.

For a “small” periodic density modulation the quantities ψn and ηn characterizing the
particle dynamics in the bunch can be eliminated by defining a normalized particle
distribution function

F (ψ, η, z) = Re
�

F̃ (ψ, η, z)
�

= F0(η) + Re
�

F̃1(η, z) · e
iψ

�

ψ

η

ψ

η

– Typeset by FoilTEX – 36

ζ

Montag, 21. Mai 2012



F (ψ, η, z) obeys the Vlasov equation, a generalized continuity equation

dF

dz
=

∂F

∂z
+

∂F

∂ψ

∂ψ

∂z
+

∂F

∂η

∂η

∂z
= 0

After many mathematical steps one finds the third-order equation

Ẽ
���
x

Γ3
+ 2i

η

ρFEL

Ẽ
��
x

Γ2
+

�
k

2
p

Γ2
−

�
η

ρFEL

�2
�

Ẽ
�
x

Γ
− i Ẽx = 0 .

Three important parameters:

gain parameter Γ =

�
µ0

�K2
e
2
kune

4γ3
rme

�1/3

space charge parameter kp =
ω

∗
p

c

�
2λ�

γrλu
, ω

∗
p =

�
nee

2

γrε0me

FEL parameter ρFEL =
Γ

2ku
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Third-order differential equation is solved analytically by trial function

Ẽx(z) = A exp(αz)

Special case η = 0 and kp = 0 , i.e. energy on resonance and negligible space charge:

α
3 = iΓ3 ⇒ α1 = −iΓ , α2 = (i +

√
3)Γ/2 , α3 = (i−

√
3)Γ/2

Second solution leads to exponential growth of Ẽx(z). Power of light wave grows as

exp(
√

3Γz) ≡ exp(z/Lg0)

Power gain length

Lg0 =
1√
3Γ

=
1√
3

�
4γ

3
rme

µ0
�K2e2kune

�1/3
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General analytic solution of the third-order equation

Third-order differential equation is solved by assuming a z dependence of the form
exp(αz). Cubic equation for exponent α has three solutions α1,α2,α3. Field amplitude
is linear combination of the three eigenfunctions

Ẽx(z) = c1V1(z) + c2V2(z) + c3V3(z) Vj(z) = exp(αjz)
First and second derivative

Ẽ
�
x(z) = c1α1V1(z) + c2α2V2(z) + c3α3V3(z)

Ẽ
��
x(z) = c1α

2
1V1(z) + c2α

2
2V2(z) + c3α

2
3V3(z)

Since Vj(0) = 1 the coefficients cj can be computed by specifying the initial conditions
for Ẽx(z), Ẽ

�
x(z) and Ẽ

��
x(z) at the beginning of the undulator at z = 0. The initial

values can be expressed in matrix form by




Ẽx(0)
Ẽ

�
x(0)

Ẽ
��
x(0)



 = A ·




c1

c2

c3



 with A =




1 1 1
α1 α2 α3

α
2
1 α

2
2 α

2
3




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Coefficient vector is given by




c1

c2

c3



 = A−1 ·




Ẽx(0)
Ẽ

�
x(0)

Ẽ
��
x(0)





Consider now the simple case η = 0 and kp = 0, i.e. beam energy on resonance and
negligible space charge. Then the eigenvalues are

α1 = −iΓ , α2 = (i +
√

3)Γ/2 , α3 = (i−
√

3)Γ/2

A−1 =
1
3

·




1 i /Γ − 1 /Γ2

1 (
√

3− i)/(2Γ) (−i
√

3 + 1)/(2Γ2)
1 (−

√
3− i)/(2Γ) (i

√
3 + 1)/(2Γ2)





Start FEL process by an incident plane light wave of wavelength λ� and amplitude E0

Ex(z, t) = E0 cos(k�z − ω�t) with k� = ω�/c = 2π/λ�
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Initial condition is



Ẽx(0)
Ẽ

�
x(0)

Ẽ
��
x(0)



 =




E0

0
0





All three coefficients have the same value, cj = E0/3

⇒ Ẽx(z) =
E0

3

�
exp(−iΓz) + exp((i +

√
3)Γz/2) + exp((i−

√
3)Γz/2)

�

First term oscillates along undulator axis, third term carries out a damped oscillation.
Second term exhibits exponential growth and dominates at large z. FEL power grows
asymptotically as

P (z) ∼=
P0

9
exp(

√
3Γz) =

P0

9
exp(z/Lg0) for z ≥ 2Lg0

P0 power of incident seed light wave
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Solid red curve: analytic solution
Dashed blue line:

P (z) =
P0

9
exp(z/Lg0)
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FEL startup by seed laser radiation, incident power P0

red curve: analytic solution of third-order equation

blue line: approximation P(z)= (P0/9) exp(z/Lg0)

lethargy regime
about 3 gain lengths

P0
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Applications of the High-Gain FEL Equations

FEL gain curve
Consider electron beam which is not on resonance but has still energy spread zero

γ �= γr ⇒ η �= 0 ση = 0

Lasing process seeded by incident plane wave
Gain G(η, z) as a function of the relative energy deviation η and the position z in the
undulator is

G(η, z) =

�
Ẽx(η, z)

E0

�2

− 1

(Field Ẽx inside undulator depends implicitely on η through η dependence of the
eigenvalues αj)
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remember: gain function G is defined as G=gain-1
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Short undulator: low-gain limit

Take undulator magnet that is shorter than one gain length Lund ≤ Lg0

- 0.004 0 0.004

0.07

-0.07

0

ga
in

 fu
nc

tio
n 

G
(η

)

relative energy deviation η

Red curve: high-gain theory

Blue circles:  low-gain theory

Note: maximum gain is only 1.05 (gain− 1 = 0.05) ⇒ low-gain regime.

The quantitative agreement proves that the low-gain FEL theory is the limiting case of
the more general high-gain theory.
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(G = gain -1= 0.05)
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Long undulator: high-gain regime
Red: high-gain theory, blue: low-gain theory
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For z � Lg0 : maximum amplification near η = 0 (on resonance)
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Bandwidth of FEL
Analysis of third-order equation shows that FEL gain drops significantly when relative
energy deviation exceeds the FEL ρ parameter

|η| > ρFEL =
1

4π
√

3
· λu

Lg0

-2 -1 0 1 2

1

0.5

0

η/ρ

no
rm

al
iz

ed
 g

ai
n 

G
(η

)

20 Lg

Replace Gaussian gain function by an equivalent rectangular gain function of equal area
under the curve. The equivalent

z dependent energy bandwidth

∆η(z) = 3
√

πρFEL

�
Lg0

z

Formula is only valid in the exponential regime, 2 Lg0 < z < Lsat.
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Normalized gain at z = 20 Lg0 as a function of η/ρFEL

Gain curve has a FWHM ≈ 1.0 ρFEL

– Typeset by FoilTEX – 46high-gain FEL acts as a narrow-band amplifier

typical bandwidth about 0.001 
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FLASH: 3rd order FEL equation, 1d-particle model
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analytic solution of third-order equation

numerical solution of coupled 
first-order equations
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Comparison of different input powers of seed radiation.
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Red:  seed power 0.01

Blue: seed power 1

FEL power depends linearly on input power in exponential regime
However: saturation level is independent of input power

FEL power oscillates in the saturation regime ⇒ energy is pumped back and forth
between electron beam and light wave.
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FLASH: 3 seed power levels
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Simulation of microbunching

The coupled first-order differential equations permit to study microbunching
Use typical parameters of ultraviolet FEL FLASH
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Numerical study of microbunching in a long undulator magnet

consider 3 slices
start with uniform distribution

Martin Dohlus, DESY

Important result:
Microbunches are located in the
right half of the slices

Note: the FEL buckets move,  
mainly in the lethargy regime

microbunches are formed in the 
right halves of the buckets
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ponderomotive phase ψ
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What happens if the undulator is too long?

electrons move into left half of FEL buckets and take energy out of light wave
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Self Amplified Spontaneous Emission

Modulated current density resulting from shot noise in electron beam

j̃1 =
�

2 e |I0| ∆ω√
π Sb

Sb beam cross section
Exi 7 105
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Continuous red curve: computed SASE FEL power
Dashed blue curve: FEL startup by seeding with a laser field of E0 = 0.7 MV/m
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1D simulation of SASE in FLASH
red curve: startup by modulated beam current
blue curve: startup by seeding with E0=Exi
black line: simple exponential exp(z/Lg)
 
dc current I0=1600 A, beam radius rb= 0.1 mm
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SASE computed analytically with
third-oder equation

Laser seeding computed numerically 
with coupled first-oder equations
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Measured power rise in LCLS at a wavelength of 1.5  Angström 
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22 2 Undulator Radiation
spectrum for 10 undulator periods
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Fig. 2.7. Left: Example of a computed photon energy spectrum of undulator ra-
diation for an undulator with 10 periods. Plotted is the differential spectral energy
density d2Um/dΩdω at θ = 0. The units are arbitrary. Right: the spectral energy
Um(ω) of the mth harmonic that is emitted into the solid angle ∆Ωm. The electron
Lorentz factor is γ = 1000, the undulator has the period λu = 25 mm and the pa-
rameter K = 1.5. Note that the energy ratios Um/U1 depend only on the harmonic
index m and the undulator parameter K, but not on γ nor on λu .

decreases as 1/m with increasing harmonic order. Within the solid angle ∆Ωm

the angular-dependent frequency shift is less than the bandwidth. Of practical

interest is the spectral energy contained in this solid angle:

Um(ω) =
d2Um

dΩdω
∆Ωm m = 1, 3, 5, . . . . (2.33)

This spectral energy is shown in Fig. 2.7 for m = 1, 3, 5, 7 for a short undulator

with ten periods and K = 1.5.

The angular dependence of the spectral energy is derived in Ref. [5]. For

emission angles θ �= 0 the radiation will contain all higher harmonics (m =

1, 2, 3, 4, . . .), as mentioned above.
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a helical undulator. Moreover one has to keep in mind that the electric vector
of the radiation field has two components which couple both to the electron
and double the energy transfer. They are related by Ẽy = ∓i Ẽx.

The space charge parameter kp remains invariant, and the third-order
equation retains its form (4.50) if the correct value of the gain parameter Γ
is used.
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