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Undulator radiation

T l T l Tl T l T l Tl T l T l T l We consider an electron that was

accelerated by 500 million volts

_W\M,\ N’\l\ (Lorentz factor y = 1000)

TR o teuniaer

assume undulator period A, = 25 mm

To estimate wavelength of undulator radiation, apply Theory of Relativity twice:

(1) Moving system: undulator period appears shortened by length contraction
A* =, /y . Electron emits radiation of wavelength A.* (about 25 um)

(2) Doppler effect reduces wavelength by another factor of 1/y (about 25 nm)

Result:
radiation wavelength is about a million times shorter than undulator period

Reduction from 25 mm to about 25 nm
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Comparison of Quantum Laser and Free-Electron Laser (FEL)

Es
X P— bound-electron laser
Pump —» : _ > i
: > Laser transition Conventional laser

E

¥

Y

3 main components:

Mirror Permeable mirror

P g (1) active laser medium
T T T T T T T - (3) optical resonator
Energy pump
~ Optical resonator ~
Mirror Permeable mirror
Undulator Free-electron laser

(1) Role of active medium and
energy pump are both taken over
by relativistic electrons

Circulating
electron bunches

(2) Optical resonator possible for
visible and infrared light
(not for UV and X rays)
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Sinusoidal electron trajectory in undulator

Transverse acceleration by Lorentz force
Ymev = —ev X B with B = —Bysin(k,z) e,

Yields two coupled equations

€ . €

T = B,z Z=— B,z
TYMe Y Y Y
First-order solution
z(t) ~ eBo - sin(k,Bet) , 2(t) = pBct, B=v/c
ym, Bck?

Undulator parameter

eBy,  eByA,

K = P K~1.2
MeClu Hithet small longitudinal oscillation
Sacond-order solution / leads to odd higher harmonics
K K*?
z(t) = — sin(w,t) z(t) = Ut — —5— sin(2w,t
(6) = 2 sin(wud) 2(0) = 0.t = oo sin(2unt)

Average longitudinal speed

_ . 1 K*
7, = B¢ with B=(1—272 (1+7))
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Co-moving coordinate system
In moving system: electron emits dipole radiation w* = Jw,, AX = A, /¥

Lorentz transformation of photon energy into laboratory system

Aw* = Jhwe(1l — Beosh) = A= 2me _ 27T—?(l—ﬁcos@) = X\ (1 — Bcosh)

Wy w

Use 8= [1—(1+ K?/2)/(27?)] and cosf ~ 1 — 6%/2

Ay K?
M=—F |1+ — 262
l 2?2 + 5 + 7y

Computation by Shintake
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Radiation power in laboratory system

AW AW
dat  dt*

*

P =

Line shape of undulator radiation

=

P

T 12meo(1 + K2/2)?

e’cy K?k>

Electron passing an undulator with IV,, periods produces wave train with NV, oscillations.

Spectral intensity :  I(w) (
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Higher harmonics of undulator radiation

Complicated issue and not the topic of my FEL lecture
For details see J.A. Clarke, The Science and Technology of Undulators and Wigglers

Model calculation for a detector at 6 = 0 with very small aperture

I I I I I
K=0.2 >
= K=0.2
Q Q
o % i | small undulator parameter
8 \/ \/ 5 only first harmonic
® 2
(7))
| _JL | | | |
I I I I I
K=2 _B, K=2
© 2
2 2 large undulator parameter
s —J ——JL 1 T} : harmonics 1, 3, 5, 7...
ks g
© S
@ radiation at angles 8 > 0 has also even harmonics
. VT | VT | W | N | (see Clarke)
. 1 3 5 7 9
time ®/ 0
I I I
g detector of finite size centered at 8=0
— L | aperture matched to bandwidth of nt" harmonic
3
S
D A
| | A LA

0 100 200 300 400
photon energy [eV]

Montag, 21. Mai 2012



Theory of the Low-Gain FEL

Energy transfer from electron to light wave
Differential equations of the low-gain FEL
The pendulum equations

FEL gain, Madey theorem

Higher harmonics
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Principle of low-gain FEL (visible or infrared)

Light travels back and forth
between two mirrors

Light is amplified by few %
in each turn

Not possible in UV and X-ray
range (no mirrors available)

wrong phase

Correct phase of light wave: FEL case ,
energy transfer from light wave to electron

energy transfer from electron to light wave

ectron path

light wave

--------------------------------------------------------------
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Consider seeding by an external light source with wavelength A,

Wy 2T

E (z,t) = Egcos(kpz — wpt +1g) with k= — = v
C l

Question: can there be a continuous energy transfer from electron beam to light wave?
Electron energy W = ym.c? changes in time dt by

dW =wv -« Fdt = —ev, (t)E.(t) dt

Average electron speed in z direction v, = ¢ (1 — # (1+ K2/2)) <c

Electron and light travel times for half period of undulator:
tel — )\u/(2@z) ) tlight — )\u/(2c)

Continuous energy transfer happens if — wy(te; — tiignt) =7

Vv electron trajectory

slippage of light wave

> 1 optical wavelength
Z :
per undulator period

—
m

‘ 0
VTR AV

X
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From the condition wy(te; — t1ignt) = ™ compute light wavelength

Ay, K2
A= % (14—
‘ 272(+2>

Identical with undulator radiation wavelength in forward direction (6 = 0)

Remark:  wy(te; — tiignt) = 3m,5m ... also possible
= generation of odd harmonics (A\¢/3, A¢/5...)

Note however:  wy(te; — tiighe) = 2m,4m ... yields zero net energy transfer from
electron to light wave
= even harmonics (A\¢/2, A¢/4...) are not present
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Definition of FEL bucket

Electron bunch is much longer than light wavelength A

FEL bucket

Subdivide bunch into slices of length A

One slice of length A /

electron
energy

Y
Y
\
N
\
\
N

electrons in left half
remove energy from
light wave (bad)

FEL bucket

electrons in right half supply energy
to light wave (good)

>C
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Differential equations of the low-gain FEL

Energy transfer from an electron to the light wave

dW K
— = —en(DE(t) = = cos(kyz) Eo cos(kez — wet + o)
8l
KE
= L [cos 1) + cos x|
2y
Ponderomotive phase 9 rapidly oscillating phase
WY = (kg + ku)z(t) — wyet 4+ Yo X = (kg — ku)BCt — wyet 4+ Yo

Continuous energy transfer from electron to light wave if v is constant
Optimum value ¥ =0

Neglect longitudinal oscillation, so v, ~ v,

The condition 9 = const can only be fulfilled for a certain wavelength

d
Y(t) = (kg + ky)U.t — kyct + 109 = const < d—;p = (k¢ + ky)v, — kec = 0
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Insert v, and use k,, < k, to compute light wavelength:

A, K>
A 1+ —
£2v(+2>

Condition for sustained energy transfer yields wavelength of undulator radiation at 6 = 0
= spontaneous undulator radiation can "seed” a SASE FEL

What about phase x? The term cosx averages to zero

X(2) =¥ (z2) —2kyz = cosx(z) x cos(2kyz)

CoSs

T -
WV
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Internal bunch coordinate zeta and ponderomotive phase psi

C=Ae+ (Y +7/2)/(27)
Reference particle: yg = - n/2
zero energy transfer between electron and light wave

bucket centerat (=0, py = - 11/2

electron trajectory

light wave

FEL case: yp=0 Laser-acceleration: yg=-m
energy transfer from electron to light wave energy transfer from light wave to electron
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The pendulum equations

Lasing process in undulator is started by monochromatic light of wavelength A,
Resonance electron energy W, = ~, m.c? defined by

oM (BN L K
£7 942 2 =\ 2 2

(Electrons with energy W = W,. emit undulator radiation with wavelength A = )\/)

Consider off-resonance electron v = ~,. , define relative energy deviation

Y= Ir
Yr

N = (0 < |n| < 1)

Ponderomotive phase no longer constant for 17 #% 0. Also n changes due to interaction
with radiation field

d
—w = 2k,cn

dt

d77 o GE()K
dt  2mecy
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Define shifted phase ¢ = 1) + 7/2 to see analogy with mathematical pendulum

dp dn eEg K .
FEL P~ ke an _ o
dt o dt 2mecy? Y
dp 1 dL
endulum — = — . L B . g
b dt me? dt g ey
/’ R otation
R e
5 K%
N,
c 0
° - e T s éparatrix 5
) L 0 L - < Oscillation
angle ¢

Small angles: sin ¢ ~ ¢ pendulum carries out a harmonic oscillation:

©o(t) = pgcos(wt), L(t) = —ml?wpgsin(wt) = elliptic phase space curves
Large angular momentum motion unharmonic. Very large angular momentum: rotation
(unbounded motion)
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FEL phase space curves

n=AW/W

phase ¢/m phase ¢/m

On resonance (v = 7,-): net energy transfer zero

Above resonance (v > 7,): positive net energy transfer from electron beam to light

wave
Resonance electron energy W, = v, mec? defined by
| )\_)\u 1_|_K2 N Y 1+K2
— Typeset by Foil TEX - { — 2’}13 2 Yr = er 2

(Electrons with energy W = W,. emit undulator radiation with wavelength A = \)
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Gain Function of Low-Gain FEL

Madey Theorem: the FEL gain curve is proportional to the negative derivative of the
line-shape curve of undulator radiation

spectral line of undulator FEL gain function
0.05

intensity (o)
G(w)
o
I
)
)
|

e — — -0.05

The normalized lineshape curve of undulator radiation and the gain curve of a typical
low-gain FEL

Note: gain of FEL amplifier is G(w)+1
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Montag, 21. Mai 2012



One-dimensional Theory of the High-Gain FEL

Microbunching

Basic Elements of the 1D FEL Theory

Radiation Field and Space Charge Field
The Coupled First-Order Differential Equations of the High-Gain FEL

The Third-Order Equation of the High-Gain FEL

General analytic solution of the third-order equation

— Typeset by Foll TEX —
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Ultraviolet and X-Ray FELs

No mirrors exist to build optical cavity for UV light and X rays

FEL gain must be achieved in single passage through a very long undulator

Undulator

Elec_t:n—- -\

bunch \>

Important mechanism: Self-Amplified Spontaneous Emission SASE
(theory: Kondratenko, Saldin, Bonifacio, Pellegrini, Narducci ...)

Undulator radiation is produced in the first section of the undulator
and this radiation is amplified in the later sections
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Microbunching

Essential feature of high-gain FEL: very many electrons radiate coherently
Radiation grows quadratically with the number of particles Py = N? P,

big problem: concentration of ~ 107 electrons into a tiny volume is impossible,

Lbunch > )\E

Simulation of microbunching by Sven Reiche, UCLA (code GENESIS)

(a) (b) (c)

0.2 e 0.2 BRI T 0.2 T P L SR
01k 01k - ;
& = = :
£ 0 £ 0 £ o0}
= < 5 .

-0.1 -0.1 ~0.1 |

) _0.21 e _02

Electrons losing energy to light wave travel on a sinus orbit of larger amplitude than

electrons gaining energy from light wave
Result: modulation of longitudinal velocity
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Microbunching and exponential gain

X [mm]

X [mm]

Simulation of
microbunching
(Sven Reiche)

10°

N
o
A
il

6 8 10

z [m]

length of undulator

12

14

Measured FEL pulse energy
at 98 nm wavelength
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Basic elements of the one-dimensional FEL theory

1D FEL theory: dependency of bunch charge density and electromagnetic fields on
transverse coordinates x, vy is neglected. Also betatron oscillations and diffraction of
the light wave are disregarded.

Complex notation Note: this is a constant Eo in the low-gain theory

~

Eo(2,t) = Ey(2) explikez — iwet]  Eu(z,t) = Re {Ex(z) explikez — ,-wt]}

Complex amplitude function Ea}(z) grows slowly with z
Analytic description of high-gain FEL

(1) coupled pendulum equations, describing phase-space motion of particles under the
influence of electric field of light wave

(2) inhomogeneous wave equation for electric field of light wave

(3) evolution of a microbunch structure coupled with longitudinal space charge forces

— Typeset by Foil TEX — 27
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Initial conditions:
uniform charge distribution in bunch at z = 0, lasing process started by seed laser

Interaction with periodic light wave gradually produces density modulation
periodic in ponderomotive phase ¢ (resp. internal bunch coordinate ¢ with period \y)

P, 2) = po + pr(z)e™ i, 2) = jo+ j1(2)e™”

Oscillatory part in longitudinal velocity is neglected: z(t) = Bct
Higher harmonics are ignored

Radiation field
Wave equation for E,. field

_0je  10p
[@ B ?ﬁ] Ba(z0) = mogr + 50

1D FEL theory: charge density independent of x = neglect 0p/0x

~

High-gain FEL: complex amplitude E.(z) depends on path length z in undulator

E.(z,t) = Ey(2) explike(z — ct)] E.(0) = Ey

— Typeset by Foil TEX — 28
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First goal: find differential equation for field amplitude E(2)

Slowly varying amplitude (SVA) approximation:
change of amplitude within one light wavelength (growth rate) is small
change of growth rate is negligible

Eu(2)

|E;(z)’)\g < ‘Ex(z)| = ‘E;(z)‘<<k‘e

= E"(2) is negligible

Lég(z) < kgyég(z)

Result: Differential equation for slowly varying amplitude

dz 2k, ot

- exp|—iky(z — ct)]

Question: What is the transverse current j,.7

K
J=pv = Je=7J.0./0, = j, —cos(kyz)
Y

~

- TR exp|—iky(z — ct)]| cos(kyz)

— Typeset by FollTEX — 29
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0j.  0j. 0
ot Oy Ot

The derivative of the transverse field becomes

= —iwpj1 e = —iwe i explike(z — ct) + ikyz] .

dEm - 1kyz —tkyz
= _ _W;y j1 explike(z — ct) + ikyz] exp[—i(kez — ct)] € —1—2@
CK ~ .
B _M(z)w Ji 1+ exp(i2ky2)}

The phase factor expl|i2k, z| carries out two oscillations per undulator period A, and
averages to zero

~

dE:U MOCK =~

dz 4y Ea
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Space charge field (longitudinal field)

Electric field created by modulated charge density is computed using
Maxwell equation V - E = p/eg
Rapidly oscillating field:

9~ e expli((ke + ky)z — wyt)]

Amplitude of longitudinal electric field is

P 1 _ ioCe ~
. 2
~ 1 C ~
Ez — el J1
Wy

— Typeset by Foil TEX -
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The Coupled First-Order Differential Equations

Low-gain FEL:
Evolution of ponderomotive phase 1) and of relative energy deviation 7
described by pendulum equations (note that we use z = 3¢t as our quasi-time)

d dn ebEoK
Ik i
dz ' dz 2mec?y2 cosy

High-gain FEL: field amplitude is z dependent

A

e ~
_ 1)
= o Re(FEe'")

k3
dz light wave

Add energy change due to interaction with space charge field:

e ~ .
= — Re(E.e™
m€C2”)/»,~ e( ‘ )

dn
dz

] space charge

— Typeset by FollTEX —
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Combining the two effects yields

d BB .\
e ° Re + E. | e
dz MeC3Yy 27,

Goal: study phase space motion of electrons as in low-gain case, but take growth of field
amplitude E,(z) into account and also evolution of space charge field E.(z). Both are
related to modulation amplitude j1(z) of electron beam current density:

dE,, tock  ~ ~ IC? ~

PR J1(z)  E.(z) = — o - Jj1(2)

Obvious task: compute j; for a given arrangement of electrons in phase space
Subdivide electron bunch into longitudinal slices of length A\,
corresponding to slices of length 27 in phase variable

Distribution function for N particles per slice

SW) — Z 5(¢ - wn) Y, Py € [07 27—‘-]
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We consider first the special case of a perfectly uniform longitudinal distribution of the
electrons in the bunch and continue the function S(v) periodically. The more realistic
case of a random longitudinal particle distribution is investigated later.

Fourier series

7

o0 2
S(@b)zczo—i—Re{cheXp(ikw)} : ck:l/O S () exp(i k)dy
k=1

The modulated current density at the first harmonic is

~

5 N
j1 = —ecn, N ;exp(—iwn)
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Coupled first-order equations

5 N

j1 = —neecﬁ ;exp(—iwn)
dEx ,UJ()CI? ~
dz 4y
dipy,
i = 2kynn , n=1.N
dz
dnn € [?E:c Z.,LLOCQ ~ :
I LCR R _ . ,
- "R e{( g exp(1¢n)

Coupled first-order equations describe time evolution of

1) modulated current density

2) light wave amplitude F,

3) ponderomotive phase 1, of electron numbern (n=1...N)
4) relative energy deviation 1, = (v, — Vi) /s

Many-body problem without analytical solution
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The Third-Order Equation of the High-Gain FEL

Main physics of high-gain FEL is contained in the coupled first-order equations
Drawback: they can only be solved numerically. Goal: find differential equation
containing only the electric field amplitude E,.(z) of light wave.

For a “small” periodic density modulation the quantities v),, and 1,, characterizing the

particle dynamics in the bunch can be eliminated by defining a normalized particle
distribution function

F(i,n,2z) = Re {Fw, 1, 2)} = Fo(n) + Re {E(n, 2) - ew}
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F(1,n, z) obeys the Vlasov equation, a generalized continuity equation

AF _OF  OF0¢  OF0n _

dz

0

0= 00z

on oz

After many mathematical steps one finds the third-order equation

~ /1

['3 [2

lOFEL

E, .. n E, (
——+ 2 +

ky _
|

~ 11

E

simplest form .

— i3, =0

gain parameter I

space charge parameter

FEL parameter

— Typeset by Foil TEX —
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Third-order differential equation is solved analytically by trial function

~

E.(z) = Aexp(az)
Special case 7 = 0 and k, = 0, i.e. energy on resonance and negligible space charge:
o =il? = a;=—-i', a=>G0+V3T/2, az=(i—V3)IT/2
Second solution leads to exponential growth of Ex(z) Power of light wave grows as
exp(V3T'2) = exp(z/Lyo)

Power gain length

Lgo

1 1[ 4y3m, ]1/3
\/§F \/g u0k262kune
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General analytic solution of the third-order equation

Third-order differential equation is solved by assuming a z dependence of the form
exp(az). Cubic equation for exponent « has three solutions a1, o, 3. Field amplitude
is linear combination of the three eigenfunctions

EL(2) = e1Vi(2) + c2Va(2) + csVa(2) Vi(z) = exp(a;z)

First and second derivative

E;(Z) = clqul(z) —+ CQO[QVQ(Z) -+ CgOéng(Z)
E;’(z) = a2 Vi(2) + caa5Va(2) + c3a3Vs(2)

Since V;(0) = 1 the coefficients c¢; can be computed by specifying the initial conditions
for E,(2), E.(2) and E!(z) at the beginning of the undulator at z = 0. The initial
values can be expressed in matrix form by

E,(0) ¢ 1 1 1
E.(0) | =A | c with A= a1 ay a3
E;(()) C3 af a3 of
— Typeset by Foil TEX — 39
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Coefficient vector is given by

—~
o O
— —

I8 T8

QO
w N

|

|

[t
3 &1 32
P
-)
N—"

Consider now the simple case 7 = 0 and k, = 0, i.e. beam energy on resonance and
negligible space charge. Then the eigenvalues are

o =—il', as=(G+V3T/2, as=(i—V3)/2

1 i /T — 1 /T2

A= 1 (Boip/eD) (—iVB+1)/er)

1 (=vV3-1i)/(2D) (iv3+1)/(2r?)

Start FEL process by an incident plane light wave of wavelength A\, and amplitude Ej
FE.(z,t) = Egcos(kez — wet) with ky=wy/c =21/
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Initial condition is

l?x(()) Ey
E,.0) |=1 0
E,(0) 0

All three coefficients have the same value, ¢; = Ey/3

= F,(z) = =2 [exp(—ﬂ’z) + exp((i + V3)T'2/2) + exp((i — \/g)Fz/Q)}

First term oscillates along undulator axis, third term carries out a damped oscillation.
Second term exhibits exponential growth and dominates at large z. FEL power grows
asymptotically as

P P
P(z) = ?O exp(V3I'z) = ?0 exp(z/Lgo) for =z > 3Ly

P, power of incident seed light wave
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FEL startup by seed laser radiation, incident power P

1-10°
1-10% L
e red curve: analytic solution of third-order equation
3 yd
1-10 —
= //' blue line: approximation P(z)= (Po/9) exp(z/Lgo)
o prd
N 7
o ///
10 7
2/
/4
Po 1 4"’/
L7 ; | | | |
1% r4 6 8 10 12
: ' number of gain lengths
>’

lethargy regime
about 3 gain lengths
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Applications of the High-Gain FEL Equations

FEL gain curve
Consider electron beam which is not on resonance but has still energy spread zero

y#FEvw = n#z0  oy=0

Lasing process seeded by incident plane wave
Gain G(7, z) as a function of the relative energy deviation 77 and the position z in the

undulator is ,
E~'€E(777 Z)
G — —1
(777 Z) ( EO >

(Field E, inside undulator depends implicitely on 7 through 7 dependence of the
eigenvalues «;)

remember: gain function G is defined as G=gain-1
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Short undulator: low-gain limit

Take undulator magnet that is shorter than one gain length L,,,q < Lgo

0.07
= Red curve: high-gain theory
O
S Blue circles: low-gain theory
2 0
C
=)
=
®©
(@)}
-0.07

- 0.004 0 0.004

relative energy deviation n

Note: maximum gain is only 1.05 (G =gain-1=0.05) = low-gain regime.

The quantitative agreement proves that the low-gain FEL theory is the limiting case of
the more general high-gain theory.
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Long undulator: high-gain regime

Red: high-gain theory, blue: low-gain theory

0.6
2 L4
G
R o~ .
c — N
5 v
06
- 0.02 0 0.02
400
8L,
G
(]
=
©
[@))
~
0 \V
-100
-0.02 0 0.02

relative energy deviation n

- 0.02

0.02

106

16 Lg

-0.02

0

relative energy deviation

For 2 > Lgo : maximum amplification near 7 = 0 (on resonance)
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Bandwidth of FEL

Analysis of third-order equation shows that FEL gain drops significantly when relative
energy deviation exceeds the FEL p parameter

> pogy, =
N PreL 47T\/§ LgO
1
20 Lg
;g 2 dependent energy bandwidth
Lo
0 7 N An(z) = 3\/77TpFEL —=
-2 -1 0 1 2 N
n/p
Normalized gain at 2 = 20 Lo as a function of n/PrEL
Gain curve hasa FWHM ~ 1.0 prgr
high-gain FEL acts as a narrow-band amplifier *

typical bandwidth about 0.001
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Numerical integration of the coupled FEL equations

Laser saturation

The numerical integration (by Runge-Kutta) of the coupled first-order differential
equations can be used to study the regime of FEL saturation. The saturation is principally
inaccessible with the analytic approach of the third-order equation which was derived
under the assumption of a "small” periodic modulation of the beam current.

108
S
(al
N
0 4
=10
=
(@)
2
g 100

analytic solution of third-order equation

)4
o
#
z
7
f
o
7
7
2 | | .
10 20 30

position in undulator z / Lg

numerical solution of coupled
first-order equations
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FEL power [arb. units]

Comparison of different input powers of seed radiation.

RN
o
(o)}

RN
o
N

100

0.01 ST | | | |

z/Lg

FEL power depends linearly on input power in exponential regime
However: saturation level is independent of input power

FEL power oscillates in the saturation regime =  energy is pumped back and forth

between electron beam and light wave.
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Simulation of microbunching

The coupled first-order differential equations permit to study microbunching
Use typical parameters of ultraviolet FEL FLASH

106 e o
/ N
//
4
.% 10 ,~'/
(@)) /’
g /
o 7/
Q. //
100 4
/
/
/'/
1 | | |
0 10 20 30
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Numerical study of microbunching in a long undulator magnet

Martin Dohlus, DESY

consider 3 slices

start with uniform distribution

3 FEL buckets

z=0.2Lgo

0.002[ !
=
=)
©
>
D
g =]
S 0
D
[en;
@
®
=
©
©
-0.002 '
= 2 '
T
=
‘B
—
=
m 1
2
(4]
o e
(]
= !
= 0
p 21

0 21
ponderomotive phase w

Note: the FEL buckets move,
mainly in the lethargy regime

microbunches are formed in the
right halves of the buckets

0.01
=
{
2
o
=
=
&
2
T
£
i
®
-0.01
c 2
=%
=
B
5
1
&
E -
E 4]
0.0
=
,
2
i
=
&
&
2
&
2
i
]
-0.01
= 10
(=R
=
=
5
A
&
5
E o
=

il i PP il
w '\-\..-.._,.-'J -\-‘"‘-\.._,._\_
-2m 0 2n
ponderomotive phase
] ] 1 1 z o 1IE Lgﬂ

e

-2

0 Zn
ponderomaotive phase y

0.01

relative enargy deviation n
]

-0.01

- ka

norm, charge density pn
e

relative anergy deviation 1

-0.01

%]

norm. charge density pp

/
Sy

I A n
LY A )
A N o

-2r 1] 2n
ponderomoive phase y

=]

=21 0 2
ponderomaotive phase

Montag, 21. Mai 2012



What happens if the undulator is too long?
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electrons move into left half of FEL buckets and take energy out of light wave
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Evolution of particle phases along undulator axis
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FEL power [W]

Self Amplified Spontaneous Emission

Modulated current density resulting from shot noise in electron beam
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Sy, beam cross section

SASE computed analytically with
third-oder equation

Laser seeding computed numerically
with coupled first-oder equations
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Measured power rise in LCLS at a wavelength of 1.5 Angstrom

Figure courtesy Zhirong Huang
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