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“Let’s think the unthinkable, let’s do the undoable, let us prepare to

grapple with the ineffable itself, and see if we may not eff it after all.”

Douglas Adams

Author of the Hitchhiker’s guide to the Galaxy

Quotation from Dirk Gently’s Holistic Detective Agency
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ZUSAMMENFASSUNG

Die vorliegende Arbeit beschäftigt sich in Experiment und Theorie mit Laser-Plasma beschleu-

nigten Elektronen und optischen Undulatoren zur Erzeugung von brillianter Synchrotronstrahlung.

Zum ersten Mal wird experimentell nachgewießen, dass laserbeschleunigte Elektronenpulse

kürzer als 30 fs sind. Ferner werden solche Elektronenpulse erstmalig in einem Demonstrations-

experiment durch einen magnetischen Undulator als Synchrotronstrahlenquelle genutzt.

Aufbauend auf diesen experimentellen Erkenntnissen, sowie umfangreichen numerischen

Simulationen zur Thomsonstreuung, werden die theoretischen Grundlagen einer neuartigen In-

teraktionsgeometrie für Laser-Materie Wechselwirkungen entwickelt. Diese neue, in der An-

wendbarkeit sehr allgemeine Methode basiert auf raum-zeitlicher Laserpulsformung durch nicht-

lineare Winkeldispersion wie diese durch VLS- (varied-line spacing) Gitter erzeugt werden kann

und hat den Vorteil nicht durch die Fokussierbarkeit des Lasers (Rayleighlänge) begrenzt zu sein.

Zusammen mit laserbeschleunigten Elektronen ermöglicht dieser traveling-wave Thomson scat-

tering (TWTS) benannte Ansatz neuartige, nur auf optischer Technologie basierende Synchrotron-

strahlenquellen mit Zentimeter bis Meter langen optische Undulatoren. Die hierbei mit existieren-

den Lasern erzielbaren Brillianzen übersteigen diese bestehender Thomsonquellen-Designs um

2-3 Größenordnungen.

Die hier vorgestellten Ergebnisse weisen weit über die Grenzen der vorliegenden Arbeit hin-

aus. Die Möglichkeit Laser als Teilchenbeschleuniger und auch optischen Undulator zu verwenden

führt zu bauartbedingt sehr kompakten und energieeffizienten Synchrotronstrahlungsquellen. Die

hieraus resultierende monochromatische Strahlung hoher Brillianz in einem Wellenlängenbereich

von extremen ultraviolett (EUV) zu harten Röntgenstrahlen ist für die Grundlagenforschung, medi-

zinische Anwendungen, Material- und Lebenswissenschaften von fundamentaler Bedeutung und

wird maßgeblich zu einer neuen Generation ultrakurzer Strahlungsquellen und freien Elektronen-

lasern (FELs) beitragen.
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ABSTRACT

This thesis investigates the use of high-power lasers for synchrotron radiation sources with high

brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by

laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence

shows for the first time that LWFA electron bunches are shorter than the driving laser and have

a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle

experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation.

Building upon these experimental findings, as well as extensive numerical simulations of

Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter

interaction are developed. This new method is very general and when tailored towards relativis-

tically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it

does not require a waveguide.

In a theoretical investigation of Thomson scattering, the optical analogue of undulator radi-

ation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted.

This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly

energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson

scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3

orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive

a free-electron laser.

The results presented here extend far beyond the scope of this work. The possibility to use

lasers as particle accelerators, as well as optical undulators, leads to very compact and energy

efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range

from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic

research, medical applications, material and life sciences and is going to significantly contribute

to a new generation of radiation sources and free-electron lasers (FELs).
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1 INTRODUCTION

New light sources have consistently driven progress in science. On the one hand X-ray light

sources based on electron synchrotrons have developed into indispensable tools in many fields

of natural science, medicine and engineering, revealing the inner structure of atoms, molecules

and solids. On the other hand, the invention of the laser in the 1960s [1] as a bright, coherent

light source has triggered a revolution in optics, has become ubiquitous and permeates everyday

life. Since the 1960s laser intensities have increased by more than ten orders of magnitudes

to about 1021–1022 W/cm2 today. With the advent of chirped laser pulse amplification [2, 3] it

became possible to attain peak laser powers up to the terawatt and petawatt range. In fact

today’s laser powers can be used to ionize matter, create plasmas and accelerate electrons to

relativistic energies.

This rapid progress in laser technology and pump-probe diagnostics has led to a growing inter-

est in combining ultrafast lasers and X-ray pulses [4] to examine processes on the femtosecond

time scales that are characteristic for atoms and molecules. Main drivers of this development are

electron linac driven X-FEL projects, such as FLASH, XFEL and LCLS. Yet, smaller scale projects

providing tunable ultrafast X-ray sources on a closer time horizon and for de-centralized research

could significantly enrich the scientific landscape. In most of the scenarios under discussion,

ultrafast Thomson scattering sources using high power lasers play a dominant role, either using

electrons from small-scale linear accelerators [5–9] or laser wakefield accelerators (LWFA) [10–14]

providing compact and low emittance electron bunches [15–20].

The aim of this work is to combine laser and accelerator technology to realize synchrotron

light sources that give access to ultrashort brilliant X-ray sources that enable temporal and spatial

resolutions, both on fs temporal and sub-nm spatial scales. Hereby, the laser acts either as a

particle accelerator, as an optical undulator, or both. The vision is synchrotron light sources as

table-top devices that are less expensive and more readily available both for research and industry

than large sources based on conventional accelerators.

In fundamental research, ultrashort, monoenergetic X-ray sources of high-efficiency are im-

portant for examining atomic and nuclear processes on ultrafast time scales. These could also be
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used for X-ray backlighting in time-resolved diagnostics of warm-dense matter in inertial confine-

ment fusion plasmas or pulsed positron production. A compact, laser-driven synchrotron radia-

tion source is interesting for phase-contrast X-ray imaging in medicine and material sciences and

Thomson-based sources used in semiconductor industry could provide a debris-free, collimated

EUV source, fully compatible with high-vacuum environments.

LASERS AS PARTICLE ACCELERATORS

In order to accelerate electrons over short distances, Tajima and Dawson [21] proposed to use

lasers to excite a charge density wave within a plasma, which travels with almost the speed

of light behind the laser. The extreme axial field gradients that are generated are of excess

100 GV/m [10], which is 3-4 orders of magnitudes more than available in today’s conventional

accelerators, where the maximum accelerating gradient is limited by the break down field of the

accelerating cavities (50− 150 MV/m) [22, 23]. A plasma on the other hand which is already fully

ionized can sustain much higher fields.

Figure 1.1: Cross-section output of the electron density on the axis of laser propagation from 3D
Particle-in-Cell simulation (ILLUMINATION) showing a snapshot of a laser-generated plasma. The
laser pulse has excited a comoving, nonlinear charge-density wave (“bubble”) in the plasma. This
structure provides a high, on axis electric field Ez(z) (green) on the order of TV/m for electron ac-
celeration. The electron bunch inside that acceleration gradient has originated from the backside
of the bubble through wavebreaking and subsequent self-injection.

Such a plasma-based acceleration scheme is depicted in Fig. 1.1, where the laser drives a

plasma wave. In this wave electrons can be injected either by wavebreaking [15–17], optical [24]

or external injection [25], which are then accelerated by the field until the electrons either outrun

the wave or the accelerated electrons leave the plasma, when the plasma terminates. With
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these mechanisms it is possible to accelerate electrons up to GeV energies over cm distances

[18], which makes this a compact accelerator with the highest acceleration gradients realized by

mankind.

What makes these electron bunches unique are its small dimensions, which are generally

comparable to the laser focal spot in diameter and the plasma period in length, which is on the

order of µm [26–28]. Due to this small source size, the normalized emittances and electron pulse

durations are expected to be about one order of magnitude smaller than those achievable by

today’s conventional accelerators [10, 29].

LASERS AS OPTICAL UNDULATORS

Such small source size and short duration make these electron bunches particularly interesting

for secondary radiation sources. By undulators or a counterpropagating laser the electrons in the

bunch undergo a wiggling motion and thus emit synchrotron radiation into a narrow forward angle

cone ∼ 1/ γ at a wavelength ' λ0/ 2γ2. According to electron energies the resulting radiation

can reach far into the X-ray regime to hard radiation at keV and MeV energies. The ultrashort

time-scale on the order of fs of these X-ray flashes potentially leads to peak brilliances that are

competitive with advanced and large-scale accelerators.

(a) (b)

Figure 1.2: (a) A laser (red field) scatters at an ultrashort, relativistic electron (green trajectory)
at γ = 2, thus acting as an optical undulator. (b) In that process the electron (green) emits an
ultrashort, bright X-ray flash (blue). The blue field lines depict the radiation field originating from
the electron.

The quantity of the peak brilliance

Bphot =
Np

τbeam ·∆A[mm2] ·∆Ω[mrad2] · (∆E/Ephot)[0.1 %]
(1.1)

is used as to compare photon sources, such as X-ray beams from third-generation synchrotrons

or free-electron lasers. Here, Np denotes the total photon number, ∆E/Ephot the relative spread

in photon energy and τbeam the X-ray pulse duration. The area and the solid angle from which the

radiation originates are ∆A and ∆Ω respectively. The higher the number, the higher the phase
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space resolution for experiments, and since phase space volume is a conserved quantity in ideal

imaging systems, that number is a useful indicator on experimental trade-offs with regard to the

photon source.

Fig. 1.3 shows the peak brilliance of a number of synchrotrons and free-electron lasers. Laser-

accelerated electrons combined with a small-scale undulator could potentially be used to drive

an FEL. Since the laser would be the largest part of such a table-top FEL [30], the main benefit

compared to a conventional FEL would be the large size reduction in required infrastructure. The

costs of such a laser-driven FEL would be by 1-2 orders of magnitudes lower – on a scale below

10 Mio EUR, rather than several 100 million EUR for a linac-driven FEL.

Thomson scattering sources on the other hand have the potential to become the brightest

sources available in the hard X-ray range beyond 100 keV. There already exist several projects,

such as PLEIADES [7, 31], T-REX and MEGa-Ray [32] that aim for a Thomson source, based on

electrons from linear accelerators. The MEGa-Ray design goal of 1.5× 1021 mm2 mrad2 s−1 at

2 MeV would constitute the world brightest source in that range. However, all current Thomson

scattering designs are limited in peak brilliance (red line in Fig. 1.3) by the onset of nonlinear

Thomson scattering [33] at laser intensities beyond 1017 W/cm2, which negatively affects the

small spectral bandwidth of the X-ray pulse.

THESIS OUTLINE

This work focuses on how lasers can advance both electron beams and synchrotron sources

to boost the overall photon yields of ultrashort X-ray sources of high brilliance. Experimentally,

first experimental proof of laser accelerated electron bunches being shorter than the drive laser

pulse, but comparable to the plasma wavelength is presented. Furthermore, the first synchrotron

light source realized by such laser-accelerated electrons is shown. On a theoretical side the

emphasis is shifted towards the laser as an optical undulator. It is shown that present Thomson

scattering designs using high-power lasers have fundamental scaling issues, that make high-yield

Thomson sources prohibitively expensive. As a way to avoid these limitations, a novel traveling-

wave Thomson scattering (TWTS) scheme is presented, which not only boosts per shot photon

numbers by several orders of magnitudes (Fig. 1.3), but also provides the possibility of obtaining

coherent light sources.

With high-power lasers becoming a versatile tool as both electron source and optical undula-

tor, this leads to a broad range of applications: from ultrashort, all-optical pink-beam sources with

tunability at X-ray energies for pump-probe studies, to debris-free radiation sources operating at

high-average photon fluxes in the extreme ultraviolet (EUV).

As a guide to the reader, the thesis is organized as follows: Chapter 2 provides a brief digest

on the radiation physics required in the following chapters, as well as some basics on laser-

plasma wakefield accelerators. In chapter 3 the experiment measuring the electron bunch dura-

tion through electro-optic detection of transition radiation in the time-domain is shown. Chapter 4

then shifts the focus on the laser, where head-on Thomson scattering is the optical analogue of
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an undulator. First non-ideal effects and the simulation code CLARA for modeling Thomson scat-

tering are introduced and, second, simulation results for high-average power, as well as high-peak

power sources are presented. Chapter 5 explains how to eliminate scaling limitations of Thom-

son scattering discussed in the previous chapter by a novel traveling-wave Thomson scattering

(TWTS) method and describes its consequences for both Thomson sources and potential free-

electron lasers based on optical undulators. In the conclusion future directions and consequences

beyond this work are touched.
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Figure 1.3: Compares synchrotron, FEL and laser-driven X-ray sources by peak brilliance. Table-
top free-electron lasers driven by laser wakefield accelerated electrons (TT-FELs) could become
interesting as soon as electron energy spread improves. At high X-ray energies, where Thomson
sources are the brightest sources to date, the nonlinear Thomson regime so far limits brilliances
to or below the red line. The new traveling-wave Thomson scattering geometry circumvents
this bottleneck (dashed line), such that peak brilliance is only limited by laser power and electron
focusability.

6 Chapter 1 Introduction



2 BASICS OF SYNCHROTRON
RADIATION AND ELECTRON
ACCELERATION

According to (1.1) the peak spectral brightness or brilliance, of a light source is defined as a

photon number density over phase-space, emission duration and the radiated energy spectrum.

Therefore, brilliant light sources are favorably directed, ultrashort, monochromatic and originate

from a small spatial region.

At optical frequencies, high-power lasers are the prime example for such light sources. Cur-

rent petawatt class lasers at 800 nm and 100 fs duration achieve brilliances

Blaser =
P[W]/ (~ω)

λ2[µm] ·∆ω/ω[0.1 %BW]
on the order of 1033 − 1034 mm−1 mrad−2 s−1[0.1 %BW].

(2.1)

In the X-ray range however, where the shorter radiative life times of excited states, as well

as the scarcity in X-ray pump-light sources make amplified stimulated emission schemes largely

impracticable, brilliant X-ray sources are obtained by synchrotron radiation from particle accel-

erators, such as PETRA III, ESRF, LCLS or Spring-8. Here, relativistically moving electrons are

accelerated by electric or magnetic fields. Analogous to the example of the Hertzian dipole, this

acceleration and the finite speed of light leads to emission of classical radiation. The main feature

though, is that synchrotron sources exploit special relativity. On the one hand the Doppler effect

experienced by the relativistic charge with respect to the accelerating field gives rise to a massive

blueshift in the emitted radiation, which often ends up in the X-ray range. The “searchlight effect”

on the other hand causes the radiation to be directed primarily into a narrow angle cone around

the direction of the moving charge. This is the physical basis for virtually all brilliant X-Ray sources

at high energies.

Following the aim of this work, which is using high-power lasers for brilliant, potentially all-
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optical X-ray sources, first the basic physics of synchrotron radiation with emphasis on undula-

tors and free-electron lasers (FELs) is reviewed. Then, the laser-driven electron accelerators and

optical undulators are introduced and discussed with respect to advantages and challenges in

experiment.

2.1 UNDULATOR RADIATION

Undulator or wiggler radiation is one of the most common types of synchrotron radiation and

can be found in almost all synchrotron facilities. It is emitted when an relativistic electron beam

passes through a static magnetic field with spatial periodicity. In practice, undulators are realized

by a linear succession of electric or permanent magnets that are positioned consecutively with

alternating north-south orientations. The electrons that pass through an undulator undergo a wig-

gling motion perpendicular to their direction of flight and, due to the relativistic Doppler upshift,

emit high-energy radiation into a narrow angle cone into the electron direction of propagation.

Figure 2.1: An undulator provides an alternating magnetic field with a period of λu with a gap g
between the magnets for an electron to pass through. This magnetic field causes an electron
passing along the undulator axis to undergo an oscillating motion according to the Lorentz force
(2.5). Analogues to classic dipole radiation, an electro-magnetic wave is emitted. The relativistic
motion of the electron γ � 1 gives rise to the search light effect, which is forward emission into
a narrow 1/ γ cone and the Doppler effect, a massive contraction by ∼ (2γ)−1 of the radiated
wavelength λr with respect to the undulator period λu.

In the following, expressions for the energy radiated by a single relativistic electron in a planar

undulator are derived. The undulator magnetic field B(y, z) = Bx(y, z)ex + By(y, z)ey with an

undulator period of λu, a gap g between the magnet poles and a maximum field B̂ without a gap

can be approximated by [1]

By(y, z) =
B̂

cosh(kug/ 2)
cosh(kuy) cos(kuz) (2.2)

Bx(y, z) =
B̂

cosh(kug/ 2)
sinh(kuy) cos(kuz) , (2.3)

where ku = 2π/ λu. More specifically, the magnetic field on the z-axis is given by

B(0, z) =
B̂

cosh(kug/ 2)︸ ︷︷ ︸
B0

cos(kuz)ey . (2.4)

8 Chapter 2 Basics of synchrotron radiation and electron acceleration



For relativistic electrons, velocity and momentum are customary written as normalized, di-

mensionless quantities. The velocity is normalized with respect to the speed of light β = v /c

and the relativistic momentum p = γ · mv = γmcβ with the Lorentz factor γ = 1/
√

1− β2 is

normalized to mc. Hence, the normalized relativistic momentum is defined as u = γβ.

For an electron moving along this axis with relativistic speeds γ0 � 1, integration of (2.4)

according to the equation of motion

d
dt

(γmcβ) = e

(
E︸︷︷︸
=0

+cβ× B

)
, (2.5)

yields for ux � 1 the normalized longitudinal and transversal velocities

βx(t) =
K
γ0

cos(ku cβ0t︸︷︷︸
'z(t)

) (2.6)

βz(t) = β0

(
1− K 2

4γ2
0

)
︸ ︷︷ ︸

βz

− K 2

4γ2
0

cos(2kucβ0t) (2.7)

and the time-dependent coordinates of the electron

x(t) =
K

kuγ
sin(kucβ0t) (2.8)

z(t) = β0

(
1− K 2

4γ2
0

)
cβ0t − K 2

8kuγ2
0

sin(2kucβ0t) (2.9)

and thus its trajectory. The dimensionless undulator strength parameter is defined as

K =
|e|B0λu

2πmc
= 0.934 · B0[T]λu[cm] , (2.10)

which according to (2.6) denotes the maximum normalized momentum ux = γβx,max = K in

transverse direction. This is equivalent to stating that for K approaching unity the kinetic energy

of the transverse electron oscillation becomes comparable to the electron rest energy mc2. Since

magnetic fields do no work, but merely exert Lorentz forces perpendicular to the electron velocity,

an undulator field cannot increase the transverse velocity of an electron without at the same time

reducing its velocity along the undulator axis. As a result, the mean electron velocity βz = β0(1−
K 2/ (4γ2)) on axis (see (2.7)) is reduced. In order to be consistent with an equivalent description

later in laser-electron dynamics (ch. 2.3), this effect is named the photon drag. The longitudinal

oscillation frequency 2kucβ0 is twice the undulator frequency, because transverse deflections in

any direction reduce the on axis velocity βz . Hence, the initial assumption of z(t) ' cβ0t does not

hold anymore for large oscillation amplitudes x(t), when K approaches values of unity or greater.

This leads to the distinction between the linear undulator regime K � 1, where all motions

are sinusoidal, as in (2.6) and (2.9), and the so called wiggler regime for K � 1, where above

equations are not valid anymore.

More specifically, the large K -parameter of a wiggler leads to a spectral and angular radiation

profile that strongly differs from the monoenergetic spectrum expected for a simple harmonic os-

Undulator radiation 9



cillation of an electron in an undulator, as in 2.2(d). Not only does the decreased on-axis velocity

βz cause a redshift of the entire radiated spectrum, but due to the oscillation in z(t), the elec-

tron motion becomes anharmonic. The radiation spectra arising from these anharmonic electron

trajectories are broad and consist of many higher harmonics, see Fig. 2.2(e). Also, the radiation

cone widens in the plane of electron oscillations. For γ � 1, the maximum angle of the electron

with respect to its axis of propagation is given by tanα = βx,max/ βz ' K/ γ0, which shows that

wigglers K � 1 radiate into a larger solid angle cone than undulators with 1/ γ0.

(a) undulator radiation (b) bending magnet radiation (c) wiggler radiation

(d) undulator regime (e) wiggler regime

Figure 2.2: (a)-(c) compares the electric field lines of a single relativistic electron at γ0 = 2 (green)
in the near field after passing through (a) a five-period undulator (K = 0.2), (b) a bending magnet
and (c) a wiggler (K = 1.0). In the undulator, the electric field lines feature sinusoidal oscillations.
The bending magnet gives rise to an electromagnetic shock-front, whereas a wiggler with its large
electron oscillation amplitudes acts like a series of bending magnets. (d-e) depict the resulting
on-axis spectra of (d) the undulator, which radiates only at the fundamental ωsc = ω0 · 2γ2

0 and (e)
shows the corresponding multi-harmonic spectrum for a wiggler. The red dotted curve depicts
the broad bending magnet spectrum, corresponding to the same critical frequency (green) as the
wiggler. Both curves are normalized to the same maximum spectral amplitude.

The resulting undulator spectrum in the far field from a single electron can be derived by inte-

grating (2.6) and (2.7) over N0 undulator periods, using the classical, relativistic radiation formula
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from Jackson [2]

d2W
dω dΩ

=
e2

4π2c

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

+∞∫
−∞

n×
[
(n− β(t))× β̇(t)

]
(1− β(t) · n)2 eiω

tret︷ ︸︸ ︷
(t − n · r(t)/c) dt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

. (2.11)

Hereby, the detector is assumed to be in a direction of unit vector n with respect to the electron

and r(t) denotes the electron trajectory. In general the nth harmonic has a wavelength of

λn =
λu

2γ2 · n

(
1 +

K 2

2
+ γ2θ2

)
, (2.12)

and a bandwidth of ∆λ/ λn = 1/ (n ·N0), where N0 denotes the number of undulator periods. The

observation angle θ is taken between the undulator axis in electron propagation direction and the

direction of the observer. In the second factor K 2/ 2 is the photon drag contribution and γ2θ2 the

off-axis Doppler effect. Both contributions have the effect of a red-shift in wavelength.

When integrating a more general expression [1, 3, 4] without the approximation for z(t) ' cβ0t

the spectral energy distribution on axis is given by

dWn

dΩ dω

∣∣∣∣
θ=0

=
e2γ2

0

4πε0c
· Fn(K ) · sin2(N0π(ω − nω1)/ω1)

(π(ω − nω1)/ω1)2 , (2.13)

with

ω1 =
2πc
λu
·

(1 + β0)γ2
0

1 + K 2/ 2
(2.14)

Fn(K ) =
n2K 2

(1 + K 2/ 2)2

[
J(n−1)/ 2

(
nK 2

4(1 + K 2/ 2)

)
− J(n+1)/ 2

(
nK 2

4(1 + K 2/ 2)

)]2

, (2.15)

where ω1 denotes the fundamental angular frequency of the emitted radiation and Fn(K ), which

uses Bessel functions of the first kind Jm(x), comprises the relative amplitudes of the higher

harmonics. From basic Fourier transform properties of periodic functions, when considering (2.11)

being rescaled to retarded time t ′ = t − n · r(t), one can derive [1, 3, 4] that on axis, only odd

harmonics (n = 1, 3, 5 . . .) give a contribution, while even harmonics (n = 2, 4, 6 . . .) only appear

at off-axis angles.

When integrating over the spectrum, the on-axis intensity of scattered radiation becomes

dWn

dΩ

∣∣∣∣
θ=0

=

∫
dWn

dΩ dω

∣∣∣∣
θ=0

dω =
e2γ2

0N0ω1

4πε0c
· Fn(K ) , (2.16)

The total radiated energy from Ne electrons is

Wtot =

∫ +∞∑
n=1

dWn

dΩ dω
dΩ dω =

πe2K 2γ2
0NeN0

3ε0λu
(2.17)

and solely for the first harmonic for K � 1 [4]

W1,tot =

∫
dW1

dΩ dω
dΩdω =

πe2γ2
0NeN0

3ε0λu
· K 2

(1 + K 2/ 2)2 . (2.18)
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Due to the angle dependence of (2.12) the combination of minimum fundamental wavelength

λ1 and the minimum bandwidth ∆λ/ λ1 can only be achieved within a central cone of θcen =√
1 + K 2/ 2/ (

√
N0γ0). Integrating over the corresponding solid angle ∆Ω = π(1 + K 2/ 2)/ (N0γ

2
0)

yields

W1,cen =
πe2γ2

0Ne

ε0λu
· K 2

(1 + K 2/ 2)2 ·
[
J0

(
K 2

4(1 + K 2/ 2)

)
− J1

(
K 2

4(1 + K 2/ 2)

)]2

. (2.19)

Note that the radiated energy here is independent from the number of undulator periods N0.

Instead, longer undulators provide smaller bandwidths ∆λ/ λ1 = 1/N0.

Although equation (2.15) already denotes the spectral amplitudes of the higher harmonics

on axis, in the wiggler limit K � 1, where the number of harmonics grows as K 3, the critical

frequency

ωc = nc · ω1 (2.20)

is a useful figure. The critical frequency occurs at the nc = 3K
4

(
1 + K2

2

)
harmonic and is defined

such that half the radiated power is radiated at lower frequencies and the other half at higher

energies.

2.2 FREE-ELECTRON LASERS

Radiation from a self-amplified spontaneous emission free-electron lasers (SASE-FEL) [5–8] is

essentially undulator radiation, which is intense enough to act back on the electrons, and cause

micro-bunching in an electron beam with a period matching the wavelength of the undulator

radiation. Due to this micro-bunching the radiation emitted by the electrons becomes partially

coherent in time and hence more intense. This amplified radiation can again act back on the

electrons and further enhance the electron bunching and thus induce both temporal and spatial

coherence of the radiation. By sustaining this feedback, the radiation field amplitude can grow

exponentially until it eventually reaches saturation and the originally incoherent undulator radiation

attains, partial temporal and full transversal coherence, and thus an enhancement in power by

several orders of magnitudes. When realized at high electron energies, this process leads to

much coveted, laser-like radiation properties in the X-ray part of the spectrum.

Regarding the experimental requisites, the deciding difference between undulator radiation

and a SASE-type free-electron laser is the phase space density of the electron beam. Thereby,

high electron density is required for a strong coupling between electrons and radiation, whereas

a low beam divergence and energy spread is essential for starting and maintaining the bunching

dynamics of the FEL feedback, so that an increasing fraction of electrons radiates at virtually the

same frequency into the same direction and thus collectively contributes towards one spatially

coherent radiation mode. In practice, this leads to daunting requirements on the desired electron

beam parameters. Since the electrons are the key to FELs, any improvement in electron beam

quality beyond the current state-of-the-art has a direct impact on FEL performance and the range

of realizable FEL designs.
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The term free-electron laser (FEL) draws a parallel to conventional optical lasers that has arisen

from the quantum description of this process [9], which was developed before it was in most

cases being replaced by a purely classical description [10]. This parallel becomes especially ap-

parent in an FEL amplifier as in Fig. 2.3(a) or [6], where not the undulator radiation itself, but

an external seed pulse at the resonant wavelength interacts with the electron bunch inside an

undulator and results in an amplification of the seed pulse. This approach is often extended to

a seeded FEL resonator as in Fig. 2.3(b), where the amplified pulse is picked up by mirrors and

routed back to the undulator entrance, where it is again used as a seed pulse with another, new

electron bunch. In succession, the pulse is repeatedly amplified and fed back as the seed for

the consecutive pass through the undulator. Like in a laser oscillator, a mirror with a few percent

transmission or a small hole couples out part of the amplified FEL radiation. So the pulse intensity

grows until the losses by the outcoupling mirror equals the gain of a single pass. Compared to a

laser using stimulated emission from a metastable quantum state, an FEL realizes amplification

by interaction with an electron bunch in an undulator and transfers kinetic energy of the electron

bunch into coherent radiation. This method has proven to be successful in providing intense, both

spatially and temporally coherent pulses in the far UV. However, the extension of such resonators

towards the X-ray region is increasingly difficult, since efficient mirrors with reflectivities beyond

90% and ultrashort light sources for the initial seed pulse are not available.

In contrast to such a seeded FEL, a self-amplified spontaneous emission free-electron laser

(SASE-FEL) does not require an external seed, since the incoherent undulator radiation, also called

spontaneous emission, is itself the seed pulse that causes the first bunching and continues to

drive a feedback loop of amplified radiation giving rise to increased electron bunching, more

radiation and so on – until the process saturates because maximum bunching is reached. In a

SASE-FEL the issue of efficient mirrors is avoided by extending the undulator to a length that

allows to achieve saturation in a single pass through an undulator. For these reasons, this type of

FEL is currently the basis for all X-ray FELs in the world.

Nevertheless, the basic physics for FELs, seeded or self-amplified, is the same: For a single

electron in an undulator the wavelength condition is that for each undulator period the longitudi-

nal walk-off between the relativistic electron and the emitted radiation amounts to one radiation

wavelength λ for every undulator period λu – otherwise the radiation would destructively inter-

fere with itself. If now a second electron with the same velocity would be placed one radiation

wavelength ahead of the first electron, the radiation coming from the first electron behind would

exactly match the oscillating field that the second electron experiences from the undulator. Then

the radiation of the first and the second electron would constructively interfere. So perfect coher-

ence would be obtained if all electrons are longitudinally separated by multiples of the radiation

wavelength. Electron beams from a standard accelerator source, however, are not in such a per-

fect initial arrangement. Instead the electrons are randomly scattered within the bunch. Going

back to the single electron, reacting to some radiation field, either from electrons further behind

or from an external seed pulse, the change in motion can be calculated according to the Lorentz

equation
d
dt

(γmcβ) = e (E + cβ× B) , (2.21)
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(a) FEL amplifier

(b) FEL resonator

(c) SASE-FEL

Figure 2.3: (a) In an FEL amplifier, the initial radiation field is provided by a seed laser overlapping
with the electron bunch. In such a scenario, the radiation wavelength resulting from the undu-
lator needs to be tuned close to the one of the seed laser. Within the undulator the interaction
between laser field and electron beam leads to micro-bunching and a mean energy reduction in
the electron bunch, so that kinetic electron energy is transferred to the laser beam. The result
is an amplified laser beam. (b) Similarly, this scheme can be also realized in a seeded resonator
configuration. Here, the amplified radiation from one electron bunch interacting in the undulator
with the initial seed laser pulse is trapped in a cavity. Then, in subsequent passes through the un-
dulator, the same radiation is used as its own seed for the interaction with new electron bunches
and thus is amplified further. As a result, the intensity of the oscillating laser pulse increases with
each pass. Part of that increase in laser energy is coupled out by a semi-transparent mirror. (c) In
a SASE-FEL configuration, there exists neither an external seed laser nor an enhancement cav-
ity. Here the seed is entirely provided by the incoherent undulator radiation itself and the entire
amplification takes place in a single pass of an electron bunch through a long undulator.
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which when multiplied by β yields the change in kinetic energy

dWkin

dt
=

d(γβ)

dt
· β = eE · β (2.22)

of one electron at a given velocity β. In the ultra-relativistic limit when β ' 1 and |β̇| � γ̇/ γ this

equation simplifies to

γ̇ =
eE · β
m · c

. (2.23)

Equivalently in the low energy limit at β � 1 (2.22) becomes

dWkin

dt
= ecE · β . (2.24)

The latter eq. (2.24) can be used to explain the FEL bunching mechanism in a nutshell. In

the average electron rest frame both the undulator field Eu(ω?t + k?z) and the external radiation

field Er(ω
?t − k?z) are counterpropagating and have the same periodicity ω? = γ · ω0, so that the

incident frequency is the same as the scattered frequency. One can write the total electric field

and the perpendicular oscillation velocity β⊥ as

E⊥ = E⊥,u + E⊥,r

β⊥ = β⊥,u + β⊥,r . (2.25)

When calculating the change in electron energy according to (2.24), the term E · β = E⊥ · β⊥
oscillates with the angular frequency ω?. This situation becomes more clear when one examines

the average energy change over one optical cycle (ω?t) and obtains the energy equation for the

ponderomotive force

1
ec

〈
dWkin

dt

〉
= 〈Eu(ω?t + k?z) · βu(ω?t + k?z)〉+ 〈Er(ω

?t − k?z) · βr(ω
?t − k?z)〉

+ 〈Eu(ω?t + k?z) · βr(ω
?t − k?z)〉+ 〈Er(ω

?t − k?z) · βu(ω?t + k?z)〉

= F(2k?z) (2.26)

In the first two terms of (2.26) the same phase relation exists at all electron positions, so that

the average is constant. Furthermore, this constant vanishes according to (2.21), as long as the

cycle averaged energy change from the following mixed terms is much smaller compared to the

electron rest energy mc2. For the mixed terms there is no fixed phase relation and the average

depends on the respective electron position z. Since the undulator and radiation field feature

both the same frequency, the ponderomotive force on the electrons has a spatial periodicity of

2k? = 2ω?/c. Therefore electrons can in an undulator, depending on their relative position in

the beam z, gain or loose energy through the interaction with radiation. Due to conservation of

energy in an electron beam of electron density ne

nemc2∆Wkin =
∆E2

r

8π
, (2.27)

this leads to a decrease or increase in the radiation field energy density respectively.
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In order to obtain a more quantitative picture of the working of SASE-FELs with its require-

ments on electron beams and limitations, it is useful to discuss a simple self-consistent SASE-FEL

model in 1D. For every FEL one needs

1. modulation of the electron energy with respect to the longitudinal position by interacting

with the radiation field.

2. change of the longitudinal electron positions relative to the bunch due to path length differ-

ences arising from the energy modulation.

3. coherent emission of radiation by a micro-bunched electron beam and hence growth of the

radiation field amplitude. The field acts back on the electrons to increase spatial energy

modulation.

4. precise synchronization of electron velocity with the undulator period to sustain the driving

process of the modulation over many undulator periods.

In the following, the inertial frame of the discussion is now chosen to be the laboratory frame,

so that the undulator field is the static magnetic field, which as a starting point and for mere

analytical convenience is assumed to be helical instead of planar. The on-axis magnetic field of

such an undulator [1] is

B = B0 [cos(2πz/ λu) · ex + sin(2πz/ λu) · ey ] , (2.28)

while the corresponding electron velocity in the undulator field is given by

β =
K
γ

[sin(2πz/ λu)ex + cos(2πz/ λu)ey ] + βzez . (2.29)

Furthermore, the undulator parameter K is in the following, for sake of simplicity, chosen to be

small K � 1. Derivations for larger K show basically similar physics, where the main effects are

a different resonant wavelength and the inclusion of higher harmonics. Therefore, in this limit of

small K the first harmonic of the undulator (2.12) is

λ =
λu

2γ2 . (2.30)

Then, as the driver of the energy modulation one assumes an electro-magnetic one-dimensional

plane wave

E = Er [excos(2πz/ λ− ωt + Ψ) + eysin(2πz/ λ− ωt + Ψ)] (2.31)

with an arbitrary phase Ψ. In general this can be any component of the initial electric field of

the incoherent undulator radiation, where the phase Ψ is determined by the random electron

positions within the electron beam. That radiation from spontaneous undulator radiation is often

also referred to as shot noise. Initially, many such plane wave modes with different phases Ψ

and frequencies ω exist relative to one another. Only because the FEL process amplifies at one

characteristic frequency ωr , the corresponding mode is preferred and thus becomes dominant

compared to all other radiation modes. In the following, only the mode which is amplified in the

end is considered.
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The first FEL equation in 1D features the aforementioned electron energy modulation (2.23)

derived from the Lorentz equation (2.21)

γ̇ =
eE · β
m · c

. (2.32)

Now, inserting the electron motion in the undulator (2.29) and the external field (2.31) into (2.32)

yields

mcγ̇ = eE0
K
γ

sin(φ) , (2.33)

with the so called ponderomotive force phase

φ = 2π
(

1
λ

+
1
λu

)
(cβz,0t + z0,j)− ωt + Ψ , (2.34)

now in the laboratory frame instead of φ? = 2k?z0,j + Ψ in the average electron rest frame. Here

the position

z = (cβz,0t + z0,j) (2.35)

of the j th electron in an electron bunch is parameterized by the average bunch velocity cβz,0t and

the electron position z0,j relative to the bunch. It is immediately clear from (2.33) that for a cycle-

averaged change in electron energy 〈γ̇〉t , which does not cancel out over a few periods of the

undulator or radiation field, it is necessary to keep φ constant over time.

φ̇ = 0 (2.36)

This criterion is often dubbed the synchronism condition because it requires a stationary phase

relation between the external radiation field and the electron oscillation in the undulator. For

(2.34), it is satisfied for the radiation wavelength λr = λu(1− βz,0)/ βz,0, which is nothing else but

the relation for on-axis radiation in a helical undulator

λr =
λu

2γ2
r

(
1 + K 2) for γ � 1 . (2.37)

Phrased differently, above resonance condition (2.37) says that an electron needs to phase slip

backwards in the external field by one period for each oscillation in the undulator.

After the energy modulation, each electron in the bunch has a different kinetic energy, which

depends on the electron’s phase Ψ and thus its longitudinal position relative to the radiation field.

Since the electron energies now differ slightly from the resonant energy, they slip with respect to

the ponderomotive phase φ. For some electron j of an electron bunch consisting of Ne electrons

the phase slipping velocity becomes

dφ
dt

=
2πc
λr

(
βz

βz,0
− 1
)

(2.38)

and denotes the second FEL equation.

If the electrons are in or close to resonance with the radiation field, the interaction leads to an

energy modulation, which is sinusoidal in the longitudinal electron bunch coordinate (see (2.33)

and Fig. 2.5(b)). Electrons within the phase interval ]0 + Ψ,π + Ψ[ gain energy and electrons in
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the phase interval ]π+ Ψ, 2π+ Ψ[ are slowed down. Therefore, all electrons tend to drift towards

the phase π + Ψ and become bunched with the periodicity of the radiation field.

Figure 2.4: Phase-space diagram of ponderomotive phase φ and the electron energy relative to
the resonant energy γ0 as in (2.37), corresponding to the phase-space trajectories of electrons
that individually oscillate in the ponderomotive potential of a free-electron laser. Initially, electrons
are arbitrarily distributed in phase around a defined starting energy. As time passes the electrons
start to either oscillate around π + Ψ within the separatrix or, above a threshold deviation ∆γ in
energy, drift unboundedly to higher or lower phases.

Combining (2.38) and (2.33) to a second order differential equation yields a pendulum equation

d2φ

dt2 =
2πc
λr

γ̇

γ3
r

= 2cku
eE0K
mcγ2

r︸ ︷︷ ︸
≡Ω2

sin(φ) (2.39)

d2φ

dt2 − 2ckuΩ2 sin(φ) = 0 . (2.40)

This equation governs the phase-space trajectories of electrons, when these do not significantly

change the initial radiation field. In this limit, individual electrons are seen as being isolated from

all other electrons and simply react to an external field. In a SASE-FEL, where the radiation

field grows by several orders of magnitudes from incoherent undulator radiation, this condition

is clearly violated. However, these simple solutions give insight into the general nature of these

trajectories and a first estimate on the necessary condition for electron trapping.

After introducing the quantity η = (γ − γr)/ γr for the relative change in electron energy com-

pared to the resonant energy γr , (2.40) can be readily rephrased as a Hamiltonian

H(φ, η) = ckuη
2 + Ω2 cosφ, (2.41)

with its canonical momenta

∂H
∂φ

= −η̇ (2.42)

∂H
∂η

= φ̇. (2.43)
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In Fig. 2.4, the Hamiltonian can then be used to map out the possible electron phase-space tra-

jectories. Analogous to every other pendulum, there exists a set of trajectories which represent

electrons being trapped within the ponderomotive potential and a set of unbound trajectories at

large energies |η|. The curve dividing these two sets is the separatrix. According to (2.41) the

largest energy deviation attained on this curve is

∆γsep =

√
eE0K
mc2ku

, (2.44)

so only electrons that are within the energy interval of [γ −∆γ, γ + ∆γ] can become trapped in

the ponderomotive potential and thus contribute to the FEL process.

Hence, if the initial electron energy is close to resonance γr , where the undulator field fre-

quency is equal to the external radiation field frequency in the instantaneous rest frame of the

electron, the electron is trapped inside the separatrix. In an FEL with many electrons, the ini-

tial phase distribution of electrons is arbitrary. If these electrons start from around the resonant

energy with regard to the external field, the electrons start to circle around and at times reach

a point, where the energy spread of all electrons has increased, but the electrons have become

bunched in phase, such that these start to radiate coherently. Since the electrons continue to

oscillate within the seperatrix, they get out of phase again after some time.

So far, in this discussion only a single electron responding to two external fields or many

electrons without mutual interaction were considered. For an FEL amplifier, which is essentially

amplifying some external seed field, this analysis is valid for the so called low gain regime [5].

In an FEL starting without an initial external seed field or in a high-gain amplifier the interactions

of the electrons among one another cannot be neglected anymore. In case of no initial radiation

field, small density fluctuations in the electron beam provide the initial field, which acts on the

electron beam and is amplified, while the density fluctuations are increased. Such a self-seeding

and amplifying FEL process is the very definition of a SASE (self-amplified stimulated emission)

FEL. Since such a SASE-FEL free-electron laser consists of a feed back the growth in the field

depends on the existing radiation field, one expects some type of exponential growth in the

time-evolution of radiation field. The strength of this growth will on the one hand depend on the

strength of the undulator field and on the other hand on the density of the electron beam, which

radiates and absorbs radiation. Thus, a higher electron density is expected to result in a stronger

radiative coupling between the individual electrons and thus a stronger growth of the radiation

field.

At some point an FEL is going to saturate. One possibility is that all electrons are in phase

and thus cannot become more bunched. The other possibility is that the electrons loose so

much energy due to the emitted radiation, see first term in (2.26), that they eventually fall out

of resonance. Also, in this high-gain, SASE regime the electrons influence each other and thus

do not follow the pendulum equation anymore. The general characteristics of Fig. 2.4 however

remain the same. Electron bunching happens at the cost of an increasing energy spread and

there is some finite energy width criterion which needs to be met for starting and maintaining

the FEL instability.
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Self-consistent SASE-FEL in 1D

In addition to the first two FEL equations describing the phase slippage (2.38) and energy modu-

lation (2.33) it is now necessary to close the set of 1D FEL equation by including the back reaction

of the oscillating electrons to the radiation field. In this way all electrons follow individually the

first two FEL equations, but interact through a common radiation field.

That is done by the wave equation derived from the Maxwell equations using the vector

potential A(Ax , Ay , Az) and the current density J(Jx , Jy , Jz).(
∇2 − 1

c2

∂2

∂2t

)
A = −4π

c
J (2.45)

For the sake of simplicity we constrain ourselves to the case of small K � 1, such that

the change in current density Jz in the direction of propagation becomes negligible. In addition,

changes over the transverse beam and field cross section are assumed to be small, so in the

following (2.45) can be reduced to a scalar equation using complex scalars for the transverse

components of the vector potential Â = Ax − iAy and current density Ĵ = Jx − iJy .

(
∂2

∂2z
− 1

c2

∂2

∂2t

)
Â = −4π

c
Ĵ (2.46)

According to J = −ecneβ and (2.29) for the undulator field, Jx and Jy can be written down as

Jx = −ec〈ne(x)〉λr

〈
K
γj

cos(kuzj)

〉
λr

(2.47)

Jy = −ec〈ne(x)〉λr

〈
K
γj

sin(kuzj)

〉
λr

. (2.48)

Here, both the density ne and the velocity β are denoted by averaged quantities over one radi-

ation wavelength λr in z, such that ne represents a smooth number density envelope (without

microbunching) over the electron beam and 〈β〉 the mean transverse current from the undulator

oscillation. Hence, the average 〈. . .〉 is to be taken over Ne electrons 1/Ne ·
∑Ne

j=1(. . .) within a

radiation wavelength. In principle it is necessary to also include the transverse current by the

radiation field. In practice however, the corresponding K-parameter Kr = eEr / (mc2kr) from the

radiation field is much smaller than the undulator K , so that a term for self-induced radiation

damping is negligible.

The vector potential is written as

Â = i
α

kr
eikr (z−ct) , with α = −EreiΨr (2.49)

Furthermore, it is assumed that the electron bunch length Lb is much longer than the radiation

wavelength Lb � λr and the total slippage length Lb � N0 · λr , which is the longitudinal walk-

off between electrons and emitted radiation over the entire N0 undulator periods. Here, these
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approximations allow to neglect the z-derivative. In reality, these conditions do not always hold.

Especially, ultrashort electron bunches with durations of only a few fs violate this slowly-varying

envelope approximation (SVEA). However, it is possible to formulate an analytic FEL theory in 1D,

which does not rely on the SVEA [11]. In such an extended theory it turns out that such electron

bunches have a shorter start-up time in an FEL and reach the exponential amplification regime

faster than the long electron beams of the same electrons density.

Inserting these definitions into the scalar equation (2.46)(
∂2

∂2z
− 1

c2

∂2

∂2t

)
i
α

kr
eikr (z−ct) = −4πneK

〈
e−ikuzj · e−ikr (z−ct)

γj

〉
· eikr (z−ct) , (2.50)

applying the derivatives to α and eikr (z−ct)

i

kr

[
∂2α

∂2z
− 1

c2

∂2α

∂2t

]
︸ ︷︷ ︸

'0

−2
[
∂α

∂z
+

1
c
∂α

∂t

]
= −4πeneK

〈
e−iφj

γj

〉
, (2.51)

as well as the slowly varying amplitude approximation

∂α

∂z
+

1
c
∂α

∂t
= 2πeneK

〈
e−iφj

γj

〉
(2.52)

and the long electron bunch approximation yields

∂α

∂t
= 2πecneK

〈
e−iφj

γj

〉
. (2.53)

In this derivation the slowly varying envelope approximations∣∣∣∣ 1
krα

∂α

∂z

∣∣∣∣� 1 ;

∣∣∣∣ 1
ckrα

∂α

∂t

∣∣∣∣� 1 (2.54)

allow to neglect the second order derivatives, whereas the longitudinal coordinate z is eliminated

in the field equation by separating the average electron bunch movement 〈βz〉ct from changes in

the temporal bunch or radiation field profile, which are both assumed to be negligibly small.

After rewriting (2.32) in terms of vector potential amplitudes and (2.38) in terms of γ instead

of β, the set of closed set of FEL equations is.

φ̇j =
2πc
λu

(
1−

γ2
0

γ2
j

)
(phase slipping)

γ̇j = − ecK
2mc2γj

[αeiφj + c.c.] (energy modulation) (2.55)

α̇ = 2πecneK
〈

e−iφj

γj

〉
(radiation field)

The first two equations determine how the individual electrons move in the radiation field.

If the coupling of the electrons to the external radiation field is weak ∆α � α, so that α can
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be considered constant, these pendulum equations suffice to describe the basic dynamics of

the system. Up to this point the electrons are not significantly interacting with one another. If

however the radiation contribution of the electrons significantly changes the external radiation

field, the third equation describing the evolution of the field parametrically couples Ne electrons

to one another. The phase-space picture of Fig. 2.4 is now invalid.

The term B(t) = 〈exp(−iφj)/ γj〉 can be identified as a measure of micro-bunching in the elec-

tron beam. If all electrons are at the same phase and energy, the factor is unity and all electrons

radiate coherently. In the other extreme the electrons are arbitrarily distributed along the axis

of propagation, where the phase-average approaches zero and all electrons radiate incoherently.

However, it is not exactly zero, since the finite number of electrons Ne in the beam gives rise to a

statistical remainder of phase correlation on the order of
√

1/Ne. It is this shot noise from electron

bunches which provides the initial seed field from incoherent undulator radiation and starts the

SASE process.

The field equation and the pendulum equations are parametrically coupled by the radiation

field amplitude and the bunching factor B(t). Without micro-bunching the field would only grow

linearly with time. The question is thus: under which conditions is a positive feedback loop estab-

lished between radiation field and electron beam micro-bunching, so that the radiation amplitude

becomes an exponentially growing quantity?

Extracting more on the system properties is greatly facilitated by a choice of dimensionless

coordinates [5, 12, 13] that features a universal scaling. In these coordinates all coupling factors

depending on undulator wavelength, radiation wavelength or electron energy are normalized to

be part of the coordinates, so that solutions of the coupled equations only depend on initial

conditions. Such a universal scaling goes beyond a mere mental exercise, since it relates free-

electron lasers with very different electron energies or undulator geometries to one another and

thus enables comparisons between different machines.

When rewriting the field α as a dimensionless quantity parallel to the K parameter, the radia-

tion equation can be put into the suggestive form

∂

∂t
Kr(t) = − 4π

β̂trans︸ ︷︷ ︸
=K/γ0

(2ω0)︸ ︷︷ ︸
∝[t−1]

(γr / γ0)2

∝ne︷︸︸︷
ρ3
〈

eiφj

γj

〉
. (2.56)

The equation already looks similar to (2.46), whereby β̂trans = K/ γ0 denotes the dimensionless

transverse velocity and (2ω0) = 4cπ/ λu = (ωr / γ2
0) the normalized radiation frequency. The new

dimensionless ρ3 parameter collects all remaining constants and is proportional to the electron

density ne. The definition of this so called Pierce parameter is

ρ =

(
Kγ2

0Ωp

4γ2
r ω0

)2/ 3

(2.57)
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where the electron beam plasma frequency Ωp in the laboratory frame is given by

Ωp =

√
4πnee2

meγ
3
0

. (2.58)

The physical reasoning behind the definition of this coupling constant as a cubed quantity is sep-

aration of longitudinal and transverse dimensions. With everything else the same, it is expected

that a doubling of the longitudinal electron line density, proportional to n1/ 3
e and ρ, also doubles the

speed of the electron beam dynamics. Equally, doubling the transverse electron density, which is

proportional to n2/ 3
e and ρ2, doubles the radiated field amplitude along the entire electron beam.

This motivates the new time scaling

τ = 2ω0ρ(γr / γ0)2t . (2.59)

In universal coordinates, also the bunching factor 〈exp(iφj)/ γj〉 needs to be normalized to the

electron energy 〈exp(iφj)/ (γj / γ0)〉, otherwise it would vary with the average beam energy. Fur-

thermore, in order to separate any initial electron phase drift φ̇0 arising from a mismatch between

the initial average electron energy γ0 and the resonant energy γr , defined by the undulator geom-

etry and the radiation frequency of the external field, the electron phases φj are redefined

Ψj = φj − φ̇0t . (2.60)

with respect to the initial phase slipping velocity φ̇0 as in (2.38)

φ̇0 = ω0

(
1− γ2

r

γ2
0

)
. (2.61)

In order to rewrite φ̇0t in terms of rescaled time τ , one defines the initial deviation from the

resonance energy γr as the constant detuning parameter

δ =
γ2

0 − γ2
r

2γ2
r ρ

, (2.62)

so that (2.60) simplifies to

Ψj = φj − δτ . (2.63)

Finally, the rest of the factors in (2.56) are absorbed into the new field definition

A = eαeiδτ K
4mc2γ2

r kuρ2 = − exp(i(δτ −Ψr))
K · Kr

2ρ2 , (2.64)

so that (2.56) takes the new form

∂

∂τ
A =

〈
e−iΨj

ρΓj

〉
+ iAδ , (2.65)

Free-electron lasers 23



where Γj denotes the particle energy normalized to ρ times the initial energy

Γj =
γj

ργ0
. (2.66)

This latter definition is not physically motivated by a universality requirement, but serves to make

some of the later results, such as energy conservation (2.70) or the gain length (2.76) appear in a

more elegant form.

In the end the simplified, dimensionless set of 1D FEL equation becomes.

d
dτ

Ψj =
1
2ρ

(1− 1
ρ2Γ2

j

) (2.67)

d
dτ

Γj = −1
ρ

[
A
Γj

eiΨj + c.c.
]

(2.68)

d
dτ

A =

〈
e−iΨj

ρΓj

〉
+ iAδ (2.69)

Apart from the normalization, each of the equations has retained its direct physical meaning. With

(2.68) and (2.69) a constant of motion

d
dτ

(|A|2 + 〈Γj〉) = 0 (2.70)

can be immediately found. Within this choice of coordinates that constant represents conserva-

tion of energy between the radiation field and the mean particle energy.

Even in this simplified one dimensional case above set of equations is nonlinear and has no

general closed solution. For further analysis one usually invokes Liouville’s theorem and simplifies

this system of (2Ne + 1) equations to 3 equations by using the Vlasov equation [5]. Such an

approach describes the evolution of arbitrary electron beams in terms of phase space distribution

functions and shows to be more suited for generalizations and lends itself to analysis in 2 or

3 dimensions. However straight forward stability analysis of small perturbations already yields

some general properties of the electron-radiation dynamics. Thereby a linearized set of equations

(2.67)-(2.69) around an equilibrium state is derived.

The equilibrium conditions are, zero field A0 = 0, monoenergetic electrons at the resonance

energy Γ0,j = 1/ ρ and a spatially uniform beam without initial bunching 〈e−iΨj 〉 = 0. Then small

perturbations around the equilibrium state

A = A0 + a = a

Ψj = Ψ0,j + ξj , j = 1, 2, . . . , Ne (2.71)

Γj =
1
ρ

(1 + ηj) , j = 1, 2, . . . , Ne

are defined and collective variables introduced for both particle phase and energy by performing
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(a) (b)

Figure 2.5: Numerical solution of (2.67)–(2.69) with 1000 electrons, ρ = 10−3 and δ = 0. (a)
depicts the electron phase-space at different times. The trajectories of some selected electrons
(red-dashed) shows bunching in phase. The corresponding evolution of the radiation field A am-
plitude shows exponential growth until it saturates at τ = 6, where maximum bunching of the
electrons is achieved. If the FEL feedback is sustained beyond saturation, both the radiation field
amplitude, as well as the bunching of electrons reduces.

the phase-weighted average over the respective equations.

x = 〈ξje−iΨ0,j 〉

y =
1
ρ
〈ηje−iΨ0,j 〉 (2.72)

Hereby, the phase x averaged over all electrons has only an appreciable magnitude if all electrons

have a similar phase. Hence the physical meaning corresponds to a bunching factor, which has a

magnitude of unity when all electrons are in the same phase. Similarly, the other collective quan-

tity y denotes a relative energy detuning averaged over all electrons. After inserting (2.72) into

(2.67)-(2.69), applying the phase-weighted average and dropping higher terms of the perturbing

quantities, one arrives at

dx
dτ

= y

dy
dτ

= −a (2.73)

da
dτ

= −iδa− ix − ρy .

This linearized set of FEL equations around the starting conditions of an FEL is now analytically

tractable. A radiation field of the form a = A ∝ eiΛτ only has solutions if it satisfies the character-

istic equation of (2.73).

Λ3 − δΛ2 + ρΛ + 1 = 0 (2.74)

This polynomial has in general one real and two complex conjugated solutions. The real parts

of the solutions belong to oscillating modes and, depending on the sign, the imaginary parts to
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modes that are exponentially decaying or growing in field amplitude. After a start-up regime,

where all modes begin with similar amplitudes, the growing mode will eventually become the

dominant mode of the system.

For electron beams at resonance δ = 0 and for a small Pierce parameter ρ ' 0, the solutions

to (2.74) are Λ ∈ {−1, 1
2 + i

2
√

3
, 1

2 + −i
2
√

3
}. Hence the growing mode is A ∝ e

1
2
√

3
τ , or rewritten in

non-normalized coordinates and for γr ' γ0

Er ∝ e
√

3
2 ·2ω0ρt ∝ e

2π
√

3ρ
λu

z . (2.75)

Hence the characteristic distance

Lg =
λu

4π
√

3ρ
, (2.76)

after which the radiation power (∝ E2
r ) has grown by a factor e1 is known as the gain length in

FEL physics.

At this point the role of ρ as a coupling parameter between electrons and radiation becomes

apparent. The instability growth rate is proportional to ρ and thus shows the feedback strength

of the system. By dimensional analysis this can be understood from a physical point of view.

Through the plasma frequency, the Pierce parameter (2.57) is proportional to the cubic root of

the electron density n1/ 3
e . This shows that coherence evolves faster, when the average distance

between the electrons on the z-axis is smaller and electrons have a shorter distance to the next

electron to affect the bunching and hence amplification behavior.

The ρ ∝ 1/ γr dependence in (2.57) is straight forward and traces back to (2.33) and (2.38).

Physically, for a phase advance, there must be a significant slipping velocity between two elec-

trons with different energies, when compared to the radiated wavelength λ ∝ 1/ γ2. For electron

velocities close to the speed of light, such differences in velocities can only become exceedingly

small.

The ρ ∝ K 2/ 3 dependence of the normalized undulator field amplitude can be understood by

the competing influence of undulator radiation, where the radiation amplitude of one electron is

∝ K 2 and the energy modulation as shown in (2.32), which is ∝ K . If the amplification of the

field would depend directly on the field strength present as in a Ȧ = const. · K · A type equation,

the gain length would have to be ∝ 1/K . For the free-electron laser however, a fraction of the

radiation field is absorbed to further drive the energy modulation and hence FEL instability, so

one ends up with ρ ∝ K 2/ 3.

For more insight beyond small field perturbations, the equations (2.68) and (2.69) are useful.

Linearizing (2.68) around small changes in γj = γ0 + ∆γj yields

1
ρ

∆γj

γ0
= −A[eiΨj + c.c.] . (2.77)

After multiplying both sides with the complex conjugate and averaging over all electrons〈
∆γj

γ0

〉
= 2ρ2A2 , (2.78)
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and applying the energy conservation law (2.70) gives the gain-spread relation

1
2ρ

〈
∆γ2

j

γ2
0

〉
=

〈
∆γj

γ0

〉
. (2.79)

Naturally, this equation is not valid for arbitrary energy spreads. Instead it is limited by the satu-

ration of the FEL instability. Since by energy conservation and (2.79), field amplitude growth is

inextricably connected to a growth in energy spread, there will be a point in the evolution of the

instability, when the energy of the individual electrons has changed so much compared to the

resonance energy, that these no longer satisfy the synchronism condition φ̇ = 0 from (2.34). As

a result, a varying phase Ψ in the energy modulation equation (2.33) prevents efficient energy

transfer between the electrons and the radiation field. At that point the radiation field growth

stops and neither the energy spread, nor the mean energy shift increases anymore. Saturation

has occurred.

By knowing there is some limiting ∆γlimit at both sides of the resonance γr , one can assume

at saturation a mean electron energy shift
〈

∆γj

γ0

〉
= −∆γlimit

γr
and an energy spread

√〈
∆γj

γ0

2〉
=

2∆γlimit, covering the entire range from −∆γlimit to +∆γlimit. Inserting these values into (2.79)

gives ∣∣∣∣∆γlimit

γr

∣∣∣∣ = ρ (2.80)

as an estimate of the mean energy loss at saturation. This result, gives ρ a meaning as an overall

energy efficiency, denoting the fraction of the electron beam kinetic energy that is converted into

radiation. The total radiation field energy at saturation is therefore

Wsat = ργrmc2 . (2.81)

Numerical simulations confirm this order of magnitude [6, 7], which makes this result a useful

upper estimate for FEL photon yields.

The limit (2.80) combined with (2.79) also gives an upper estimate for the acceptable energy

spread √〈
∆γ2

γ2
r

〉
� 2 · ρ , (2.82)

which is the central statement, when discussing non-ideal effects. All non-ideal effects that

negatively impact the performance of an FEL do directly or indirectly increase the energy spread

or have an equivalent influence on the wavelength spread of the scattered radiation, which is

2 ·
√
〈(∆λ/ λr)2〉 =

√
〈(∆γ/ γr)2〉 for regular undulators.

These results were calculated for helical undulators and small K � 1. More detailed calcula-

tions [6, 7] that include these effects, lead to changes in resonance energy and a slightly different

definition of the Pierce parameter

ρ =

(
fc · Kγ0Ωp

4γ2
r ω0

)2/ 3

, (2.83)
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which now includes an additional coupling parameter

fc =
J0(χ)− J1(χ)√

2
with χ =

K 2/ 2
2(1 + K 2/ 2)

. (2.84)

The resonance wavelength λr is the same as the undulator radiation wavelength and now also

includes the respective nonlinear terms.

λr =
λu

2γ2

(
1 +

K 2

2

)
(2.85)

Note that for planar undulators, the nonlinear factor is (1 + K 2/ 2), which is different from the

(1+K 2) of helical undulators. The physical reason is that the photon drag, axially slowing down the

electrons, is a constant in a helical undulator (modulus of transverse field amplitude is constant),

whereas it oscillates in a planar undulator, which leads to the factor 1/ 2 average.

To have a more straightforward connection to experimental electron bunch parameters, it is

often customary to write the electron number density n0 = Ip/ (2πσ2
b · e) of the Pierce parameter

in terms of RMS electron bunch diameter σb and an on-axis peak current Ip.

ρ =
1

2γr

(
Ip
IA
·
(

fc · Kλu

2πσb

)2
)1/ 3

(2.86)

There are several ways to improve FEL performance – i.e. optimize electron number density,

undulator period or undulator strength.

In conventional accelerators, which is a already a mature and proven technology, improve-

ments in phase space density and hence electron number density are rather small and incre-

mental. But the small scale of laser-wakefield accelerated electron bunches could make a huge

difference here, since the electron bunch duration is expected to be significantly shorter than

100 fs, eventually even down to below 10 fs, as well as have normalized emittances that can be

on the order of εn,trans = 0.1π mm mrad, which leads to proportionally smaller electron bunch

foci. In an rough and optimistic estimate, (2.86) suggests that the combined effect of one order

of magnitude improvement in all three spatial electron bunch coordinates ρ ∝ n−1/ 3
e , could lead

to FELs that are by one order of magnitude more efficient.

Changing the undulator period λu, while keeping the resonance wavelength and the undulator

strength K constant is always connected to a simultaneous change of the resonance electron

energy λu ∝ γ2
r . Therefore the FEL efficiency scaling ρ ∝ λ1/ 6

u is quite weak, whereas the gain

length scales almost linearly Lg ∝ λ5/ 6
u . This means shorter undulator periods with smaller elec-

tron energies would lead to more compact FELs. In reality this is difficult to realize by magnetic

undulators. The undulator parameter K , which is a measure for the oscillation amplitude of the

electron is also proportional to the undulator period. Therefore maintaining a sizable K at shorter

undulator periods, means that the magnetic field Bo on the undulator axis needs to increase

proportionally. Therefore small undulator structures are with sizable K are increasingly difficult to

realize for small undulator periods. In addition resistive field effects, i.e. interaction of the electron

bunch with the undulator wall, interferes with FEL operation.
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Optical undulators on the other hand, which are basically focused high-power laser beams that

collide head-on with the electrons, have high fields and effective sub-micron undulator periods of

half the laser wavelength.

2.3 HIGH-POWER LASERS

High-power lasers existing today provide laser beams of intensities I0 = 1018 − 1021 W/cm2.

The corresponding electric fields of 3× 1010 − 3× 1012 V/cm far exceed atomic fields, such as

the 5× 109 V/cm of the first Bohr orbit in Hydrogen. As a result, the leading front of these laser

pulses is enough to fully or partially ionize all matter and create a plasma. Two especially important

properties of high-power lasers are relativistic intensities and strong ponderomotive forces.

In non-relativistic calculations an electron oscillating with frequency ω in an electro-magnetic

plane wave E = E0 sin(ωt − kz)ex attains in direction of the electric field a maximum quiver

velocity of vq = eE0/m0ω. As soon as the quiver velocity approaches the speed of light, the

dynamics change dramatically since in the Lorentz equation

d
dt

(γmẋ) = −e (E + v × B) (2.87)

the v × B-term and a γ-factor greater than one become relevant and at higher intensities even

dominating. Hence for the following discussion it is useful to define the dimensionless laser

strength parameter

a0 =
eE0

m0cω
(2.88)

' 0.85× 10−9λ0[µm]I1/ 2
0 [W/cm2] , (2.89)

which is proportional to the electric field and characterizes the transition from sub-relativistic

a0 � 1 to relativistic a0 ≥ 1 quiver velocities.

One central example of this transition is the electron motion within an intense plane wave.

The physics has been described in detail in [14, 15], so here only the result is presented. An

electron, initially at rest, oscillates in a laser field, which propagates in the z-direction and is

linearly polarized in y. The resulting solution

k · y(t) = a0 sinφ(t)

k · z(t) =
a2

0

4
·
[
φ(t) +

1
2

cos 2φ(t)
]

(2.90)

φ(t) = ωt − kz(t)

is implicit, since the phase φ(t) contains a z(t) dependence. However, it is clear that in lon-

gitudinal direction the field oscillates with twice the frequency in the transverse y-direction. In
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addition, the longitudinal oscillation amplitude scales with a2
0, so this oscillation becomes domi-

nant at high laser intensities. This becomes especially apparent, when one transforms (2.90) to

the average rest frame of the electron

16z(φ)2 = y(φ)2(a2
0/ (1 + a2

0/ 2)− y(φ)2) , (2.91)

where the electron trajectory for a0 ≥ 1, as shown in Fig. 2.6, increasingly turns into an 8-figure.

One important consequence of the longitudinal motion is that in the presence of an electro-

magnetic wave an electron without initial transverse momentum, immediately starts to drift by an

average momentum pdrift = mc · a2
0/ 4 – a phenomenon also known as the “photon drag”. Since in

the laboratory frame of reference, the electron is moving close to the speed of light, addition of

velocities is not symmetric with regard to the direction of acceleration. Hence the cycle-averaged

net velocity from the longitudinally, oscillatory motion is not zero anymore. Instead, the cycle

averaged velocity of the electron is reduced.

Figure 2.6: Figure-8 motion of an electron in its average rest frame in a linearly polarized EM plane
wave of laser strength a0.

Quite different from that drift momentum, which is gone as soon as the laser field is gone,

is the momentum gained by the ponderomotive force. Here a laser beam with a transverse

variation in its electric field is required, such as the Gaussian-like beam profile of a focused laser.

An electron oscillating in the center of that laser beam has a larger oscillation amplitude than off-

center where the laser intensity is lower. Therefore an electron starting at the center is displaced

to either side within half a laser-period. Since the electron is now in a region of less field strength,

the opposite field of the second half of the laser period has a weaker amplitude and the electron

does not return to the beam center after the full laser period. The electron has experienced a

cycle-averaged net force towards a region of smaller electric fields.
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Figure 2.7: An electron oscillates in a laser beam of finite diameter. Due to its radially varying
intensity, the electron tends to move away from the region of maximum laser intensity. The
corresponding cycle-averaged change in momentum is called ponderomotive force. (transverse
Gauss profile with a0 = 0.25 at 800 nm and γ0 = 10 electron)

According to [14] the ponderomotive force is described by

Fp =
dp

dt
= −mc2∇γf , with γf =

√
1 +

p2

m2c2 +
a2

0

2
(2.92)

in its fully relativistic form. Hereby the overlined quantities represent averages over the respec-

tive optical cycles, filtering out the fast oscillation. At sub-relativistic intensities (a0 � 1) the

ponderomotive force

Fp =
dp

dt
= −mc2

4
∇(a0

2) (2.93)

is proportional to the intensity gradient, whereas in the ultra-relativistic limit a2
0/ 2� (1+p2/ (m2c2)),

the force

Fp =
dp

dt
= −mc2

√
2
∇|a0| (2.94)

becomes proportional to the modulus of the field gradient.

2.4 THOMSON SCATTERING RADIATION

In the classical Thomson backscattering picture [15–18] relativistic electrons are driven by the

electric field of a laser pulse to an oscillatory motion similar to the situation in a magnetic un-

dulator. As a consequence, the oscillating electrons emit Doppler-upshifted radiation of narrow

bandwidth into a relativistically contracted solid angle cone in the laboratory frame. For highly

relativistic electrons (β0 ' 1) the wavelength λsc of the scattered light scales as

λsc =
λ0

n · 2γ2
0 · (1− β0 cosφ)

·
(
1 + a2

0/ 2 + γ2
0θ

2) , (2.95)

where λ0 denotes the laser wavelength, n the harmonic number and φ the angle between the

electron beam and the incoming light, i.e. (1 − β0 cosφ) = 2 for counterpropagating beams at

φ = 180°. For values of a0 approaching unity, the v ×B term of the Lorentz force starts to alter

interaction dynamics, thus entering the nonlinear Thomson regime [19–21]. According to (2.95)

one observes an intensity dependent shift to longer wavelengths.
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Most experiments aiming for X-ray radiation from Thomson scattering sources, use a “head-

on” geometry, in which laser and electrons are counter propagating (φ = 180°), since this yields

the highest photon energy. Side-scattering on the other hand has attracted interest, because of

its tunability in the resulting wavelength and the ability to produce ultrashort pulses [22] through

a different overlap between lasers and electrons.

Due to the short wavelength of the incoming laser light as compared to the situation in an

undulator, X-ray energies of the scattered light can already be reached with relatively moderate

electron energies as depicted in Fig. 2.8. Note that as a purely classical theory, Thomson scatter-

ing always assumes that the scattered photon energy in the electron rest frame is much smaller

than the electron rest energy mc2. For larger photon energies, the quantum recoil of the electron

becomes relevant and the physics has to be described by quantum theory. The result is Compton

scattering with first-order cross sections relating to the Klein-Nishina formula [23–25]. Here the

Compton scattering cross section is a function of electron energy and generally becomes lower.

However, the classical Thomson theory is valid for most practical scenarios, since relativistic elec-

tron beams at 1 µm laser wavelength do not reach the Compton limit ~ωsc ≥ γmc2 in the first

harmonic until electron energies of ' 50 GeV.

Figure 2.8: Scattered undulator energies with respect to electron energies for various scattering
angles φ between laser and electrons.

Equivalence of Thomson scattering to undulator radiation

It has to be emphasized that undulator radiation is very similar to Thomson scattering. This

becomes especially apparent if one transforms the static magnetic field of an undulator into the

average rest frame of the electron βavg = β0ez . According to the Lorentz-transform [2] the fields
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are

E ′ = γ(E + β× B · c)− γ2

γ + 1
β(β · E) · c (2.96)

B′ = γ(B − β× E /c)− γ2

γ + 1
β(β · B)/c . (2.97)

Inserting (2.4) yields

E ′ = −γcβBy(y, z′) · ez (2.98)

B′ = γBy(y, z′) · ey (2.99)

E ′ =
γ�1⇒ −ez × B′/c , (2.100)

which for highly relativistic electrons corresponds to the field of a counter propagating wave. The

only difference is within the incident frequency, such that the Lorentz transform of the static

B-field

cos(kuz)→ cos(kuγ(z − ct)) (2.101)

has half the frequency compared to the Thomson case

cos(ku(z − ct))→ cos(ku2γ(z − ct)) . (2.102)

Since in the ultrarelativistic limit γ � 1 the undulator field is equivalent to an electromagnetic

plane wave, the resonant conditions of linearly polarized Thomson scattering

λr =
λ0

2γ2
0(1− β0 cosφ)

(
1 +

a2
0

2
+ γ2θ2

)
(2.103)

can be compared to linearly polarized undulator radiation

λr =
λu

2γ2
0

(
1 +

K 2

2
+ γ2θ2

)
, (2.104)

so it becomes apparent that also the normalized undulator parameter K is equivalent to the nor-

malized laser strength parameter a0.

This finding is well known [26] and has the primary advantage that knowledge from Thom-

son/Compton scattering can be reused for undulator radiation an vice versa. For example all

the yield equations (2.13) to (2.18) from undulator radiation essentially remain the same when

performing the substitutions

λ0/ (1− β0 cosφ)↔ λu (2.105)

a0 ↔ K . (2.106)

For linear Thomson scattering at laser amplitudes a0 � 1 and a given accepted bandwidth

∆ωsc/ωsc, one can quickly estimate the total photon yield into the full solid angle following

Esaray et al. [16]
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Nphot = 2παf N0Nba2
0(∆ωsc/ωsc) . (2.107)

Here, αf = 1/ 137 is the fine structure constant, N0 the number of laser oscillation periods during

the interaction and Nb the number of electrons within the bunch. In the classical description,

when ~ωsc � (γ − 1)mc2, the Thomson cross-section is constant and the total yield from a

scattering event proportional to the laser intensity. The duration of the scattered pulse amounts

to

τtot = τbunch +
τlaser

2(1− β0 cosφ) · γ2
0

. (2.108)

Nonlinear Thomson scattering

Nonlinear Thomson scattering is quite complex in both angular and spectral structure. A thorough

account on the details can be found under [16–18, 20, 21, 27]. Here, only a brief overview shall

be given.

The transition from a sinusoidal oscillation to the figure-8 electron motion at large laser field

strengths a0 close to or exceeding unity, leads to the emergence of higher harmonics. In a

qualitative picture the circular motion of the “fat eight” can be compared with bending magnet

radiation, where the electrons are deflected on a circular trajectory with radius R. Since the

narrow angular ∼ 1/ γ search light pattern changes direction due to the circular trajectory, the

radiation reaching the observer in the far field originates from a short arc of length δl ∼ 2R/ γ.

After dividing by c and accounting for the 1/ 2γ2 relativistic time contraction, the time duration

of the radiation flash originating from a single electron is ∆t ∼ R/cγ3. Using general Fourier

transform arguments, the typical large spectral width of the spectrum can be obtained.

∆ω ∼ 2π
∆t
∼ 2πγ3

c · R
(2.109)

In contrast to a single bending magnet a laser pulse or equivalently an undulator features 2 ·N0

bending radii, so there are distinct frequencies, where the contributions from the single bends

constructively interfere and thus give rise to many higher harmonics instead of a continuous

spectral distribution.

Going through a more thorough analysis of the bending behavior of (optical) wigglers with

respect to a0 and γ gives

λc =
λ0

3γ2a0
, for a0 � 1 (2.110)

as the critical wavelength λc, defining that one-half of the scattered laser power is radiated at

shorter wavelengths and the other half at longer wavelengths.

In the high intensity limit a0 � 1 the scattered spectrum of a linear polarized laser pulse

becomes so densely populated by harmonics, so that it can be considered as a quasi-continuum.

In addition the opening angle in the plane of polarization increases to ∼ a0/ γ.

The total scattering power efficiency Ps/P0 remains independent of the laser intensity even in
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(a) (b)

Figure 2.9: (a) On axis scattering intensities for the first harmonics normalized to the maximum
intensity of the first harmonic (b) Comparison of on axis scattering intensities of the first harmonic
(solid line) compared to a scaling ∝ a2

0 ∝ I0. The dashed line denotes the intensity sum of
all harmonics. Both (a) and (b) show that the on axis intensity efficiency decreases at higher
laser intensities. The reason is a distribution of scattered energy over more higher harmonics, a
broadening of the cone angle and also harmonics that radiate off-axis (even harmonics).

the nonlinear Thomson regime. Note that this does not hold true for the number of photons, as

the critical frequency increases proportional to a0.

Differences between magnetic and optical undulators

Although the fundamental physics is essentially the same, there are general differences when

considering experimental realization and non-ideal effects. For undulators it is relatively easy to

engineer the magnetic fields such, that these feature a constant field amplitude over the entire

undulator. This makes it possible to operate wigglers at a well-defined undulator parameter K > 1,

which remains the same for each shot. One distinct disadvantage of undulators is that they

are large. Typical undulator periods are usually on a cm scale and in practice cannot be scaled

below a couple mm [28, 29], so undulators are usually meter long. The main reason is that the

undulator parameter K is proportional to the undulator period λu, so that increasing magnetic

fields and smaller undulator gaps are required to sustain a sizable K -value. Resistive field effects,

i.e. interaction of the electrons with the undulator walls [30–33], lead to non-ideal effects, which

significantly impact FEL performance.

On first sight, the use of lasers as optical undulators seems to be ideal for a new generation

of synchrotron light sources. The undulator period here is half the laser wavelength, which is 3-4

orders of magnitudes lower than in magnetic undulators and with modern lasers the maximum

field can easily exceed laser strengths of a0 ' 1. In addition, laser beams do not require a material

structure near the electron beam and have the advantage that they in principle do not require

tweaking of each individual field oscillation to satisfy some B-integrals, because laser beams are

electro-magnetic waves by definition. In addition to that, laser technology provides more flexibility

in terms of transverse field profiles. Especially in combination with laser wakefield acceleration, it

has furthered the vision of a compact and all-optical synchrotron sources, which does not require

any large scale facilities.
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However, two major issues are so far limiting the use of lasers as optical undulators, especially

in FEL technology. For one, in contrast to undulators, which can be arbitrarily long, optical wigglers

are limited in length due to the finite Rayleigh length Z0 = πw2
0 / λ0, with w0 being the laser spot

size. Waveguide techniques are not possible, since material waveguides are quickly ionized by

the laser. Also setting up several laser beams, one behind the other, is problematic in collinear

geometries, because each focus requires different placement of the focusing optics. Therefore,

it is often attempted to trade shorter undulator lengths by higher laser intensities, which is the

reason why such laser beams are often dubbed optical wigglers instead of optical undulators.

Secondly, going to higher laser strength parameters a0 ≥ 1 is much less straightforward

than going to higher undulator parameters K ≥ 1. Usually, laser pulses have some Gaussian-

type beam profile, both transversally and longitudinally. Therefore the laser strength parameter

varies over the pulse from zero to its maximum value a0. Specifically for nonlinear Thomson

scattering, the result of varying intensities over the entire laser pulse is a spectral broadening

of the scattered radiation according to (2.95), where λr ∝ (1 + a2
0/ 2)−1. Especially for high-

power lasers, where optics based on absorbtion or transmission are problematic because of high

intensities, it is technically extremely challenging to design laser pulses with a transversally flat,

temporally rectangular beam profile and small shot to shot fluctuation. An additional problem are

shot-to-shot fluctuations in laser intensity.

Another significant difference between magnetic and optical undulators is the different shape

of the transverse profile. Magnetic undulators have a parabolic transverse magnetic field profile

(2.3) with the minimum field being on axis and increasing fields towards the poles. This leads to a

transversal trapping of electrons that propagate off-axis. These electrons oscillate with about the

betatron frequency ωβ ≈ (γ/K )kuc around the central axis [34], so that on average the electron

beam remains focused over an extended length.

For laser beams the equivalent of this effect is the ponderomotive force (2.92). In Gaussian

laser beams however, the effect tends to expel electrons along intensity gradients out of the

center, so that transverse trapping does not occur here. Basically, this potential problem can be

avoided by either working with laser intensities that are too low for the ponderomotive force to

become relevant or by tailoring the intensity gradients by using non-Gaussian, transverse laser

beam profiles, such as flat tops or even concave profiles. Note however, as interaction distances

between lasers and electrons are usually by orders of magnitudes shorter than meter long undu-

lators, so that the focusing requirements of electron beams are equally less strict.

2.5 ELECTRON ACCELERATION BY LASER WAKEFIELDS

Conventional accelerator technology is limited in its maximum fields by the material breakdown

fields of the accelerator structures, which are on the order of 50 − 150 MV/m [35, 36]. There-

fore, the idea of making electron acceleration more efficient and compact in size by using the

enormous fields from high-power lasers is tempting.

However, direct acceleration of an electron beam by a laser field alone is not straightfor-
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ward, since in vacuum an electron cannot gain net acceleration from electro-magnetic plane

waves [37, 38]. The reason is that such a plane wave laser-pulse overtaking an electron would

accelerate the electron with rising laser intensity through the axial ponderomotive force Fp,z '
−(m0c2/ γ)(∂/ ∂z)a2/ 2, but then decelerate it again by the same amount when the laser inten-

sity decreases again. Hence, direct laser acceleration concepts need to break this symmetry

between acceleration and deceleration by limiting the interaction either in time or in space, which

can be done by focusing geometries, gas media, ionization or nonlinear interactions [14, 39].

Although such methods have been experimentally demonstrated [40, 41], electron acceleration

directly by the laser field does not scale easily beyond several MeV electron energy. Hereby, a

fundamental limitation is the length scale of the laser wavelength λ0, which is on the order of one

µm and thus smaller than typical electron bunch dimensions. Since the final electron momentum

is phase-sensitive with respect to the initial phase-space position of the individual electrons with

respect to the laser field, this prevents uniform acceleration of all electrons and hence collimated,

monoenergetic electron beams.

(a) (b)

Figure 2.10: (a) An 800 nm, 25 fs linearly polarized laser pulse with a peak intensity corresponding
to a0 = 5 overtakes an electron, which is initially at rest. During interaction the electron acquires
relativistic velocities, but after interaction (b), the electron has transferred its energy back to the
laser and is again at rest.

This is different for laser-wakefield acceleration, which was first proposed 1979 by Tajima and

Dawson [42] and first realized in 1995 [43]. Here, the acceleration takes place within a plasma,

which can naturally sustain high electric fields because it is already completely ionized and hence

cannot undergo material breakdown anymore. In contrast to direct laser acceleration, the laser

is used here to create a cavity structure in the plasma, which then provides the electric field for

electron acceleration. This basic acceleration scheme is depicted in Fig. 2.11. An ultrashort laser

pulse propagates in a plasma and resonantly excites a charge-density wave, which travels with a

phase velocity vp equal to the group velocity of the driving laser pulse

vg = c(1− ω2
p /ω2

0)1/ 2 = vp . c (2.111)

in the plasma. Here,

ωp = (e2ne/ ε0me)1/ 2 (2.112)

denotes the plasma frequency, which determines the typical eigenfrequency and thus the time

scale of the plasma to respond to external fields. The basic wave excitation mechanism relies

on the transverse intensity gradient of the laser pulse, which leads to the ponderomotive force

pushing away plasma electrons perpendicular to the laser direction of propagation. This in turn

reduces the electron density behind the laser pulse as shown in Fig. 2.11, whereas plasma ions

due to their large mass mp � me remain largely unaffected. The result is a separation of charges

and a restoring force on the displaced electrons by the positive space-charge of the immobile
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ion background remaining on axis. Subsequently, this electron displacement leads to transverse

charge-density oscillation forming the wakefield behind the laser. The scale of this plasma wave

is determined by its plasma wavelength

λp = 2πvp/ωp ' 2πc(e2ne/ ε0m)−1/ 2λp[µm] ' 3.3× 1010/
√

ne[cm−3] , (2.113)

and thus the initial plasma electron density ne. In experiment, such plasmas have electron densi-

ties typically in the range of ne = 1018 − 1019 cm−3. For optimal resonant excitation of a plasma

wave driven by the laser ponderomotive force, it is the time-scale of the laser pulse duration τ0

and not the laser period 2πc/ω0 which needs to match the plasma period τp = λp/c.

The result is a charge-density wave, comoving with the laser pulse, which features strong

transversal and longitudinal electric fields between negatively charged regions with a surplus

of electrons and positively charged regions with a deficit of electrons compared to the ionic

background of the plasma. These longitudinal electric fields within a wakefield can become so

large that they can be exploited for electron acceleration.

Hence, the next (crucial) step is electron injection into this plasma-generated cavity to begin

acceleration. Hereby, injected electrons can originate from the plasma itself or some external

source.

Since the accelerated electrons become faster than the plasma wave this acceleration can

only last until the electrons outrun the plasma wave and start to decelerate when reaching a

wake region with reversed field polarity. Then the electrons have reached the dephasing limit.

For that reason a LWFA plasma should ideally end before the accelerated electrons reach the

dephasing length.

The characteristic magnitude of the maximum electric field amplitude of an electrostatic

plasma wave traveling near the speed of light can readily be estimated from Poisson’s equation

∇ · E = e/ ε0(nb − δne) , (2.114)

where δne denotes the electron density perturbation with respect to the initial electron density

ne and nb the quasistatic ion background density nb = ne. The electric field of a plasma wave in

a laser-wakefield accelerator in the linear regime |δn/ne| � 1 is assumed to have the form Ez =

Emax sin [ωp(z/vp − t)] with vp ' c. Inserting this longitudinal electrostatic wave into Poisson’s

equation and using the difference (ne−δne) between the ion background density ne and assuming

that the electron density fluctuation δne cannot exceed ne in a linear oscillation yields (ωp/c)Emax =

e/ ε0ne. Hence the maximum field that can sustain a linear plasma wave is

Emax = cmeωp/e

Emax[V/m] ' 96
√

ne[cm−3] . (2.115)

This limit is commonly called the cold nonrelativistic wave breaking limit. A more detailed calcu-

lation that accounts for nonlinear, periodic plasma waves using the nonlinear relativistic, cold fluid
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Figure 2.11: (1-3) shows the plasma electron density modulation δn/ne of a laser wakefield along
the direction of propagation at different times during the interaction. (1) An intense, ultrashort
laser pulse in an underdense plasma excites a charge density wave. Being driven by the laser
pulse, this wave takes the form of a wake and travels with the same group velocity vg as the
laser. Through the inhomogeneous electron density modulation, this wakefield provides strong
longitudinal fields Ez , which in the linear regime can reach up to the wavebreaking field amplitude
Emax. Electrons are injected into the part of the wake with accelerating field Ez < 0 (yellow).
This can happen by self-injection in the plasma wave, when large wake amplitudes cause partial
wavebreaking or by some other externally controlled process, which either relocates plasma elec-
trons into the accelerating field or provides an entire pre-accelerated electron bunch from outside
the plasma. (2) The injected electrons are accelerated in the longitudinal wakefield and become
faster than both the plasma wave and the laser pulse (vg < c). (3) Electron acceleration contin-
ues as long as the driving laser pulse is present and until the fast electron outrun the wakefield
after the dephasing length Ld and enter a region with reversed electric field Ez , which leads to
deceleration.
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Figure 2.12: 2D cross-section of a laser (red) driving a wakefield according to (2.117). The laser
ponderomotive force expels plasma electrons off-axis, until the restoring force from the ion back-
ground pulls the electrons back on-axis and leads to the transverse oscillation in electron density
that give rise to the longitudinal wakefield structure consisting of several density “buckets” into
which injected electron bunches can be accelerated.

equations [44] yields

EWB =
√

2(γp − 1)1/ 2Emax , with γp =

(
1−

v2
p

c2

)−1/ 2

. (2.116)

Although there exists no analytic solution of the 3D problem at relativistic laser intensities

a0 > 1, it is instructive to consider 3D solutions of the cold fluid equations [14, 39, 45–47] for linear

wakefields and non-relativistic laser intensities a2
0 � 1, where electron density perturbations are

assumed to be small |δn/ne| � 1. For such density perturbations one arrives at

δn/ne = (c2/ωp)

∫ t

0
dt ′ sin[ωp(t − t ′)]∇2a2(r , t ′)/ 2 , (2.117)

while the corresponding electric field is denoted by

E /Emax = −c
∫ t

0
dt ′ sin[ωp(t − t ′)]∇a2(r , t ′)/ 2 . (2.118)

Although these equations are non-relativistic at small intensities, they show that, for large am-

plitude charge density waves close to the wavebreaking limit Emax, fields close to or exceeding

a0 ≥ 1 are required.

Thus the plasma wave breaks when the laser pulse drives the plasma wave field amplitude

beyond this limit. According to above derivation and (2.117)-(2.118), one needs a δn/ne ' 1 and

thus a strong laser field a0 ≥ 1 to obtain wave breaking and subsequent self-injection of electrons

into the plasma wake.
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Between two oppositely charged regions the longitudinal electric field can be in excess of

TV/m. The acceleration mechanism is that electrons, which are by some means injected into this

region, can be “surfing” on this plasma wave and get accelerated to energies much higher than

the plasma electrons.

One important quantity in laser wakefield accelerators is the dephasing length. It is defined

as the length a relativistic electron β ' 1 must travel before it has phase-slipped by half a plasma

wavelength with respect to plasma wave propagating at the phase velocity vp.

(1− vp/c)Ld = λp/ 2 (2.119)

Ld ' γ2
pλp , for γp =

(
1−

v2
p

c2

)−1/ 2

' ω0/ωp � 1 (2.120)

So after injection into the accelerating field behind the maximum electron density of the wake-

field (see Fig. 2.11) and subsequent acceleration over a dephasing length on the order of Ld , the

electrons outrun the wakefield and start to become decelerated by the wakefield region with re-

versed field polarity. This length can then be used to make rough estimates on the performance

and geometry of such a LWFA.

In addition to maintaining a stable acceleration structure, injecting the electrons into this ac-

celeration cavity is a critical issue. In most experiments available at the moment, self-injection is

used. That means the intensity of the driving laser is chosen to be high enough, such that the

wave partially breaks at the maximum electron density behind the first “bucket” and thus injects

these electrons into the acceleration gradient near the maximum electron density. The big ad-

vantage of this mechanism is, that it is easy to realize once enough laser intensity is available

without requiring additional experimental means. On the other hand, wavebreaking is by defini-

tion a highly nonlinear process, which makes control of its properties and hence the properties of

the electron beam challenging.

In some experiments injection is controlled by optical means. It was demonstrated that a

standing wave from two additional laser pulses can be used to inject background electrons into

the acceleration cavity. These methods have the advantage of an increased degree of control on

position and time of the injection, but have the difficulty that laser pulses are at most comparable,

but not significantly smaller than the wakefield in which they inject electrons.

External injection of electrons from a conventional electron gun or another wakefield accelera-

tor potentially allow for complete control on the electron beam properties that are to be injected.

However, due to the tremendous technical difficulties of injecting an electron bunch at the right

time into the small dimensions of a wakefield this scheme has not been demonstrated in ex-

periment yet. Since electrons from conventional accelerators are significantly longer than the

dimensions of the wakefield, the current line of research is to inject a slow electron bunch in

front of the laser, which overtakes the bunch, such that it successively gets trapped, spatially

compressed in the wakefield and accelerated to higher energies.
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Bubble acceleration

A novel regime of laser wakefield acceleration, now known as the “bubble regime”, was proposed

by Pukhov and Meyer-ter-Vehn on the basis of PIC simulations [48] and in 2004 experimentally

demonstrated by several groups [49–51]. It was predicted that short (τ ≤ c/ λp) and intense

(a0 > 4) laser pulses could produce quasi-monoenergetic electrons of several tens to hundreds

of MeV. Here the driving laser is so intense that the excited plasma wave immediately breaks, so

only the first “wave bucket” remains.

In contrast to the case of linear or mildly nonlinear plasma waves there is no hope to describe

the plasma physics with a standard fluid model [52]. This becomes evident when one considers

the effect of the laser ponderomotive force in the plasma. In the beam center the laser intensity

in bubble regime is by definition so strong, that all electrons are expelled in transverse directions,

leaving behind the ionic background. At the outer edges of the laser the electrons barely move,

forming a thin sheath around the bubble. This total cavitation of a region cannot be modeled by

laminar flow anymore, where the plasma merely becomes more or less dense, particles trajec-

tories do not cross and the mean velocity in a small volume is close to the velocity of individual

electrons. Instead, the electron flow now has crossing particle trajectories, so that within one

small volume there exist several distinct electron velocity distributions which cannot be repre-

sented anymore by a velocity average. Due to these kinetic effects, the detailed calculations of

bubble acceleration quickly become computationally expensive. Currently, these are modeled by

two and three dimensional particle-in-cell codes [14, 53–56] like OSIRIS or ILLUMINATION. Using

these tools, it is possible to test simplified models and scalings.

One can show [57, 58] that in the ultra-relativistic limit of a0 � 1 there exists a similarity

parameter

S =
ne

a0nc
, (2.121)

which relates a range of physical plasma densities and laser intensities to one another. As long as

the similarity parameter S and the laser wavelength remain constant, the plasma physics remains

similar and can thus be described in the scaled coordinates

t̂ = S1/ 2ω0t, r̂ = S1/ 2k0r , p̂ = p/mca0, (2.122)

Â =
eA

mc2a0
, Ê =

S−1/ 2E

mc2k0a0
, B̂ =

S−1/ 2B

mc2k0a0
. (2.123)

Space and time remain the same, whereas the fields and momenta scale proportional to the

laser field a0. Although, this scaling is valid mainly for ultra-relativistic intensities a0 & 20, it

proves already useful at much lower intensities 2 < a0 < 20, where one can already estimate the

outcome of experiments at different plasma densities ne and laser intensities.

For entering the bubble regime it is important that the laser pulse duration is on the order of

λp = 2πvg/ωp or shorter. If the laser pulse is longer than the plasma cavity, then also portions

of the laser pulse other than the rising flank interact strongly with denser plasma regions outside

the bubble, thus altering pulse shape and spectrum. However, this is not a strict limit to bubble

acceleration, since such self-phase-modulation can lead to a shortening of the laser pulse, so that

the laser duration condition becomes fulfilled in that process and a bubble can form. In practice
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(a) electron density during bubble acceleration

(b) Ez -field within a bubble

Figure 2.13: 3D-PIC simulation of laser-wakefield acceleration in the bubble regime with an
800 nm, 5 fs laser pulse and a 5 µm focal spot at ne = 1.8× 1019 cm−3 electron density – cal-
culated with ILLUMINATION. (a) depicts a cross-section of the plasma electron density along the
laser direction at selected times. These stills show the lasers entering the plasma, bubble for-
mation, electron self-injection at t = 120 fs and subsequent acceleration of an ultrashort electron
bunch inside the bubble. (b) features the cross section of (a) at t = 201.8 fs but shows the z-
component of the electric field in a color scaling, which is linear around zero, but saturates at
large fields. The representation emphasizes the symmetric structure of the accelerating field
gradient.
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this self-modulated regime [59] is so far experimentally the most common scenario of bubble

acceleration.

A similar condition also holds in the transverse dimension for the laser spot size

w0ωp/c ' Rbωp/c ' 2
√

a0 , (2.124)

where the laser spot size must be matched to the bubble radius Rb, which in turn depends on

the laser strength a0. According to the self-similarity scaling (2.123), above eq. (2.124) follows a

square root dependency. The validity of this scaling, including the factor of two, is not analytically

derived in any strict sense, but gleaned from PIC-simulations [52, 60]. If on the one hand the

laser spot size is too small, the laser is not stably self-guided in the plasma. If on the other

hand, the laser spot size is too large, the thickness of dense electron sheath surrounding the

bubble increases, thus decreasing the field within the bubble and due to the thus lower electron

density impeding self-injection. In the following, this relation is assumed to be valid in all following

scalings of bubble acceleration.

The dephasing length in the bubble regime is

Ld =
4
3

(
ω0

ωp

)3√
a0

c
ω0

(2.125)

and follows a derivation similar to the one for (2.120), while the depletion length

Ldepl '
(
ω0

ωp

)2

cτ0 . (2.126)

is determined by the rate at which the laser pulse is etched back by the interaction with the initial

electron density at the rising laser pulse front. Laser pulses could in principle be much shorter

than the plasma wavelength λp and still form a bubble, but in this limit the laser pulse contains

less energy and is depleted after a much shorter distance.

The maximum energy gain in a bubble can be approximated from the average electric field

and the dephasing length Ld initial electron density ne ∝ ω2
p

E0 '
2
3

mc2
(
ω0

ωp

)2

a0 . (2.127)

The maximum number of electrons which can be accelerated to this energy can be estimated by

balancing the total beam energy Nb · E0 with the total field energy in the bubble. The underly-

ing assumption is that the field is generated by the electron sheath around the bubble. If now

electrons inside the bubble gain energy, this amounts to an energy loss to the kinetic energy of

the electron sheath. As soon as this energy transfer becomes comparable to the total bubble

field energy this leads to a significant change of the bubble shape and fields. That effect is called

beam-loading and the maximum number of electrons that can be trapped in the bubble resulting
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from such an energy balance argument [52, 60]

Nb '
4

30
mc2

e2 ·w0a0 (2.128)

' 4π
30

neR3
b (2.129)

is a useful indicator for its relevance in a given scenario. It is found to either scale with the square

root of laser intensity or with the normalized volume of the bubble.

Experimental state of the Art and Beam Properties

With bubble acceleration it was for the first time possible to produce electron spectra that show

monoenergetic features. Typically, these electron bunches produced energies in the range of

tens to hundreds of MeV. By extending the laser interaction distance through guiding of the

laser pulse through plasma channels in capillaries, laser wakefield acceleration to energies of

about 1 GeV was demonstrated. The charge goes up to 100 pC and the energy spread is at the

percent level.

These laser wakefield accelerated beams are especially interesting for two main reasons – ac-

celerator size and electron beam properties. First, the dimensions of laser wakefield accelerators

are on a scale of mm and cm rather than several tens of meters to kilometers in conventional

accelerators that require large structures. This advantage essentially lowers overall costs of in-

frastructure of both construction and maintenance by several orders of magnitudes, so a particle

accelerator effectively becomes a table-top device for university-scale laboratories. In fact, most

of the laboratory space is required by the high-power laser and the radiation shielding. Whereas

particle accelerator have initial costs in the ballpark range of hundreds of million Euros, the most

expensive equipment for a LWFA is the high-power laser, which costs including infrastructure only

several million Euros.

Secondly, compared to other electron sources, LWFA electron beams are unique with re-

spect to their ultrashort electron pulse duration, as the electron bunch length is estimated to

be shorter than half the bubble length, i.e. the length of the accelerating part of the wakefield.

Comparison with (2.124) and (2.113) suggests durations shorter than the plasma period, which

for plasma densities of 1019 cm−3 would be shorter than 35 fs. 3D Particle-in-Cell (PIC) simula-

tions suggest that these bunch durations could become even shorter than 10 fs [54]. In addition

these beams are intrinsically synchronized with the laser beam and have a small source size,

which is generally comparable to the laser focal spot size (see (2.124) and Fig. 2.13). Quantita-

tively, experimental estimates based on measured electron energy, divergence and an assumed

initial electron bunch diameter in the bubble, which according to PIC simulations is smaller than

the laser focus (see Fig. 2.13 and [48, 54, 61]), suggest that transverse emittances can be as

small as ' 0.1π mm mrad, which is about an order of magnitude lower than from conventionally

accelerated electron beams.

All this makes LWFA beams hugely attractive as a basis for driving a synchrotron light source in

the hard X-ray range for pump-probe type of experiments. Again, such a setup could be compact
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enough to fit into a university laboratory.

This has dramatic consequences for the overall electron phase space density, which is often

also called the beam peak spectral brightness or peak brilliance

Bel =
Ne

τbeam ε2
norm,trans[πmm mrad] (103 ·∆E/E0)

. (2.130)

Here Ne is the total electron number, ∆E/E0 the relative energy spread and τbeam the electron

pulse duration. This quantity is mostly used to compare photon sources, such as X-ray beams

from third generation synchrotrons or free-electron lasers. The higher the number, the higher in

principle the phase space resolution for experiments. Since phase space volume is a conserved

quantity under linear transformation (Liouville’s theorem [62, 63]), this number is also a useful

indicator on the tradeoffs between the parameters of the photon source.

Since the brightness of synchrotron sources depends on the original electron beam bright-

ness, it is useful to compare the beam LWFA brightness to conventional beams. Although the

relative energy spread of laser-accelerated beams is still one order of magnitude higher than in

conventional beams (10−2 compared to 10−3), the improvements in spatial and temporal proper-

ties in LWFA electrons improve the beam brightness by two orders of magnitudes.

Outlook on Laser wakefield-acceleration

For laser-accelerated electrons the critical tasks at hand are further increases in the maximum

electron energy, realization of staging, serious improvements in the shot-to-shot stability of elec-

tron beams and decrease the relative energy spread. Towards these goals there exists a number

of promising approaches.

First, shorter lasers with laser pulse durations comparable to the plasma period τ < 30 fs
and below could immediately drive a “bubble” type plasma wave, without first undergoing self-

modulation until the laser pulse has become short enough to drive the wake. This has the ad-

vantage of a longer effective acceleration length and less nonlinear self-phase modulation, which

through its nonlinearity introduces shot-to-shot-fluctuations.

Secondly, higher energies can be obtained, by increasing the interaction region of a focused

laser within the plasma up to the dephasing length. Within gas jets relativistically, self-focused

plasma channels can only sustain mm distances. Hence, plasma waveguides are used for en-

hancing the laser pulse guiding distance. The concept of using gas-filled capillary waveguides [64]

have proven to be successful up to the GeV level. An alternative concept are optically, preformed

plasma channels [65, 66], where the diameter of the guided mode can be significantly smaller

< 10 µm than in capillaries and thus realize higher intensities and smaller electron source sizes.

Furthermore, gas targets should be more homogeneous to obtain more even plasma densities

in the propagation direction. This has been realized by [67, 68] in a capillary setup with two

gas inlets and little gas flow in between. The resulting plasma conditions have proven to be

homogeneous enough to reproduce similar monoenergetic electrons at each shot. In addition
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the capillary setup is used as a plasma waveguide, that enables longer acceleration distances

than in a gas jet.

Also, the electron injection process can be improved. In most experiments the electrons are

self-injected by plasma wavebreaking above a threshold laser intensity of a0 > 4 [52, 54], which

is a highly-nonlinear regime susceptible to small changes in initial conditions. To avoid these

nonlinearities, one approach is to optically trigger the plasma wave breaking. By an additional

pair of counter-propagating laser pulses select time and space, where electrons from the plasma

wave in the combined focus are injected into and trapped in the acceleration cavity of the plasma

wave. With this technique monoenergetic electrons with tunable electron energies have been

generated [69].

Instead of externally triggering plasma wavebreaking another strategy is to employ smooth

gradients as obtained by gas jets to quickly decrease the density, such that a plasma wave breaks

an thus self-injects electrons. In contrast to self-injection at high intensities the point of injec-

tion can be spatially controlled by the electron density and depends to a much lesser extend

on the complex interplay between intense laser pulses and plasma wave. A first experimental

demonstration can be found at [70, 71]

An other promising approach is external injection of electrons into the wakefield. Here, a

low energy electron bunch is created with an electron gun and is subsequently injected into the

laser plasma wakefield and accelerated to high energies. For electron bunches that are longer

than a plasma wavelength, the idea is to inject a low energy electron bunch in front of the laser

pulse, which overtakes it, such that all of the electrons are trapped by the wakefield behind and

thus accelerated [72, 73]. This could become possible with externally injected electron beams in

small-amplitude, non-wavebreaking wakefields in a laser beam guiding setup such as a capillary.

Since this approach requires an electron gun and electron focusing system to be combined and

synchronized with a laser wakefield accelerator, it is technically challenging. However, of all injec-

tion techniques, this potentially yields the most control over electron beam properties, such as

the energy spread.
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3 ULTRASHORT ELECTRON
BUNCHES FROM LASER
WAKEFIELD-ACCELERATION

Ultrashort electron bunch durations are one of the key properties for brilliant radiation sources.

This is especially true for laser-wakefield driven SASE-FELs, which require high electron peak

currents in the kA range and thus electron bunch durations significantly below 100 fs, shorter than

those achieved by conventional accelerators, and charges beyond 10 pC. Here, the main question

does not yet concern a practicable undulator setup or a sizable photon yield, but asks whether

LWFA electron bunches are short enough for FEL lasing. Since a small FEL parameter ρ also

leads to an even stricter condition on energy spread (2.82), a long electron bunch duration would

effectively undermine the entire concept of a table-top FEL using laser-wakefield acceleration.

Previous experimental efforts [1, 2] were limited in resolution to 100 fs and hence were unable

to answer this question. Therefore, it is not fully understood how these short electron pulses

from LWFA evolve during and after they leave the plasma and whether their duration stays short.

Finally, measuring the temporal structure of such electron bunches is of great importance also

from an engineering point of view: If LWFA electrons are to be tailored for specific applications,

it is necessary to be able to measure the bunch duration before the latter can be subject to

optimization.

According to theory (ch. 2.5), one expects that the electron bunch length cτe < Rb is smaller

than the bubble radius Rb, since a longer electron bunch would not spatially fit anymore into the

accelerating gradient of the wakefield. In that case electrons at the front and back of the bunch

would be accelerated to largely different energies, because the front electrons are decelerated

in the front half of the bubble, where the field is reversed, while the electrons at the back are

still being accelerated. For a standard bubble, with matched beam spot sizes, homogeneous

plasma density, regular laser pulse and no beam-loading, the bubble radius according to (2.124)

is Rb = λp ·
√

a0/ π. Considering a minimum laser intensity of a0 ' 4 to achieve self-injection in

the bubble regime this corresponds to a bubble radius of Rb ' 0.6λp. Hence for typical electron
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densities of about ∼ 1019 cm−3 this agrees with bunch durations of 35 fs and lower.

However the plasma wavelength estimate for the bubble diameter is not absolute, since beam

loading can substantially alter the length of a bubble. A bunch with a trapezoidal longitudinal

charge profile can elongate the bunch duration, while maintaining a low energy spread [3]. Pre-

cisely this beam loading is intrinsically linked to the dynamics of the electron injection and is

highly nonlinear for self-injection [3–6] and thus very sensitive to the initial plasma and laser con-

ditions. In 3D-PIC simulations, one discerns brief injection of a dense electron bunch, which

terminates the injection process by its own space-charge and continuous injection of electrons

until the entire bubble is loaded from back to front.

Even the argument that electrons, which are later measured to have the same energy, should

have been injected at the same time and the same spatial region can fail, as there exist several

plasma processes [7, 8] that are strong enough to excite betatron oscillations within different

parts of the electron bunch. As these oscillation amplitudes can be on the order of microns, this

potentially leads to different propagation distances within the bunch, so that even electrons of

similar energy become spatially separated, even if these were originally injected as a short bunch.

From a theoretical perspective, present 3D-PIC simulations have mainly investigated the for-

mation of the plasma wakefields, as well as subsequent electron injection and acceleration. The

simulation were for reasons of limited computing power often terminated, when the electrons

were still in the middle of the plasma. Especially 3D simulations with realistic parameters, such

as diameters of more than 10 µm or laser durations of several 10 fs are computationally expen-

sive, since small grid spacings are required to obtain reasonably accurate results over several

mm propagation distances. Also the simulations usually assume uniform plasma densities or

smooth density gradients as initial conditions, which is not necessarily the case for real gas jets

in experiment. Therefore the influence of realistic gas perturbations on the electron bunch and

the transition from plasma to vacuum, where the plasma density drops and the plasma bubble

subsides, is not fully understood.

From an experimental perspective, all experiments in the bubble regime have consistently

shown that small changes in the percent range in plasma density or laser pulse shape and inten-

sity substantially alter beam energy, charge, divergence and pointing, so that one would expect

the same for the electron bunch duration. Hence, there is yet no experimental evidence and

so far no theoretical investigation assuming realistic conditions which confirm the assumption of

ultrashort, monoenergetic electrons from LWFA.

The main challenges of ultrashort electron bunch duration measurements are potential du-

rations being shorter than the drive laser pulse, the lack of shot-to-shot stability and the harsh

environments of the plasma. Electronic measuring techniques, such as integrating current trans-

forms (ICT) immediately fail at the sub-ps time scales and thus can only be used to measure

the charge. Therefore an optically driven technique is required. However, the short time scale

makes even direct approaches with laser pulses probing or scattering of the electron bunch dif-

ficult, since the spatial and temporal dimensions of the laser are larger than the electron beam.

The lack of shot-to-shot stability currently prevents multi-shot or scanning techniques, while the

plasma conditions place more strict requirements on a measurable signal-to-noise ratio.
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Here, the duration of quasi-monoenergetic, laser-wakefield accelerated bunches is measured

for the first time and is shown to be indeed shorter than the laser pulse duration. In a single-shot,

electro-optic (EO) experiment, two electron distributions, accelerated by the 10 TW, 45 fs ASTRA

laser pulse are clearly distinguished. By analyzing coherent transition radiation (CTR) from a thin

aluminum tape target following the plasma region, a long electron pulse trailing a short bunch of

quasi-monoenergetic electrons could be observed. When this data is combined with additional

knowledge gleaned from the electron energy spectrum and the geometry of the CTR source, this

allows to partially overcome the resolution limit set by a transverse-optical phonon resonance of

the EO crystal and infer an electron bunch duration below 38 fs (FWHM).

3.1 BASICS OF TRANSITION RADIATION

Transition radiation is a relativistic boundary effect which occurs when an electron passes sud-

denly from one dielectric medium to another [9–12]. Qualitatively, the electrons in the beam

repel the electrons in the medium the beam passes by, which causes time-varying radial currents

in metals or polarization waves in dielectrics and thus radiation due to accelerated charges. In

the bulk material all these radiation contributions vanish, either by absorption in the material or

destructive interference. As long as the phase velocity of the radiation is not the same as the

velocity of the relativistic electron exciting the radiation, the phase-average in the bulk leads to

destructive interference – otherwise, there would be Čerenkov radiation. So for every plane wave

excited at one position in the bulk there exists another plane-wave, which has the opposite phase.

However, when the index of refraction changes rapidly, like at the interface to another medium

this symmetry is broken and radiation near the surface does not interfere destructively. From

a step-like interface between an ideal conductor and vacuum, a single electron emits radiation

according to the Ginzburg-Frank formula [9, 13]

d2We

dωdΩ
=

remec
π2

β2 sin2 θ

(1− β2 cos2 θ)2 , (3.1)

where re = e2/ (4πε0mc2) denotes the classical electron radius and θ the direction of observation

with respect to the electron direction of propagation. According to (3.1) and γ0 � 1 the resulting

transition radiation (TR) vanishes on axis θ = 0, reaches its maximum at θ ' 1/ γ0 and quickly

reduces for larger angles (see Fig. 3.1(a)). The radiation energy distribution is axially symmetric

and as depicted in Fig. 3.1(b) the radiation is linearly polarized within the plane spanned by the

axis of the electron trajectory and the respective observation vector, such that the entire transition

radiation beam can be described as being radially polarized.

Note that in (3.1) there is no frequency dependence, which is obviously unphysical and arises

from the assumption of an ideal semi-infinite conducting plane. In reality however, the dielectric

coefficient ε of the metal is finite and a function of frequency.

To illustrate this point, consider a finite metal target as depicted in Fig. 3.1(b). In the laboratory

frame the Coulomb field of the relativistic electron passing through the foil is compressed to

almost a disc with an opening angle of 1/ γ and the field is directed nearly perpendicular to the

direction of propagation. Therefore the metal electrons close to the passing electron experience
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(a) (b)

Figure 3.1: (a) An electron passing through a metal foil generates radial surface currents by its
Coulomb force. (b) features the resulting radiation angular profile of the TR spectral intensity.

a much faster displacement kick from the relativistic electron than those metal electrons that are

further away. This explains the frequency independence of the TR far field spectrum in (3.1) and

why for any finite radiator target there always exists a long wavelength cutoff.

At the other end of the spectrum, when the radiated frequencies approach the metal plasma

frequency, the radiating material becomes transparent. Then the step-like transition in the dielec-

tric coefficient at the metal-vacuum interface vanishes and thus stops to radiate. However, the

TR frequencies ω discussed here are far below the optical range and thus much smaller than the

cutoff frequency ωc = γ0ωp. So in the following the assumption of an ideal conducting metal foil

is assumed to be valid.

If not only one electron, but an entire electron bunch with Ne electrons crosses the metal-

vacuum interface, one has to account for the superposition of all resulting fields. Thus, at wave-

lengths much longer than the bunch dimensions, the electric fields arising from the TR of the

individual electrons have negligible differences in phase and add up coherently. Therefore the

spectral energy of coherent transition radiation (CTR)

d2WCTR

dωdΩ
= N2

e ·
d2We

dωdΩ
(3.2)

scales with the square of the number of electrons. On the other side, at wavelengths that are

much smaller than the bunch dimensions, the resulting fields cover all phase differences and

hence the fields add up incoherently, so the spectral energy of incoherent transition radiation

(ITR)
d2WITR

dωdΩ
= Ne ·

d2We

dωdΩ
(3.3)

scales linear with electron number. The electric field in the time domain and the far field is

according to [14]

E(x ,ω) = −2eNe

cR
〈E(θ, u)D(ω, u, θ, ρ)F(ω, u, θ)〉u eikRe⊥ . (3.4)

Here R is the distance between the interaction region and the point of observation x , θ the

observation angle with respect to the electron direction of propagation and u = p/mc2 = βγ the
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Figure 3.2: (a) In the time-domain, transition radiation can be seen as the generation of an electron
and an image charge pair at the metal-vacuum interface. Since the emerging electric fields can
only propagate with the speed of light and have to end at the metal surface, this leads to an
electromagnetic shock front, which explains the broad spectra of transition radiation. The peaked
forward radiation arises from the longitudinally contracted EM fields of the relativistic electrons
propagating close to the EM shock front at the respective radius β · R. Due to same highly
contracted Coulomb field of the electron, there exists no field and thus no TR emission into the
forward direction. (b) The long wavelength cut-off of TR at a finite radiator originates from long
wavelength surface currents being generated at a distance b from the electrons λ ∼ c∆t ∝
bγ0/cβ0.

normalized electron momentum. The field amplitude analogue of eq. (3.1) is denoted by

E(θ, u) =
u
√

1 + u2 sin θ

1 + u2 sin2 θ
, (3.5)

and the other two quantities D(ω, u, θ, ρ) and F(ω, u, θ) are the diffraction and electron bunch form

factor respectively. The diffraction factor

D(k, u, θ, ρ) = D(b, u sin θ) = 1− J0(bu sin θ)

[
bK1(b) +

b2

2
K0(b)

]
− b2

2
K0(b)J2(bu sin θ) , (3.6)

with b = kρ/u (3.7)

describes the effect of a finite transverse boundary with a radius ρ, i.e. a circular metal disc rather

than an infinitely large foil. It is derived by applying Kirchhoff diffraction theory [15] to the incident

fields [16]. Since the self-field of the relativistic electrons extends transversally a distance γλ,

diffraction radiation becomes relevant for small frequencies, where this distance exceeds the

transverse size ρ of the radiating foil. This is expressed with the scaling parameter b in eq. (3.7).

Diffraction effects can be neglected, when D(k, u, θ, ρ) is close to unity for all angles θ within the

TR radiation cone.

The spatial form factor describes the degree of coherent transition radiation that is emitted by

some electron bunch at a given frequency ω, where full coherence is F = 1. F(ω, u, θ) contains

all information on the electron bunch structure and is defined as

F =
1

g(u)

∫
d2r⊥e−ik⊥·r⊥

∫
dze−izω/v f (r , u) (3.8)
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where g(u) denotes the momentum distribution and f (r , u) the electron beam distribution includ-

ing both momentum and spatial properties. For electron bunches with uncorrelated, Gaussian

distributions,

f (r , u) = g(u) · 1
(2π)3/ 2σ2

r σz
e
− z2

2σ2
z
− r2

2σ2
r (3.9)

where σr and σz are the root mean square (RMS) bunch diameter and length respectively. Ac-

cording to eq. (3.8) one arrives at a form factor of

FG = e−(ωσz /v)2/ 2−(ωσr sin θ/c)2/ 2 , (3.10)

which is equal to one for short σz /c � ω electron bunches with small transverse extent sin θ ·
σr /c � ω. These two conditions determine the degree of longitudinal (temporal) and transverse

coherence respectively. The far-field electric field of CTR in the time-domain is then derived by a

Fourier transform of (3.4)

E(x , t) = −eN
πR

e⊥

∫
dk〈E(θ, u)D(ω, u, θ, ρ)F(ω, u, θ)〉u e−ik(ct−R) , (3.11)

which with (3.10) and (3.11) simplifies to

E(x , t) = −2eN
πR

e⊥

〈
E(θ, u)

∫ ∞
0

dk cos(k(ct − R))× D(kρ/u, u sin θ) exp

(
− (kσz)2

2β2

)〉
u

. (3.12)

Although it is necessary to include diffraction effects for arriving at a bipolar electric field that

fulfills the Maxwell equations, the limit of no diffraction D = 1, where the electric field in (3.12)

becomes

E(x , t) ∝ exp

[
−β

2(ct − R)2

2σ2
z

]
, (3.13)

is useful to illustrate that the electric field from CTR is a single period pulse with a duration

σz /c resembling the duration of the electron bunch. This is the physical basis of time-domain

measurements of the electron bunch duration and is used in the following to determine the

electron bunch duration. The challenge is to measure this field in experiment in a way that

preserves enough of the spectral amplitude and phase information to be able to reconstruct the

original electric field duration.

3.2 ELECTRO-OPTICALEXPERIMENTFORMEASURINGTHEELEC-
TRON BUNCH DURATION

Electro-optic method

On a time scale longer than several tens of fs, the frequency of a single CTR pulse is in the

THz range, which is in the far infrared and thus makes direct measurements, both in the time-

domain and the spectral domain, difficult. Hence a well-known strategy in accelerator physics

is to use another physical process to map the electric field to the optical part of the spectrum,

where sensitive and ultrafast diagnostics are available. Especially electro-optic crystals that rely
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Figure 3.3: A chirped probe (CP) beam is sent through a zinc telluride (ZnTe) crystal. Parallel to
the probe beam the CTR pulse (blue), which is in the THz frequency range, is sent through. Due
to the Pockels effect the polarization of the CP is rotated. This rotated portion of the laser beam
is subsequently transmitted through the crossed-polarizer. Thus the CTR field is imprinted as a
modulation on the CP beam. This beam can then be analyzed in a spectrometer or for higher
resolution in a cross-correlator.

on the Pockels effect have proven to be a successful technique [17, 18]. The basic working

principle is depicted in Fig. 3.3, where a chirped laser pulse longer than the electron bunch is

transmitted through a thin electro-optical crystal. Normally, when no external fields are present,

the laser pulse is transmitted unaltered. A static field however changes the optical properties of

the crystal, such that it becomes a wave plate, which retards the laser polarization components

with respect to each other and thus introduces an elliptical polarization, see Fig. 3.4. The phase

delay

Γ =
ω0dcryst

c
(n1 − n2) =

2πdcryst

λ0
n3

0r14Eα (3.14)

corresponds to the difference in the indices of refraction n1 − n2 of the two principal crystal axes

and is proportional to the static electric field strength Eα applied to the crystal. The nonlinear effi-

ciency coefficient r14 and the isotropic optical index of refraction n0 denote the material properties

of the used crystal.

In this experiment the external field is provided by the “quasi-static” CTR field, that is focused

along with the laser beam. In passing it should be noted, that the Lorentz-contracted Coulomb

field of the electron bunch as shown in 3.1(b) is also a good signature for the electron bunch

duration that could be used in an electro-optic setup [19], however the vicinity of a plasma and

an intense laser makes signal discrimination for LWFA electrons prohibitively difficult, so that

transition radiation at a foil is used to spatially separate the diagnostics from harsh measurement

conditions near the plasma and ensure that the THz radiation comes from transition radiation and

not from within the plasma.

This change in polarization can then be filtered by polarization optics. The crossed polarizer

behind the crystal blocks the sections of the chirped probe beam with unaltered polarization,

while perpendicular polarization components

EL,⊥ =
1√
2

(cos Γ− 1) · EL (3.15)

from the elliptically polarized beam EL are transmitted. In this way, the polarization modulation,
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arising from the CTR and hence the electron bunch itself, is imprinted onto the CP beam envelope,

which then is detected by cross-correlation diagnostics [17].

Figure 3.4: The refractive index ellipsoid projected onto the (110) plane of a ZnTe crystal. For
maximum difference in the indices of refraction, the electric field vector ECTR encloses a 45°
angle with the [-110] axis of the crystal. The laser field ECTR is parallel to EL. Both the quasi-static
electric field ECTR from coherent transition radiation and the laser propagate normal to the [001]
direction and (110) plane.

Electro-optic setup

The experimental setup is depicted in Fig. 3.5. The main part of the ASTRA laser pulse (45 fs,

500 mJ) is used to accelerate electrons in a supersonic gas jet similar to that of [20]. Using trans-

verse interferometry, the electron density is measured (see Fig. 3.6(b)) to be 1.5× 1019 cm−3,

which corresponds to a plasma period of 30 fs. The electron spectrum is recorded using im-

age plates and a magnetic spectrometer, while the charge is measured by an integrating current

transformer (ICT).

An aluminum tape of 50 µm thickness is installed 5 mm behind the gas jet and acts as a source

of coherent transition radiation (CTR). In addition, the tape blocks intense THz radiation from other

sources such as the plasma wakefield accelerator [21], from linear mode conversion [22] and CTR

from the plasma-vacuum transition [1]. The CTR emitted from the tape is collimated and focused

into a 200 µm thick ZnTe crystal (<110> orientation, supplied by Ingcrys laser systems) using

a pair of off-axis parabolas (OAPs), the first of which is equipped with a central hole (1 cm dia.)

to transmit the electrons and the drive laser beam. A Teflon filter placed between the OAPs

additionally blocks scattered laser light. 1 mJ of the ASTRA pulse is split off, negatively chirped

to 5 ps duration in a Treacy-type grating arrangement and focused through the ZnTe crystal. The

EO crystal material was chosen for its high nonlinear coefficient and the thickness of 200 µm
to minimize signal-probe group velocity walk off. Because the diffraction limited beam (w0 =

100 µm) is offset by d = 600 µm from the radially polarized CTR focus, the THz field polarization

within the probe beam can be assumed to be linear. The transient birefringence induced in the

crystal by the THz pulse via the electro-optic Pockels effect rotates the polarization of the chirped
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Figure 3.5: Laser-accelerated electrons generate coherent transition radiation (CTR) at an alu-
minum tape target. The CTR is imaged by two off-axis parabolas (f1 = 125 mm and f2 = 250 mm)
into an electro-optical ZnTe crystal, which rotates the polarization of a chirped probe (CP) beam in
the time-domain. This modulation of the CP is analyzed in a cross-correlator.

probe (CP) beam. The resulting change in polarization encodes an intensity modulation onto the

CP after passing through a crossed polarizer. The temporal evolution of this intensity modulation

– and thus the temporal structure of the CTR pulse – is then probed directly by another 1 mJ,

45 fs part of the ASTRA laser pulse in a cross-correlator, similar to that in [17, 23].

Since the probe beam is chirped, it is in principle possible to use a simple spectrometer

to measure the envelope modulation in the spectrometer. However there are some severe

constraints that limit the resolution of such a diagnostic, as there exists a time-bandwidth re-

lationship between the bandwidth of the chirp and the minimum bunch length that can be re-

solved [24]. For bipolar THz signals one can derive a measure for the shortest resolvable pulse

length τmin =
√
τchirp · τ0, where τchirp and τ0 are the CP and non-stretched laser pulse duration

respectively. As τmin in this experiment was on the order of 500 fs, the spectrometer was mainly

used as a first diagnostic to find the EO signal and optimize the experiment for maximum signals.

The maximum resolution of the cross-correlator on the other hand is given by the laser pulse

length of the reference pulse, which here is on the order of 45 fs.

3.3 LIMITATIONS IN RESOLUTION

For the analysis of the experimental data the electron beam is assumed to consist of a low-

emittance ultra-short electron bunch followed, after a time ∆τ , by a divergent tail of low energy

electrons with a temperature Te and duration τlong. This assumption is motivated by simulations

of the highly nonlinear broken-wave regime [25] and is experimentally supported by simultane-

ously recorded electron spectra, such as the one shown in Fig. 3.6(a). The spectrum suggests

that one part of the 30 pC electron beam is accelerated to an energy of 40 MeV, with an RMS

energy spread of 7 MeV, while the rest of the beam, the low energy part, exhibits an exponential
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(a) (b)

Figure 3.6: (a) A typical electron spectrum as recorded with the pulse duration measurement.
Due to clipping at the spectrometer aperture, the number of low-energy electrons (dashed line)
reaching the spectrometer is reduced by more than an order of magnitude. (b) shows the electron
density ne of the plasma channel, measured by transverse interferometry, in which the index of
refraction was probed using spatial-fringe analysis. Since only one direction could be probed in
the experiment, rotational symmetry is assumed in the electron density reconstruction.

spectrum with Te = 6 MeV. The existence of two temporally separated electron populations is

confirmed by the doubly peaked cross-correlator intensity trace as shown in Fig. 3.8(B2) and were

only measured when monoenergetic features were present in the electron spectrum.

The ZnTe crystal has a transverse optical phonon resonance at 5.3 THz, which limits the in-

trinsic resolution to ' 180 fs. To understand how to overcome this limit consider a Gaussian-type

CTR pulse much shorter than the temporal resolution limit. In the spectral domain, as shown in

Fig. 3.7, this is equivalent to a Gaussian spectrum centered around zero frequency [14, 19, 26],

which reaches far beyond the observable ZnTe frequency window. Inside that window, it displays

a nearly constant spectral amplitude. However, different pulse durations can still be differentiated

by their spectral amplitude at the cutoff frequency. Thus, the ratio of the spectral energy at high

frequencies and the total radiated energy is a sensitive indicator of electron bunch duration varia-

tions. To detect them, one makes use of the sharp, 3-fold increase in the ZnTe index of refraction

between 4 and 5 THz close to the resonance. This increase delays and attenuates the high fre-

quency components, which in the time-domain appear as damped field oscillations trailing the

main pulse as in the blue curve in Fig. 3.8(B1).

This effect of trailing field oscillations in the measured signal can be shown by assuming an

ideal THz pulse (3.13) without diffraction effects and using it as input for the ZnTe crystal. In such

a scenario all other effects which can limit the transmitted spectrum of the THz pulse are being

neglected. At some depth zd into the ZnTe crystal, the effective electric field responsible for the

phase delay from birefringence is

Eeff(t, zd) = F−1
[
F [ECTR(t)] · Atrans(f ) · exp

(
i
2πf
c

n(f )zd −
2πf
c
κ(f )zd

)
· r41(f )

]
,

with Atrans =
2

n(f ) + iκ(f ) + 1
. (3.16)
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(a) (b)

(c) (d)

Figure 3.7: (a) depicts the index of refraction n(ν) (red) and absorption κ(ν) of ZnTe in the THz
range. It features a transverse optical resonance at 5.3 THz. (b) shows the CTR spectrum of
an ideal, ultrashort CTR pulse. In the experiment, high frequencies above 6 THz are attenuated,
due to the Teflon filter and the focusing geometry. The strong change in the index of refraction
near the ZnTe resonance gives rise to strong delays for this spectral amplitude, which can be
measured. (c) depicts the ZnTe birefringent phase delay Γ(t) in a laser beam, when above-
resolution signals with τ > 5.3 THz−1 according to (3.13) are used. Both pulse shape and width
can be distinguished. (d) For below-resolution signals with τ < 5.3 THz−1 this distinction does
not exist anymore. The spectral amplitude near resonance shows as an oscillation in the signal,
which becomes larger for shorter CTR pulses.

Hereby, the original CTR field ECTR has been Fourier transformed ECTR(f ) = F [ECTR(t)] to the

frequency-domain, where it is weighted by the transmissivity of the crystal front surface Atrans(f ),

the absorbtion κ(f ) and the phase delay due to the ZnTe index of refraction n(f ), as well as the

electro-optic coefficient r41(f ). After back transformation into the time domain (3.14) can be

obtained, by convolving Eeff(t, zd) and the stretched laser pulse propagating at the group velocity

vg along the entire crystal.

Γ(t) =

∫ dcryst

0

2π
λ0

n3
0EL,0(t) · Eeff(zd /vg + t, zd) dzd (3.17)

The result is the relative phase delay Γ(t) between ordinary and extraordinary polarisation of the

probe laser. For long THz pulses of 1000 fs, 500 fs and 300 fs as shown in Fig. 3.7(c), both the

shape and pulse duration are reasonably preserved. For CTR pulse durations below 100 fs as
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(a) (b)

Figure 3.8: (a) The angular-spectral intensity of coherent transition radiation (CTR) from a short
electron bunch (τshort = 32 fs) followed after a time ∆τ = 356 fs by a long, low-energy electron
background (τlong = 712 fs) is constrained by several filter functions (arrows illustrate respective
cutoff frequencies), affecting the overall time resolution. (b) In the time domain the CTR field is
a superposition of the low-energy electrons (red curve) trailing in the wake of an ultrashort, sub-
resolution electron bunch (1). The resulting interference (green curve) is measured as an intensity
trace in the cross-correlator and includes effects of polarization optics (2).

depicted in Fig. 3.7(d), the resulting signal does not follow anymore the original pulse shape, but

features oscillations trailing the first peak. While the oscillation period is largely determined by the

position of the TO resonance in ZnTe, the relative oscillation amplitudes depends on the field near

the resonance. This leads to shorter CTR pulses featuring more pronounced oscillations, because

they have larger spectral amplitudes near resonance. Note that neither diffraction, focusing nor

the transmission through a Teflon filter are considered in this example and that these alter the

overall spectral envelope and thus lead to different signals. However, the spectral sensitivity near

the ZnTe resonance and the corresponding oscillation amplitude for short THz signals generated

by short electron bunches can be expected to be preserved in the experimental data.

From Fig. 3.7(c) it can be seen that signals beyond 200 fs above the resolution limit of the

crystal resonance are not heavily distorted. The fact that long above resolution signals can be

directly measured can be exploited to separate the signal contribution of THz signals from very

long and extremely short electron distributions. By using the long background field εlong(t) >

εshort(t) as a bias for the electric field εshort(t), this background defines a zero-field reference

for the short THz field and thus preserves the latter’s sign information in the cross-correlator

intensity trace I(t) (see green curve in Fig. 3.8(B2)). For the same reason the measurement is

also robust against small polarization imperfections within the diagnostic system, which affect

the entire signal, but not the field amplitudes of the short pulse with respect to the reference

background.

If the ultrashort THz signal would be fully transmitted, one could hardly distinguish these

oscillations from signals generated by background electrons. Thus the mutual contrast of the

THz signals from the long and short electron bunch has been enhanced by using the central hole

in the parabola as an angular filter, thereby selectively reducing the intensity of the reflected

ultrashort THz fields from the high electron energy contribution (θ ' 1/ γ). The idea behind
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the analysis is a time-domain interferometry (TDI) approach to separate the superposed signal

from the measurement into its constituent CTR fields by distinguishing the different time scales.

Hence, one has a long, above-resolution background field εlong(t) (red curve in Fig. 3.8(B1)), which

is easy to characterize and a short, sub-resolution field of the ultrashort electron bunch εshort(t)

that now modifies a known background.

3.4 AB-INITIO TRANSITION RADIATION MODELING OF THE EX-
PERIMENT

The modeling of the physics in the experiment consists of

• Electric fields of coherent transition radiation (CTR) according to measurements from the

electron spectrometer.

• Propagation and focusing of the CTR wavefield in the ZnTe crystal.

• Propagation of laser and CTR beam within the crystal.

• Changes of the CP polarization state.

The general approach of this start-to-end model connecting all the above steps, is that an

initial CTR field is decomposed in an angular spectrum modeled by a sum of plane waves, which

are subsequently propagated through the experiment and as such can easily be computed using

Fourier optics techniques [27], which solve the Fresnel-diffraction integral. This analysis included

the broad CTR spectrum, as well as two independent polarizations for the radially polarized beam.

Naturally the duration of the ultrashort and the long electron bunch, as well as their temporal delay

are unknown in the beginning and are determined later when comparing the calculations with the

measured cross-correlator data.

For the detailed modeling of the transition radiation of the electrons after the Al foil diffraction

effects as in eq. (3.6) and (3.12) have to be taken into account because the closely spaced tape

holders behind the foil define a finite emission region with an effective size of 2 mm. If electron

spectra were recorded for a given shot, they were taken as the basis for the modeling of the

long and short electron distributions. Using a fitting procedure the spectrum was separated

into an exponential, low-energy part and a quasi-monoenergetic feature at higher energies, see

Fig. 3.6(a).

The simulated far-field distribution was propagated using Fourier optic techniques [27] through

a model of the THz refocusing optics, including the holes in the OAPs and the Teflon filter, to the

ZnTe crystal. Hereby, the mirror holes were modeled as light blocking apertures on the mirror

and the Teflon filter according to a measured transmission spectrum. For the focusing the full

radially polarized THz beam and the 100 µm diameter CP focus, which is displaced by 600 µm
from the THz pulse axis, was taken into account. This offset introduces another high-frequency

cut-off, since high frequencies are focused to a spot too tight to interact with the off-center CP
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Figure 3.9: Relative CTR intensity as calculated at the ZnTe crystal surface. The dotted circle
depicts the focal spot position and size of the CP beam. The 60 µm offset with respect to the
central axis was chosen to ensure a near-uniform polarization of the CTR field within the probe
beam.

beam. The result is a spatio-temporal field distribution at the focus in the ZnTe crystal. The

corresponding intensity distribution on the crystal and the position of the probe beam is shown

in Fig. 3.9.

In the following modeling step, the THz pulse and the CP are both tracked as a superposition

of plane waves through the ZnTe crystal [19, 26] according to its index of refraction and absorption

properties. The result is a spatially resolved, relative phase delay Γ(r⊥, t) between the ordinary

and the extraordinary polarization component of the CP probe beam.

The transmission of the CP through the crossed polarizer, carrying the temporal information

Γ(r⊥, t), is modeled using the Jones matrix formalism [28, 29]. The final optical pulse intensity

measured after the crossed-polarizer by the cross-correlator is then given by the square of the CP

electric field, averaged over the CP beam diameter.

Figure 3.10: (a) The model of two electron distributions is fitted to the measured cross-correlator
intensity trace determining the short pulse duration with a best fit at τshort = 32 fs (FWHM), the
temporal offset ∆τ = 356 fs and the long electron background duration τlong = 712 fs (FWHM).
(b-d) depicts error margins at the 90%-level of τshort, τlong, ∆τ and ηel. The blue dots represent
fits to random variations of the best fit. (**) This deviation is consistent with a non-Gaussian, low
energy tail at later times, which does not affect the short pulse duration measurement.
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3.5 ERROR ANALYSIS USING MONTE-CARLO METHODS

The measured cross-correlator intensity trace (black curve in Fig. 3.10(a)) of the sample shot

from Fig. 3.6 is then fitted to the model with the main parameters being τshort, τlong, ∆τ and the

number ratio ηel of the two electron populations. It remains to examine the stability and thus error

margins of the fitted parameters under small variations of the measured data from experimental

uncertainties, such as the shot-to-shot deviations of the laser probe pulse profile. Due to the

single shot nature of the experiment, which prevents a controllable reproduction of the same

electron bunch, a Monte-Carlo approach was adopted for the error analysis.

Figure 3.11: The measured signal is used to derive a best fit, characterized by the parameter
vector adata. Furthermore analysis of the diagnostic including statistics over null shots yields the
uncertainty of the measured result. Then, many different synthetic data sets are generated by
adding random noise, which is statistically weighted to correspond to the measurement errors.
Then each of these synthetic data sets is fitted to a new set of fitting parameters asyn,i. The true
set of parameters adata according to the model lies within the resulting distribution of all asyn,i.

As depicted in Fig. 3.11, the starting point is the actual single-shot data from which a best

fit according to the assumed model is computed. Then a statistically representative number

of synthetic data sets is produced by adding pseudo-randomly generated noise to the best fit.

However, this computer-generated noise is not arbitrary, but needs to reflect the shot-to-shot

variations in the diagnostics from other sources than the electron bunch. For that reason 19

calibration measurements without accelerated electron beams were analyzed to characterize the

typical shot-to-shot fluctuations as RMS values for each pixel along the cross-correlator time axis.

These RMS-values then form the basis for the synthetic noise mimicking repeated measurements

with an identical electron beam. For each of the synthetic data sets a new best fit is performed,

thus resulting in distributions of fitting parameters (see Fig. 3.10(b-d)), where each fit is marked

by a blue dot. The statistical deviations within this set of fitting parameters then determines the

error margins.

The model fits were based on a minimum χ2, which was obtained by a nonlinear fit using

a Pattern Search algorithm [30]. The algorithm was chosen for this analysis, since compared

to other common optimization methods, such as Levenberg-Marquardt, simulated annealing or

genetic algorithms, implementation tests have shown a considerable faster convergence speed

and stable optimizations results with negligible dependence on the randomly chosen starting

values. These properties of the algorithm were essential for calculating model fits to a statistically
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large number of over 1000 synthetic data sets. The final error margins for the parameters τshort,

τlong, ∆τ and the number ratio ηel were determined by a 90% confidence criterion, stating that

90% of all repeated measurements lie within this interval.

In addition to the physics arguments, the quality of the assumed model is statistically sup-

ported in Fig. 3.12 by a “goodness-of-fit” test, which shows that the residual deviation between

fit and measured data reasonably follows a normal distribution and that there are no systematic

deviations left that are not accounted by the model. Furthermore, this is an indicator that the

measured data does not provide significantly more insights, that could be obtained if a more

detailed model would be assumed.

Figure 3.12: The normal probability plot graphically compares the distribution of the residuals
between fit and data to a Gaussian distribution (red line). On the horizontal axis the residual
value is normalized to the measured shot-to-shot RMS fluctuation. The vertical axis quantifies the
probability of the occuring deviations.

3.6 MEASURED ELECTRON BUNCH DURATIONS

For the shot in Fig. 3.10 a best fit has been determined at τshort = 32 fs (FWHM) with 90% of

all Monte Carlo scenarios below 38 fs (FWHM). Fig.3.10(b-d) illustrates error margins of τlong =

712+12
−24fs and ∆τ = 356+1.5

−1.8fs. The relative uncertainties due to the small misalignment in polar-

ization optics ∆φpol, the electron number ratio ηel and the CP to CTR offset d are 14.0%, 8.7%

and 3.0% respectively.

Typical background electron durations τlong from various shots were determined to be in

a range of 450-800 fs with delays ∆τ of 300-450 fs behind the respective ultrashort electron

bunches. These delays and bunch durations (several 100 fs) are in good agreement with the time-

of-flight dispersion of the low-energy electrons as they propagate over a distance of 5 mm to the

Al foil.

A selected set of four shots with corresponding short electron bunch durations and the re-

spective fits is displayed in Fig. 3.13. For shot (1) and (2) (red) electron spectra could be used for
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Figure 3.13: Left: Bunch duration measurements of several shots including all error contributions.
Right: Corresponding measured cross-correlator traces (black) with best fits (colored). For the
calculation of the red curves a measured electron spectrum was available. The best fit electron
bunch duration of shot no. 1 (highlighted) is 32 fs and thus comparable to the measured plasma
period λp/c = 30 fs (dashed line).

detailed modeling [14]. Although the electron spectrometer was not in operation for shots (3) and

(4) (blue), considerable information can be retrieved based on spectra comparable to (1) and (2)

combined with assuming varying energies of their monoenergetic peaks. However, due to this

uncertainty in shot (3) and (4) no best fit could be obtained for the short bunch duration τshort.

Shot (1), corresponding to Fig. 3.10, has a 90% upper limit at 38 fs and a best fit at 32 fs, which

suggests an electron bunch duration comparable to or shorter than the plasma period λp/c =

30 fs. While the best fit value is slightly above the pulse duration expected by PIC simulations [31],

it has to be pointed out that no lower limit can be given and that effects such as beam loading [3]

can lead to a substantial elongation with respect to ideal case PIC scenarios with durations well

below half the plasma period.

In summary, these are the first experimental results showing that laser-plasma wakefield

accelerated electrons are in fact shorter than the drive laser pulse duration, even after exiting the

plasma. The upper limit of the electron bunch duration at a laser pulse duration of 45 fs was found

to be 38 fs (FWHM), which is comparable to the plasma period. This result paves the way towards

future ultrashort x-ray sources of high-brilliance, such as ultrafast Thomson-scattering [32, 33] or,

in a more long-term perspective, a laboratory-scaled SASE FEL [34], for which ultrashort electron

pulses with high peak currents in the kA range are essential. These developments might make

compact, brilliant X-ray beams for applications available in mid-sized university labs.

3.7 COMPLEMENTARYAPPROACHES: SPECTROSCOPIC DETERMI-
NATION OF THE BUNCH DURATION

The bunch duration measurement presented here shows that electron bunch durations ≤ 33 fs
are shorter than the laser duration 45 fs and are comparable to the plasma period 30 fs. For

future application this is significant in two main aspects: the duration was measured outside
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of the plasma where it can actually be used for applications and this duration is shorter than

most electron accelerators, which is essential for the vision of all table-top SASE-FELs based on

laser-wakefield accelerated electrons.

However, the resolution limits of the electro-optical crystal made possible only a determination

of an upper limit for the duration. So the question remains: what are the shortest electron

bunch durations achievable by LWFA? The answer to that question would not only be important

for designing future radiation sources or be a valuable parameter for optimizing laser wakefield

accelerators. Knowing a precise bunch duration would in combination with wakefield imaging

methods [35] yield unique insights into the temporal structure of LWFA processes.

To illustrate this point, Fig. 3.14 shows the an electron spectrum recorded at the undulator

experiment at the JETI laser. The properties of the 13 pC electron bunch at 45 MeV energy were

exceptional in the experiment. The divergence was 3.7 mrad and the energy width 0.7−0.8 MeV.

The on-axis energy width is an upper limit value because it has reached the energy resolution of

the electron spectrometer. In the tail of the electron bunch an oscillation over two oscillation

shows in the energy-angle-plane in Fig. 3.14(inset). One now can assume that these electrons

were injected in the same region, but later into the wakefield, so that these electrons have

less time for acceleration and hence achieve lower final energies. This also leads to electrons

having different positions in the wake behind the head of the electron bunch, such that there is a

monotonic relationship between longitudinal position and energy – the electrons in the front gain

higher energies than those trailing behind. The spectrum depicts an oscillation in energy with a

period in the range 6−9 MeV, which immediately raises the question on the physical origin of that

situation. The most likely candidates are either relatively slow betatron oscillations [36], where

a transversally, deflected electron bunch oscillates with ωb ∼ ωp/
√

2γ, driven by space-charge

forces, around the positively charged center of the plasma bubble – or a resonant interaction

between the electron pulse and a trailing part of the laser pulse [37], acting like a driven oscillator

and leads to a microstructure with a period comparable to the laser wavelength λ0. Measuring

the precise time scale of the bunch duration could establish a relationship between time and

energy and thus decide, which process causes the observed angle-oscillations.

In principle there is still room to improve the measurement technique presented in the last

chapter, especially by using a GaP crystal instead of a ZnTe crystal for better electro-optic resolu-

tion. However, with almost an order of magnitude lower nonlinear efficiency (see [19]), this would

at best only double the resolution down to about 15 fs detection limit, which is still not enough to

detect sub-10 fs laser pulses. Therefore a different diagnostic is required.

For a new diagnostic it is a good idea to change the perspective from a time-domain to a

frequency-domain measurement. Instead of determining the pulse duration of the CTR and hence

the electron bunch duration ∆t one can also seek the position in the spectrum νTR = 1/ ∆t,

where the spectral intensity changes from coherent to incoherent transition radiation. For shorter

electron bunches this becomes easier because the transition from coherence to incoherence

occurs at shorter wavelengths, which are not in the far infrared anymore, but in the middle and

near infrared, where sensitive detectors are available. Thus, the measurement reduces to taking

the spectrum of the transition radiation of an ultrashort pulse.
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Figure 3.14: Electron spectrum of a LWFA electron bunch (13 pC charge and 3.7 mrad divergence
for the main peak) at the JETI laser in the undulator experiment (see later in this chapter). The
electron was angular-averaged over the data from the scintillating screen (inset). The scintillating
screen image (inset) depicts the raw data (only X-rays removed) with the horizontal axis being
related to the electron energy and the vertical axis to the angle. The electron beam tail features
an oscillation in angle. The arrows indicate matching energies for interesting deflections between
the scintillating screen image and the angle-integrated electron spectrum. The period of the
oscillation in angular deflection is ∼ 6− 9 MeV.

This becomes more clear in an overview of the different regimes of transition radiation (see

Fig. 3.15) below the plasma frequency ωp of the metal foil radiator. At long wavelengths, the

transverse extent of the fields γλ � ρ exceeds the radius of the metal foil and thus intensity

is lost due to diffraction. On the other end at large frequencies of ω ≥ γωp beyond optical

frequencies, the radiator material stops acting like an ideal conductor. As a result the discontinuity

in dielectric coefficients at the metal-vacuum interface vanishes and transition radiation is strongly

suppressed.

In between these extremes, defined by the material and size of the radiator, the transition

spectral intensity of a single electron (3.1) is independent of frequency and thus quasi-constant.

Therefore the TR spectrum of the electron beam is entirely governed by its longitudinal and trans-

verse coherence properties. Specifically, there is a steep transition from coherent to incoherent

radiation, when the emitted wavelength becomes comparable to the bunch length λ ' cτbunch.

Thus the measurement of the electron bunch duration is reducible to the recording of broad fre-

quency spectra, which makes transition radiation in the frequency-domain well-suited for single-

shot type of experiments. The spectral position of the edge in spectrum intensity indicates the

electron bunch duration.

In contrast to measurement in the time-domain, where in principle durations can be measured

to arbitrarily long durations, in the frequency-domain there is both a lower and an upper limit for

the detectable bunch duration as spectrometers have a finite frequency range. Since one knows

from the time-duration measurement of the last chapter that the bunch duration is shorter than

' 30 fs, the corresponding target spectral range around λ = c/ 30 fs = 9 µm has to be in the

mid-infrared.
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Figure 3.15: Overview on a typical transition radiation spectrum of an electron bunch: The general
spectral shape is governed by both the transverse extent of the radiator and the spatial dimen-
sions of the electron bunch. Towards longer wavelengths, the foil radius ρ eventually becomes
small enough ρ � γλ for the geometry of the radiator surface to act as an aperture, so that
diffraction reduces the spectral intensity. Towards shorter wavelengths, diffraction effects be-
come negligible and the finite electron bunch dimensions emerge as the dominant influence on
spectral intensity. Below some minimum wavelength, the transition radiation generated from
individual, spatially separated electrons, stops to interfere constructively. Since transition radi-
ation is primarily radiated into the direction of the electron trajectories, this loss in coherency
and spectral intensity is determined by the longitudinal bunch density and hence electron bunch
duration.

However, there is also a possible problem with the high temporal-resolution from spectral

measurements. A coherent to incoherent transition can belong to a density modulation within

the electron bunch, so it is possible to observe the characteristic size of this modulation at an

intensity decline at high frequencies and potentially mistake it for the (longer) bunch duration. For

that reason it is mandatory in frequency-domain based bunch duration measurements to verify

that the degree of coherency in radiation towards longer wavelengths does not decline, as a

decline is a tell-tale sign for a beam modulation. In principle this check has to be extended up

to wavelengths where time-domain measurements can confirm that there are no other, longer,

super-structures involved. This issue is important, because the average electron density of an

electron beam, which is so central to the performance of an FEL, remains the same with or

without internal substructure. According to PIC simulations, such micro-structures can arise in

LWFA accelerated beams by resonant interaction of the electron bunch with parts of the laser

beam [37]. Experimentally, modulations in LWFA beams were observed by transition radiation in

the visible spectrum.

Transition radiation in frequency domain

The theoretical description for the TR spectral intensities in the far field can be readily inferred

from the electric fields by Fourier transforms and Parseval’s theorem. Following [13, 14, 19] the

spectral energy distribution for a rotationally symmetric electron beam passing through an ideally
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conducting and circular interface of radius ρ is

d2W
dω dΩ

=
d2WITR

dω dΩ
+

d2WCTR

dω dΩ
(3.18)

=
e2

4π3ε0c

(
Ne · |〈ED〉|2 + N2

e · |〈EDF〉|2
)

, (3.19)

where Ne, E , D and F correspond to the familiar definitions of the number of electrons, the

radiation field amplitude (3.5), the diffraction factor (3.6) and the electron form factor (3.8).

The form factor depends on the normalized momentum distribution g(u), with u = p/mc = βγ

and the position-momentum distribution f (r , u) and can for uncorrelated longitudinal and trans-

verse distributions be separated as F = F⊥F‖. For Gaussian electron beams with small diver-

gences ψ � 1, the longitudinal

F‖ = exp[−(ωσz /v)2/ 2] (3.20)

and the transverse form factor component become

F⊥ = exp[−(ωσr sin θ/c)2/ 2] . (3.21)

From equations (3.19) to (3.21) it is apparent that the spectral dependence with respect to

ω arises entirely from the form factor and that the form factor becomes unity as long as the

electron bunch length σz remains short ω · (σz /c) � 1 and satisfies the significantly weaker

transverse coherence condition on the electron bunch radius σr sin θ � σz . The observation angle

θ is taken with respect to the central axis, normal to the radiator foil, and maximum TR intensities

are reached at ∼ 1/ γ. Therefore the transition from coherent to incoherent transition radiation in

the spectrum is the central indicator on the electron bunch length and hence duration.

In Fig. 3.16, the spectrum integrated over the fully solid angle was calculated for an LWFA type

electron beam with 200 MeV energy and 20 pC charge. The electron density profile was assumed

to be Gaussian with a bunch duration of 10 fs (FWHM) and a bunch diameter of 20 µm (FWHM)

when exiting the foil. While Fig. 3.16(a) is in ω-coordinates and thus compares to Fig 3.15 and its

different TR regimes, the version in Fig. 3.16(b) is rescaled to wavelengths λ and a linear spectral

intensity axis to reflect more closely the situation of an experiment, where spectrometers linearly

disperse light with respect to wavelengths.

This can be contrasted by another calculation, which additionally includes a density modulation

with period 1 µm (σ∆ = 2 µm). Substituting the following model for the longitudinal charge

distribution

f (r , u) = g(u) · f⊥,G(r)f‖,G(z) · 2

1 + exp
(
− 8π2σ2

z
σ2

∆

) cos2[2πz/ σ∆] (3.22)

and calculating the longitudinal form factor according to eq. (3.8) yields an additional peak in the

spectrum Fig. 3.17. Note, that this is not a mere redistribution of energy within a spectral distri-

bution, but that the total radiated energy increases. In a wavelength based spectrum it shows

that the additional peak does, due to the general λ−2 intensity scaling, dominate the rest of the

spectrum in spectral intensity. The spectral feature on the right in 3.17(b), which contains the

information on the electron bunch duration is by one order of magnitude smaller than the CTR
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(a) (b)

Figure 3.16: (a) Calculated TR spectrum of a 200 MeV, 20 pC, beam of a Gaussian charge density
profile with 10 fs (FWHM) bunch duration and 20 µm (FWHM) diameter. (b) shows the corre-
sponding spectrum over wavelengths λ, as observed in experiments. The dashed lines depict a
graphical λ−2-scaling extending from some selected reference amplitudes towards higher wave-
lengths. If the radiated spectrum lies above the dashed line (green and orange), the degree of
coherency of CTR is increased. If the scaling closely follows the radiation line (pink), the change
in coherency is small.

of the density modulation. As a consequence, even weak electron density modulations at short

time scales can lead to appreciable spectral amplitudes, such that the dynamic range of the de-

tection system has to span at least two orders of magnitude in order to resolve and quantify even

small amplitude features at longer wavelengths to discriminate the global bunch structure from

eventual modulations. A strict criterion (within the uncertainties in measurement) of the largest

bunch structure is, that coherence does not decrease towards longer wavelengths. Graphically,

this corresponds to a monotonically rising spectral intensity towards smaller frequencies in a fre-

quency based graph, or in a wavelength based graph the requirement, that λ−2 curves starting

from each data point on the curve must be smaller or equal than all other data points at longer

wavelengths respectively. For the density modulation in Fig. 3.17 these conditions are clearly

violated.

(a) (b)

Figure 3.17: (a) CTR ω-spectrum of a micro-bunched beam (dashed) compared to the beam with-
out a sub-bunch structure. (b) CTR λ-spectrum of a microbunched electron beam (blue) with an
“isocoherency” line (violet) at the peak depicting the sub-bunch character of the feature.
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Several conclusions can be drawn from these theoretical considerations for future experiments:

• For LWFA electron bunches, the spectral intensities are on the order of nJ/µm, which points

out rather high demands on detector sensitivity.

• Beside checking for steep CTR to ITR edges, it is necessary to confirm that the degree of

coherency increases towards longer wavelengths, in order to show that the peak originates

from the electron bunch length and not some small scale electron density fluctuations.

• As micro structures in the beam can lead to large spectral amplitudes, the detection sys-

tems need to cover a dynamic range of at least two orders of magnitudes to detect small

deviations at longer wavelengths with reasonable error margins.

3.8 SYNCHROTRONRADIATIONFROMLASER-WAKEFIELDACCEL-
ERATED ELECTRONS

Since laser-accelerated electrons are indeed ultrashort, they have one of the essential proper-

ties for a potential free-electron laser on table-top. However from practical point of view it is

necessary to not only measure the electron beam properties, but have enough control over the

electrons to combine them in another step with classical insertion devices, such as undulators,

and actually use the electrons as a light source. In the proof of principle experiment shown

here [38–40], a laser was used to accelerate quasi-monoenergetic electrons in a gas jet plasma

by laser-wakefield acceleration in the bubble regime up to energies of approximately 85 MeV,

which then were passed through an undulator, generating undulator radiation in the optical spec-

tral range. This makes it the first production of synchrotron light from laser-wakefield accelerated

electrons. The properties of the undulator radiation, such as intensity, wavelength and higher har-

monics are confirmed by comparing measured, single-shot spectra of the synchrotron radiation

to the theoretical expectations derived from the measured electron spectra.

The experiment was carried out at the Jena high-intensity titanium:sapphire laser JETI, that de-

livers pulses at 800 nm with 85 fs duration and 430 mJ pulse energy on target. The laser ionizes

a Helium gas jet and in the plasma accelerates by laser-wakefield acceleration a monoenergetic

electron bunch, which after exiting the plasma passes through an undulator, where it undergoes a

wiggling motion due to the magnetic field and radiates primarily at infrared or optical frequencies.

This radiation is then detected with an optical spectrometer. The electron beam energy spectrum

is diagnosed by an electron spectrometer and the beam profile is imaged by two retractable scin-

tillating screens before and after the undulator. All parts of the setup were aligned along one axis

and were located, except for the optical spectrometer, in vacuum.

The laser pulses are focused by an F/ 6, 30° off-axis parabolic (OAP) mirror to a slightly ellip-

tical focus with an average diameter of 11 µm (FWHM) and a peak intensity of 5× 1018 W/cm2,

corresponding to a normalized vector potential of a0 = 1.5. The pulsed, supersonic Helium gas-

jet from a 2 mm nozzle features a super-Gaussian density profile and is positioned such that the

laser reaches the focus at the steep density upramp (the outer edge) of the gas jet. The peak

gas density in the interaction region reaches 2× 1019 cm−3. Due to the high intensity of the laser
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Figure 3.18: The main laser is focused by an off-axis parabola mirror into a supersonic gas
jet, where it accelerates electrons through Laser-wakefield acceleration to several tens of MeV.
These electrons then pass through an undulator and generate undulator radiation at optical wave-
lengths. Both undulator radiation and electrons are then simultaneously analyzed in an electron
and optical spectrometer. In order to avoid background signals in the spectrometers, a 15 µm
thin Aluminum foil at the undulator entrance blocks laser light and radiation from the plasma. Two
retractable scintillating screens are used for analysis of the electron beam profile and alignment
of beams through the undulator to the diagnostics.

the gas is fully ionized and the laser undergoes ponderomotive and relativistic self-focusing and

propagates within a self-generated plasma channel. At the selected laser and plasma parameters,

the laser pulse experiences a strong longitudinal self-modulation, which shortens the pulse and

steepens the plasma wake [41]. By wave breaking, electrons are self-injected into the wake and

efficiently accelerated via the bubble regime to energies on the order of 50–100 MeV [41].

For online diagnostic and optimization of laser and gas jet the self-emission and the scattered

laser light from the plasma channel were recorded for every shot in a side view perpendicular

to the laser direction of propagation. The intense laser fundamental was blocked by a 400 nm
bandpass filter. Both channel length and emission characteristic were subject to significant shot-

to-shot fluctuations, thus indicating strong nonlinearities of the interaction. Typical channels, as

the one shown in Fig. 3.19(a), are about 1 mm in length.

For electron beam pointing and steering, as well as divergence measurements and beam

quality assessments, two retractable scintillating screens (Konica KR) were installed, one before

and one after the undulator (see Fig. 3.18). The electron beam profiles measured 30 cm behind

the gas jet in front of the undulator, as the one depicted in Fig. 3.19(b), include almost always a

largely divergent fraction, while well-collimated beams with divergences below 10 mrad appear

often – i.e. in 70% of all shots.

The accelerated electrons displayed large shot-to-shot fluctuations in beam pointing and diver-

gence, that originate from the highly nonlinear processes in the plasma, where small changes in

plasma density or the laser beam lead to large changes in the resulting electron beam character-

istics. As depicted in Fig. 3.19(c), the beams show a large on average divergence of 30 mrad,

while well-collimated beams typically had divergences in the range of 3-7 mrad that for some

selected shots such as in Fig. 3.19(b) were as small as 1 mrad. The pointing variation of these
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(a) (b) (c) (d)

Figure 3.19: (a) depicts a self-emission sideview on the plasma channel with the 800 nm laser
light being blocked by a 400 nm band pass filter. (b) shows the transverse electron beam profile of
well-collimated electrons close to the undulator axis on the scintillating screen 30 cm behind the
gas jet. The screen grid features a 5 mm spacing. (c) shows the same situation, averaged over
50 consecutive shots, and thus displays the large variance in both electron beam pointing and
divergence. The x in (b) and (c) marks the central axis respectively. (d) features an average over
46 shots of the electron beam profiler at the undulator exit. It shows the focusing effect in the
direction parallel to the undulator field, such that on a 5 mm grid the average electron deviation
from the z-axis in x-direction is 2 mm. The edges in the beam arrive from the undulator braces.

collimated beams was as large as 60 mrad. Hence only a few shots were close enough to the

axis ≤ 3.5 mrad to pass through the undulator to the electron spectrometer. Hence to increase

this fraction, the mean direction (averaged over several tens of electron profiles) of the electrons

was optimized by adjusting the laser incidence position on the off-axis parabola by using two

steering mirrors before the parabola. It has to be noted, that optimal steering conditions were

not obtained for laser beams geometrically centered on the parabola. Instead, imperfections of

laser profile and parabola coating lead to an optimal incidence position, which was off-axis and

changed the focusing axis by several degrees. After optimizing average electron beam point-

ing, the probability of a well-collimated beam to pass through the undulator was about one in a

hundred shots. The second beam monitor behind the undulator was then used for verification

of electron beam transmission through the undulator before performing measurements with the

electron spectrometer.

The electron spectrometer was based on permanent magnets inside an iron yoke. The input

aperture of the spectrometer was 2 cm, however the effective electron acceptance angle was

limited to 7.2 mrad by the 10 mm wide undulator exit. The magnetic field strength was 720 mT,

extending 20 cm in length and 10 cm in width with a gap of 2 cm. For single shot online diagnostic

of the deflected electrons a scintillating screen (Konica KR) in combination with a CCD camera

was used. The detectable energy range was 14 to 85 MeV. The energy to position calibration and

the dispersion properties were provided by particle tracking simulation (GPT) that used as input

the measured 3D magnetic field including fringe fields [42]. For an absolute charge calibration

of the electron spectrometer scintillating screen, imaging plates (BAS-MS2025 by Fujifilm) were

used. Such imaging plates have the advantage of a large dynamical range, a highly linear response

and are well characterized [43]. In the end, the lowest spectrally dispersed charge, which could

be detected by the electron spectrometer was approximately 0.5 pC/MeV. The characteristics

of the electron spectra were also subject to shot-to-shot variations showing a random mixture

of exponentially-shaped spectra and monoenergetic spikes (see Fig. 3.20(a)). Such spectra with

monoenergetic features were measured in 25% of all shots. The narrowband peak energies

varied between 20 and 70 MeV with a maximum in the range of 40-45 MeV. The charge of such
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peaks was typically between 10 and 20 pC, mostly below 40 pC.

The undulator design is a Halbach-Hybrid [44]. It is built from permanent magnets with a period

of λu = 2 cm and a total length of 1 m (50 periods). The gap between the magnets was set to

1 cm, with a maximum magnetic field on axis of 330 mT, so the undulator parameter K = 0.6.

The distance from the gas nozzle was about 40 cm. In order to protect the magnets from off-

axis electrons, a 1 cm thick, 1 cm diameter lead aperture was placed in front of the undulator. In

experiment, transmission of the electrons could be characterized by averaging over multiple shots

as depicted in Fig. 3.19(d), which clearly demonstrates the focusing effect of the undulator that

arises from the magnetic field gradient along the x-axis and deflects off-axis electrons towards the

central axis. The focal length is highly dependent on the electron energy and initial divergence, but

as an estimate it can be compared to half the length of a betatron oscillation λβ ≈ (γ/K )λu [45].

Therefore typical focal lengths of that undulator well exceed the undulator length for electron

energies larger than 30 MeV. The slight deviation of 4 mrad in the y-direction in Fig. 3.19(d) has

to be attributed to the mean steering direction of the electrons.

The optical detection system had two main challenges. It had to image radiation from along

the entire 1 m long undulator axis and had to be sensitive enough to detect even small photon

fluxes. Secondly, it should image a wide spectral range in a single shot. The undulator radiation

was collected and focused into the entrance plane of a symmetrical Czerny-Turner spectrometer.

A thermoelectrically cooled 16-bit CCD camera (Andor DO-420 BN) was used as a detector. The

spectral range was set to 560 − 990 nm and the wavelength calibration was performed using

a Hg-vapor lamp. The entire system consisting of imaging optics, spectrometer and CCD was

calibrated to absolute photon numbers using a He-Ne-Laser and manufacturer information on

the CCD spectral quantum efficiency and the spectrometer grating efficiency. In order to screen

the spectrometer against direct exposure from laser or plasma light a 15 µm aluminium foil was

placed in front of the undulator. Since the light source extends along the entire undulator length

of 1 m and can cover a spectral range from 560− 990 nm, a short focal lens was setup for a high

depth of focus, such that it images the middle of the undulator onto the spectrometer entrance

slit. Measurements with a HeNe laser have determined that on average more than 90% of the

light is captured along the undulator length and that the acceptance angle is 2 mrad. Raytracing

simulations of the optical system with extended light sources of wavelengths over the entire

spectral range yield similar results and confirm an acceptance angle of 2 mrad (FWHM).

Fig. 3.20 shows three single shots with electron spectra in (a) and the corresponding mea-

sured optical spectrum. The gray lines in depict the energy range in which undulator radiation

is expected to be detectable by the optical spectrometer. The red electron spectrum, peaked

at 64 MeV lies within said energy range with little contributions at lower energies. The corre-

sponding radiation spectrum in Fig. 3.20(b) has a pronounced peak which agrees well with the

wavelength as expected from undulator radiation according to (2.12) in chapter 2.1

λr =
λu

2γ2 (1 + K 2/ 2) . (3.23)

The green electron spectrum is intense and broadband, which attains a local maximum some-

where around 67 MeV and falls off beyond 70 MeV. This drop in the electron distribution is also

mirrored in the corresponding photon spectrum, which is also broadband and falls off towards
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(a) (b)

Figure 3.20: In three selected shots, measured electron spectra (a) are compared to their cor-
responding optical spectra (b). The grey window in (a) shows the energy region, for which first
harmonic undulator radiation is detectable in the optical spectrum. The red spectrum 64 MeV
falls within that window and shows also as a peaked spectrum in the optical spectrum. The
black spectrum, peaked at 32 MeV, shows the expected null result, while the broad green spec-
trum is also broad in the optical spectrum. The right-hand-side ordinate in (b) belongs to the red
spectrum.

smaller wavelengths. The black electron spectrum features a peak at 32 MeV, which in terms of

charge is comparable to the red spectrum, but has no electrons within the target energy range.

Therefore the undulator radiation is expected to be around 3 µm, which is clearly outside of the

optical spectrometer detection range. This confirmed by the black spectrum in Fig. 3.20(b), which

shows no signal.

A more detailed analysis was carried out with the help of calculations according to undulator

theory as in ch. 2.1 and [44, 46]. Here, the measured electron spectrum was taken as input to

account for the charge contribution at each energy. The radiation power amplitude d2W/dωdΩ

was calculated and integrated up to the acceptance angle of the detection system at 2 mrad
FWHM. Fig. 3.21(a) shows again the shot, which is displayed red in Fig. 3.20(a). The electron

spectrum (inset) is peaked at 64 MeV, has an energy width of 3.4 MeV (FWHM), features a diver-

gence of 3.8 mrad (FWHM) and contains a charge of 30 pC. The measured optical spectrum (red)

is peaked at 740 nm and has a bandwidth of the 55 nm. Within this bandwidth the total photon

number is 2.8× 105. The simulated spectrum (green) shows excellent agreement with the mea-

sured optical spectrum. The slight offset in the peak energy lies within the uncertainty of absolute

energy calibration of the electron spectrometer, due to electrons arriving at the entrance aperture

at slight position offsets with respect to the central axis. Spectral width and photon numbers are

in perfect agreement.

Pairs of electron and optical spectra with quasi-monoenergetic features were recorded for

a number of shots. The correlation between the electron peak energies and the peak optical

wavelength is depicted in Fig. 3.20(b) and compared to the fundamental and second harmonic

according to the undulator equation (3.23). For each shot within the energy range 55-75 MeV
and with a sufficiently high spectral charge density larger than 1 pC/MeV, the optical spectrum

has shown radiation, which corresponds well to the wavelength expected by undulator radiation.

Apart from this group of spectra, there were also shots with quasi-monoenergetic peaks with
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Figure 3.21: (a) The main plot depicts one of the measured optical spectra (red) in absolute
calibration. The simulated optical spectrum (green) is calculated on the basis of the corresponding
electron energy spectrum of the same shot (inset). The good agreement between the curves
confirms the presence of undulator radiation, as well as the consistency of the diagnostics. (b)
Peak electron energies from measured electron spectra are plotted against the peaks in the
corresponding optical spectra. The bars do not denote error bars, but denote the actual widths in
the respective spectra. The solid blue and red line depict the theoretical undulator wavelengths
in the first and second harmonic with respect to electron energy. The experimental results show
good agreement with theory and thus confirm that the detected radiation is undulator radiation.

spectral charge densities exceeding 7 pC/MeV in the range 40-50 MeV that have shown very

weak radiation at signal-to-noise levels S/N < 2, which can be explained by the second harmonic

of the undulator radiation (n = 2). The weak radiation signature is consistent with theoretical

estimates for the actual undulator parameter K = 0.6 and the acceptance angle 2 mrad, which

indicates a spectral intensity ratio between first and second harmonic of about 10:1. It must be

emphasized that all measured pairs of spectra agreed well with undulator radiation and that there

were no optical spectra without the corresponding electron spectrum and vice versa.

Other possible sources of light are excluded either by the experimental setup or by the mea-

sured data. Laser light, plasma self-emission or transition radiation from the plasma-vacuum

boundary is blocked by the aluminium foil in front of the undulator. Also, tiny leakages in the

foil would have been easy to detect, as the comparably narrowband laser radiation 800 nm con-

stitutes the largest fraction of the light. The only other credible source of radiation is transition

radiation originating from the backside of the light blocking foil. However, this radiation is out of

focus for the lens, which images the light onto the spectrometer entrance slit. In addition transi-

tion radiation does not contribute on axis, but instead consists of radially polarized light emitted

into a cone with maximum intensity at 1/ γ, so the polarization dependent gratings and the angu-

lar distribution make it even more difficult for transition radiation to reach the CCD. Furthermore,

if there was a signal it would be very broadband and would only very weakly depend on the elec-

tron energy. Such a background was not observed and it can be concluded, that the measured

radiation spectra were indeed from undulator radiation.

The achieved peak brilliance of the undulator source can be estimated through the measured

spectral properties of both electrons and photons in Fig.3.21, as well as the assumption of a

source size of 3 µm and 10 fs electron bunch duration after acceleration, which according to the
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measured laser spot size and gas density were gleaned from scaling laws. Being a mere proof-

of-concept, the resulting brilliance of 6.5× 1016 mm−1 mrad−2 s−1[0.1 %BW] is far below most

laser pulse sources in the visible (see eq. (2.1)). However, if these numbers are scaled up to

the X-ray range by going to 1 GeV LWFA electron energies [47] and by using an improved undu-

lator design (λu = 1.5 cm, K = 1.0, 200 periods [48]), one could obtain 220.000 photons in the

first harmonic at an energy of 420 eV within a 0.1 mrad solid angle cone and a peak brilliance of

2.5× 1024 mm−1 mrad−2 s−1[0.1 %BW] [38]. According to Fig. 1.3, such a peak brilliance would

be comparable to those of existing synchrotron sources. This makes it possible to realize ultra-

short, brilliant light sources in the X-ray regime on the compact scale of a university laboratory.

Synchrotron radiation from laser-wakefield accelerated electrons 77



78 Chapter 3 Ultrashort electron bunches from laser wakefield-acceleration



4 THOMSON SCATTERING –
LASERS AS OPTICAL
UNDULATORS

With magnetic undulator structures as shown in the previous chapter, bright X-ray beams driven

by present laser-wakefield accelerated electrons of up to 1 GeV [1] can scale up to photon ener-

gies of about 1.9 keV using undulator periods as small as λu ' 5 mm. Beyond that the undulator

technology is limited in field by the materials used for permanent magnets or superconducting

electro-magnets. [2]. It is for this reason, that Thomson scattering, the all-optical analogue of

undulator radiation with half the laser wavelength as the equivalent undulator period, becomes

attractive in the search for bright light sources of increasingly higher photon energies. For a

800 nm Ti:Sa laser, a GeV-electron beam leads to a photon energy of 24 MeV. Two major ad-

vantages make especially the combination of LWFA acceleration and Thomson scattering very

interesting as an X-ray source. For one Thomson scattering and LWFA acceleration can be driven

by the same laser system, which makes beam synchronization trivial, when compared to synchro-

nizing a conventionally accelerated electron beam and a laser beam to sub-ps precision. Secondly,

since neither a long electron accelerator, nor massive undulators are required, these techniques

are very compact with respect to infrastructure requirements. The largest part of such a facility

is the laser itself, so that the entire setup only requires the room of a university laboratory.

In this chapter, the tools for realistic simulations of Thomson spectra are presented and applied

in describing two different Thomson source designs. One that aims for a high average photon

flux and one whose purpose is a high peak photon flux. Here, a special emphasis is put on the

limitations from non-ideal effects, not only for pointing out bottlenecks in performance, but also

to lie the foundation of the next chapter, which attempts a solution to these limitations.
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4.1 NUMERICAL MODELING OF THOMSON SCATTERING

Since the expected scattered photon energies in the electron frame of reference are much smaller

than the electron rest energy ~ω/ γ � mec2 the physics of Thomson scattering can be accurately

described by classical electrodynamics as the radiation of accelerated charges. According to [3]

the scattered, spectral intensity in the far field into the solid angle dΩ of a single electron is

d2I
dω dΩ

=
e2

4π2c

∣∣∣∣∣∣
∣∣∣∣∣∣

+∞∫
−∞

n×
[
(n− β)× β̇

]
(1− β · n)2 eiω(t−n·r(t)/c) dt

∣∣∣∣∣∣
∣∣∣∣∣∣
2

. (4.1)

The far field approximation is valid because the interaction takes place in a volume with dimen-

sions much smaller than the distance to the observer, so the radiation source can be approxi-

mated as a point source.

Figure 4.1: Thomson scattering geometry

The normalized velocity β(t) and acceleration β̇(t) of the electron is given by the electron

trajectory and n denotes the direction of observation. In practice (4.1) is a bounded integral, be-

cause the integrand contributes only when there is a finite acceleration β̇(t). If multiple electrons

are considered, a sum over the respective radiation amplitudes has to be performed within the

vector norm brackets to account for relative phase delays between em-waves from different elec-

trons. Similarly the effect of polarization filters P has to be taken into account before evaluating

the norm.

d2I
dω dΩ

=
e2

4π2c

∣∣∣∣∣∣P ·
∑

j

+∞∫
−∞

n×
[
(n− βj)× β̇j

]
(1− βj · n)2 eiω(t−n·rj (t)/c) dt

∣∣∣∣∣∣
2

(4.2)

For P = (1, 1, 1), no filter is in place, whereas P = (0, 1, 0) corresponds to a polarizer that

lets the y -polarization pass through. In order to calculate realistic photon numbers by Thomson

scattering, one has not only to calculate the electron trajectories of a statistical ensemble within

an external laser field that varies in space and time, but also to sum up the energy contributions

over all relevant frequencies and full solid angle. In fact, the complete problem of calculating

absolute photon numbers from a given set of electron trajectories is a 9-dimensional integral

in nature – 6-dim for electron phase space, 2-dimensions for the solid angle and 1-dim for the

required energy bandwidth. As a result (4.2) would have to be calculated many times over, thus

increasing computational cost. However, the task can be considerably simplified by reformulating

the problem, such that it can be efficiently solved by fast Fourier transform (FFT) algorithms.
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The exponent in (4.2) looks very similar to eiωt , thus suggesting a Fast Fourier transform

algorithm for speedy computation. However, this is complicated by the additional term−n·r(t)/c,

which denotes the change to retarded time tret = t−n · r(t)/c and thus accounts for the resulting

wave fronts to start at different positions and times. These relative shifts in phase are essential

for modeling the relativistic frequency shifts such as 4γ2 dependency for Thomson scattering.

In order to change the integral from time coordinates t → tret, it is necessary to transform all

electron trajectory coordinates βj(t) and β̇j(t) to retarded times.

Since the electrons cannot move faster than the speed of light, it is possible to assign a

monotonously increasing retarded time tret along each electron trajectory. By oversampling of the

electron trajectory in t with regard to the typical oscillation period, it is possible by interpolation

techniques, such as assuming cubic splines, to obtain equidistant points in tret.

On a more technical note the numerical stability of the fraction in (4.2), where the difference

in the denominator becomes exceedingly small, especially for high electron energies, can be

improved by using normalized momentum (γβ)(t) and γ(t) instead of velocity coordinates β(t).

Together, with above transformation to retarded times, one arrives at

d2nphot

dω dΩ
=

e2/ (~ω)

4π2c

∣∣∣∣∣∣∣∣∣∣∣
P ·

+∞∫
−∞

N∑
j

γn×
[
(γn− γβj)× γβ̇j

]
(γ − n · γβj)3

 · eiωtret dtret

︸ ︷︷ ︸
Fourier-Transform

∣∣∣∣∣∣∣∣∣∣∣

2

. (4.3)

Equation (4.3) is meant to sum over all N electron trajectories, however calculating a large num-

ber of electron trajectories is computationally expensive. Hence in simulations only a statistical

ensemble of Nsim electrons is tracked. Two issues complicate the matter: First, the high sensitiv-

ity of (4.3) with regard to phase iωtret requires a high number of electrons (> 106) to be tracked

in order to obtain a reasonable phase average and thus a "smooth" spectrum without random

spikes due to poor statistics. Secondly, tracking Nsim simulated electrons to obtain trajectories

over ps-time scales at time increments as small as tens of attoseconds creates large data sets,

which quickly exceed the main memory of current computers.

As for γ � 1 the resulting X-ray wavelengths are much smaller than the electron bunch which

is at minimum micrometers in size. Also, the resulting radiation in the scenarios considered

here is too weak to drive an FEL-type instability. Therefore, the resulting radiation can safely be

assumed to be incoherent. That simplifies (4.3), because eliminating the spectral phase average

by exchanging the sum and norm leads to the fully coherent result ((d2nphot)/ (dω dΩ) ∝ N2),

which by dividing by N becomes the required, fully incoherent result (d2nphot)/ (dω dΩ) ∝ N.

After rewriting N = Q/e
N2

sim
·

(
Nsim∑

j
1

)2

in terms of Nsim and bunch charge Q, equation (4.3) becomes

d2nphot,incoh
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N2

sim
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(4.4)
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This expression reduces the number of simulated electrons required for a statistically represen-

tative ensemble of electrons by several orders of magnitudes and is used as the basis for the

"CLAssical RAdiation Calculator" (CLARA) code, developed to calculate radiation spectra from a

set of electron trajectories. The aforementioned memory issue is dealt by partitioning the in-

teraction time into a number of slices, as shown in Fig. 4.2. For each time window a separate

spectrum is calculated, which corresponds to the kind of spectrum seen by a streak camera be-

hind a spectrometer. Since everything is incoherent and spectral intensity directly adds up, the

total spectrum is obtained by summing up all slice-spectra.

d2nphot,incoh

dω dΩ
=

Nslices∑
i

(
d2nphot,incoh(i · Tslice → (i + 1) · Tslice)

dω dΩ

)
(4.5)

Since the approximation (4.5) is an effective reduction in spectral resolution, each time window

has to be long enough to resolve the smallest spectral features expected by the examined physi-

cal system. In practice, this approximation is also useful, for it allows to neglect electrons in time

slices, where those do not radiate.

Figure 4.2: Calculations for picosecond long electron pulses are made computationally viable by
restricting spectral calculations to the portions of the electron bunch (slicing) that interact with
the laser pulse.

Since CLARA requires electron trajectories as input, it is designed to interface with an external

particle tracker code, that models the interaction of lasers with electrons and outputs respective

trajectories. Here that task is handled by the commercial GPT (General Particle Tracer) [4]. Sup-

port of laser beams has been added to the GPT framework by specifying the analytic expressions

for the electromagnetic laser fields in paraxial approximation. The model of the laser consists of

a Gaussian beam (spatially as well as temporally) with the correct focusing geometry. The evo-

lution of the bunches included space-charge effects by GPT’s 3D grid-based method working in

the electron frame of reference [5, 6]. The electron traces are recorded at a temporal resolution

of λ/ 80 to account for higher harmonics. That intermediate result is then processed by CLARA.

As described above, CLARA solves the Liénard-Wiechert potentials by computing eqs. 4.4 and

4.5 through a transformation to retarded times and subsequent calculation of the spectra using

an FFT-based algorithm. The code was benchmarked against analytic solutions of radiation prob-

lems [7, 8] and slower representations of the same algorithm in Mathematica [9]. The accuracy
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of the results can be said to be within 5%. An overview on the code architecture is depicted in

Fig. 4.3.

Assign interaction geometry with laser and initial state of electrons.

Partition the interaction duration into Nslices time windows.

Pre-processing

Simulation

Post-processing

Track all electrons within the external laser field using GPT

Select only the electrons that radiate for trajectory output

Load all electron trajectories into memory for fast look-up

Calculate (γβ̇j ) and radiation amplitudes.

Calculate retarded times tret and obtain equidistant ∆tret

radiation amplitudes by cubic spline interpolation

Obtain radiation spectrum of the individual simulated electrons by FFT

Incoherent sum over all simulated electrons
∑Nsim

j | . . . |2

Repeat for different observation angles θl ⊗ φm

Assign new initial state configuration of all electrons for the next time window.

Loop over all Nslices time windows of the interaction.

Sum up all respective radiation spectra over all slices to

obtain the spectral photon density
d2nphot

dω dΩ
=

∑Nslices

i (. . .)

Sum over target solid angle of photon density to obtain

absolute photon numbers nphot =
∑

θl φm
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Figure 4.3: Code architecture of CLARA interfacing with GPT. The core of CLARA (blue-white) is
realized in C++. The particle tracking routines (red) are realized within GPT, while pre-processing
and post-processing (yellow) is implemented by scripting languages.

CLARA is capable of modeling Thomson scattering in complex electron and laser beam sce-

narios with relativistic intensities and simulation durations at tens of ps. The optimizations with

respect to speed and memory facilitate parameter scan investigations, covering the full solid an-

gle. In contrast to cross-section based codes, such as Geant4 [10, 11], it also takes into account

the phase of the laser field, which especially at nonlinear laser field strengths a0 ≥ 1 becomes

relevant and leads to effects, such as substructures in the resulting radiation spectra as depicted

in Fig. 4.4(d) below.
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4.2 NON-IDEAL EFFECTS

Non-ideal effects are unwanted side effects that diminish the photon yield, broaden the spectrum

or lead to the excitation of higher harmonics. Most prominently the non-ideal behavior arises

from the chosen experimental geometry, the phase-space of both laser and electrons, as well as

a range of nonlinear effects such as space-charge blow up, ponderomotive effects from the laser

and the nonlinear Thomson regime.

• Nonlinear Thomson scattering

• Ponderomotive effects

• Space charge effects

Nonlinear effects

• Geometrical and temporal overlap

• Rayleigh length and wavefront curvature
Geometrical effects

• Transverse emittance (divergence)

• Longitudinal emittance (energy spread)

• Spatio-temporal laser and electron beam profiles

Phase-space effects

For designing Thomson scattering experiments it is necessary to minimize the relevant non-

ideal effects. According to (2.95)

λsc =
λ0

n · 2γ2
0 · (1− β0 cosφ)

·
(
1 + a2

0/ 2 + γ2
0θ

2) , (4.6)

the scattered bandwidth is affected by variations in electron energy, direction of electron propa-

gation and laser intensity. For the yield in eq. (2.107)

Nphot = 2παf N0Nba2
0(∆ωsc/ωsc) . (4.7)

one has to consider the conditions for optimal overlap between laser and electron pulses, as

well as the energy efficiency of the desired harmonic (eq. (2.13)) in comparison to all the other

harmonics. It is straightforward that low transverse and longitudinal emittances of electron pulses

determine divergence, energy spread and therefore the radiated bandwidth into a given angle.

However the goal of keeping the laser strength a0 � 1 in favor of increasing the interaction

distance Lint is less clear. According to Fig. 2.2(b) it seems reasonable to choose an a0 > 1 in

order to maximize the on axis yield of for example the 5th harmonic and achieve higher scattered

photon energies in comparison to the fundamental mode. At this point it is very instructive to
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look at one of the more pronounced nonideal effects at higher laser intensities (a0 ≥ 1) - the rich

substructure of the Thomson spectra caused by realistic temporal laser profiles.

Fig. 4.4(a)-(e) show numerical results obtained from the particle tracker GPT combined with

the radiation code CLARA. Angular resolved spectral distributions of Thomson backscattering

demonstrate scenarios with various temporal laser profiles and maximum intensities. Here, three

laser-electron models are being distinguished: The ideal model considers an electron bunch with

zero emittance and an ideally collimated laser beam with rectangular temporal profile and transver-

sally flat intensity distribution. The Gauss model only differs by assuming a Gaussian temporal

envelope in which the laser field amplitude rises from zero to a maximum field and then declines

again. The realistic model shows a scenario with parameters as they can be obtained at the

ELBE facility at the HZDR using the DRACO laser. They include not only the full focusing geom-

etry generating an overlap with a transversally Gaussian beam, but also ponderomotive effects,

as well as electron space-charge and transverse and longitudinal emittance. For this example

a 250 fs electron bunch with γ = 25 and realistic emittances of εn,trans = 2.5π mm mrad and

εlong,norm = 40π keV ps was considered. The electron bunch diameter with 50 µm was assumed

to be large to minimize electron divergence (' 7 mrad), but also small enough so the required

intensity on the target corresponding to a laser strength a0 = 1.5 can successfully be delivered

to the focal area by the DRACO laser.

While at a0 = 0.1 the ideal and the realistic scenario vary only weakly in spectral shape, the

situation radically changes for laser strengthes a0 ≥ 1. In Fig. 4.4(c) the ideal case depicts a

multitude of harmonics with only the odd harmonics radiating on axis. According to the energy

normalization, one can see how the nonlinearity has decreased the respective photon energies

by about a factor of 2. In the Gauss scenario of Fig. 4.4(d) it becomes apparent that the laser

strength parameter changes within the interaction thus shifting the scattering energy according to

eq. (4.6). The first harmonic is most instructive, as here it is clearly visible how at low intensities

(a0 � 1) the scattering energy starts off at ωsc/ (4γ0·ω0) = 1, then decreases with each successive

oscillation, until the maximum laser field a0 = 1.5 at ωsc/ (4γ0 · ω0) = 0.5 is reached. After

that the fields declines again and the spectrum shifts back to ωsc/ (4γ0 · ω0) = 1. The higher

harmonics partly overlap. The third harmonic goes from 1.5 to 3, while the fifth extends from

2.5 to 5. These spectral features make it plain that the full temporal field information of the

laser pulse is contained within such a spectrum. However a realistic simulation with ELBE type

electron bunches Fig. 4.4(e) shows that the substructure is almost completely washed out by

non-ideal effects. The main reason for this behavior lies in the transverse Gaussian intensity

distribution of the focus, which creates a superposition of a whole range of substructured spectra

from low intensities at the outskirts of the laser beam up to the center where the peak laser

strength interacts with the electrons. By this superposition the spectral oscillations from the

laser are averaged out and the overall spectrum resembles a broadened spectrum of a lower

mean laser strength. Other less pronounced non-ideal effects come from the divergence and the

ponderomotive potential. According to eq. (4.6) electron divergences of θ ' 5.5 mrad increase

the bandwidth by up to γ2θ2 ' 2%. To improve that situation and preserve such an interesting

signature one would have to resort to laser-accelerated electron bunches that have the advantage

of smaller bunch diameters and significantly lower transverse emittances on the order of εn,trans =

0.1π mm mrad. Such a configuration would enable spectral signatures that are more comparable

to Fig. 4.4(d), because a flat intensity distribution is easier to realize across smaller cross-sections.
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Figure 4.4: (a)-(e) show angular resolved spectral energy distributions for a range of Thomson
backscattering scenarios featuring various laser strengths a0 i.e. laser intensities and temporal
laser profiles. There are three different models for laser and electrons: an ideal scenario contains
a zero emittance electron bunch and a spatially flat laser profile with a rectangular temporal pulse
shape; the Gauss scenario adds a Gaussian envelope to the temporal laser profile and the Real
model depicts a full treatment of ELBE type electron beam parameters with finite electron emit-
tances, complete focusing geometry and the influence ponderomotive and space-charge effects.
The scale is normalized to the maximum value for each plot. In (f) the relative spectral intensities
of the three scenarios at a0 = 1.5 are compared on axis γθ = 0.
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Hence for optimization of yield and bandwidth in a Thomson experiment one will prefer to

keep the laser intensity low on target (a0 ≤ 1) and instead increase the interaction distance Lint

to the extent allowed by the laser Rayleigh length.

According to eq. (4.6) the scattered bandwidth is affected by variations in electron energy,

direction of electron propagation and the laser intensity. Varying γ0 and θ immediately leads to

the two conditions

∆E/E < 1/ 2 BW (4.8)
γ2

0∆θ2

1 + a2
0/ 2

< BW . (4.9)

Note that the energy bandwidth ∆E/E has to be half the desired radiation bandwidth. With the

normalized transverse and longitudinal emittances eq. (4.9) can be transformed into conditions

for the electron bunch diameter dbunch, as well as for the electron bunch duration τbunch.

dbunch ≥ (4 log 2)εtrans,n√
BW · (1 + a2

0/ 2)
(4.10)

τbunch ≥ (8 log 2) · εlong,n

γ0 ·∆E
. (4.11)

The factor (8 log 2) in front of the RMS emittances takes into account that all other parameters

are normally given at FWHM. In addition to the emittance constraints spatial overlap is established

by matching w0 ' dbunch depending on the exact transverse electron distribution and divergence

during interaction. For good temporal overlap the interaction range Lint = (τlaser + τbunch) · c/ 2

must lie within the Rayleigh length Z0 =
πw2

0
λ . The list of geometrical constraints is completed by

the laser wavefront curvature due to focusing, which leads to an additional half-angle divergence

of magitude ∆θ = 2π · dbunch/ 2/R(Lint/ 2) with R(z) = z + Z2
0 /z denoting the curvature radius of a

laser wavefront at a distance z from the focus. Combined with eq. (4.9) one arrives at

γ2
0

1 + a2
0/ 2

(
πdbunch

Lint/ 2 + Z2
0 (2/Lint)

)2

≤ BW . (4.12)

The laser pulse length has to be long enough to have its natural bandwidth meet the BW limits

λ0/ (c · τlaser) ≤ BW .

The nonlinearity constraints due to the scattering process itself, ponderomotive broadening

and charge blowup complete the picture. For small laser strengths a0 � 1 the scattered yield is

∝ a2
0, but as a0 approaches unity scattered intensity is increasingly diverted into higher harmonics

(Fig. 2.9) thus decreasing the effective scattering efficiency. For the yield of the fundamental it is

therefore more efficient to stay below a certain intensity threshold (for example a0 = 0.148 with

5% of the energy going into higher Harmonics) and increase the interaction distance to the full

extent allowed by the Rayleigh range. If scattering efficiency is not the main issue, for instance

if laser intensity is cheap, one can further increase the intensity until the scattering intensity

reaches the maximum of a given harmonic. At higher intensities the electron bunch is subject to

ponderomotive forces by the laser. Thereby the exact nature depends on the intensity gradients

of the laser pulse. However, an upper limit for the change in kinetic energy ∆E due to this effect
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can be derived from the ponderomotive potential of the laser ∆E = mc2a2
0/ 4. The above set of

constraints is summarized in Table 4.1.

trans. emittance (divergence) dbunch ≥ (4 log 2)εtrans,n√
BW ·(1+a2

0/ 2)

(γ2
0 ∆θ2)/ (1 + a2

0/ 2) ≤ BW

long. emittance (energy spread) τbunch ≥ (8 log 2)·εlong,n

γ0·∆E

2 ∆E/E < BW

temporal overlap (Rayleigh length) Lint ≤ Z0

Lint = (τlaser + τbunch) · c/ 2

Z0 = πw2
0 / λ0

natural bandwidth λ0/ (c · τlaser) ≤ BW

ponderomotive broadening a0 ≤
√

4 ∆E/mc2

eff. decrease due to nonlinearity a0 = 0.148 (5% efficiency degradation)

a0 = 0.76 (maximum scattered intensity)

laser curvature γ2
0

1+a2
0/ 2

(
πdbunch

Lint/ 2+Z2
0 (2/Lint)

)2
≤ BW

Table 4.1: Constraints for backscattering geometries due to non-ideal effects. A maximum ac-
cepted on-axis bandwidth BW = ∆ωsc/ωsc for the scattered radiation is assumed. The emittances
are normalized RMS values, while the rest is taken at FWHM.

4.3 HIGH-REPETITION THOMSON SOURCES FOR HIGH AVERAGE
PHOTON YIELDS

Generally, for the application of X-ray beams by Thomson scattering, high photon numbers are

crucial for imaging, in order to cover large phase spaces at high spatial and temporal resolution,

for material processing, for investigation of small cross-section reactions or simply for overcoming

an unfavorably large background signal. Hence, the goal in designing an Thomson X-ray source is

in most cases to maximize the number of photons from given experimental constraints to desired

X-ray beam properties. Before going into detail, it is useful to state an important distinction: For

many applications, the temporal structure of the X-ray beam is less important than the average

photon flux, whereas for other applications such as pump-probe type of diagnostics the peak-

photon flux is essential. This has major consequences on the required technology, as well as on

physics and strategy of source optimization. In spite of being useful in both areas, convention-

ally accelerated electrons profit from being available at much higher repetition-rates, while the

strength of laser-wake field accelerated electrons lies in the high beam quality and its intrinsic

synchronization to a laser system. In the following, first the ambitious example of future EUV

Lithography at 13.5 nm is used to illustrate design and capabilities of high average flux Thom-

son sources. This has the advantage of highlighting the limits of the state-of-the-art, while other

interesting applications, such as phase-contrast imaging, are similar in design, but due to less

demanding flux requirements are easier to realize. In the second step, the view is then extended
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towards Thomson sources with maximum peak photon flux, where many photons are in a single

X-ray pulse.

Source Requirements for EUV Lithography

According to the International Technological Roadmap for Semiconductors (ITRS) [12] printable

patterns of 32 nm half-pitch are required by the semiconductors industry by 2017. In order to

achieve this, the use of extreme ultraviolet lithography (10-20 nm) is envisioned [13]. The real-

ization of such a process depends on a radiation source that has to meet the challenging task

of delivering 0.7 W average EUV power on the die [14]. Additional restrictions have to be taken

into account, that arise due to the limited reflectivity and bandwidth of available optics for EUV

wafer scanners (silicon-molybdenum mirrors). The semiconductor industry therefore aims for an

EUV source with target specifications of 100-150 W average power at 13.5 nm, which roughly

corresponds to 1× 1019 photons/s and a viable bandwidth of 2% [14, 15].

Discharge produced plasmas or laser plasmas from tin, Lithium or Xenon targets could even-

tually meet these criteria [14]. However, all these processes generate relevant amounts of debris

that finds its way to the collector optics, reducing its life time. Changing expensive optics more

than a couple of times per year remains a serious impediment for industrial application. An idea

to solve this problem lies in going to a radiation process that is intrinsically debris-free and scales

well up to the required parameters. A free-electron laser (FEL) seems to be of special interest,

since it could deliver kW of EUV power in a stable vacuum environment [16]. The downside is the

large size of such a facility of several tens of meters, which also needs heavy radiation shielding

and thus leads to high costs associated with the infrastructure.

A Thomson source is debris-free, but much more compact. Also a laser wavelength on the or-

der of µm together with electron energies of only a couple of MeV, that can easily be obtained by

room sized electron accelerators, are sufficient to tune to the desired EUV wavelength. However,

as Thomson backscattering is in contrast to an FEL usually an incoherent process, the question

of optimum yield and technical feasibility becomes a critical issue.

The properties of the required source are primarily determined by the 0.7 W of power that

are needed on die level [14] for economic operation of the lithography process and the optics

required for the beam transport in an EUV scanner. Due to strong absorbtion of EUV radiation in

all materials, there are no lenses available. Therefore one resorts to highly reflective multi-layer

mirrors made of alternating layers of molybdenum and silicon. The reflectivity of such a mirror

is on the order of 66 % with a bandwidth of almost 5 % around 13.5 nm [14, 15]. Considering

that a scanner needs about 11 multilayer reflections one arrives at target specifications for a

potential source [14, 15], such as an average power exceeding 100-150 W at 13.5 nm, which

roughly corresponds to 1× 1019 photons/s and a viable bandwidth of 2%.

Potential candidates for next generation lithography [14, 15] are compared by the CW power

they can deliver to the 1 mm x 1 mm x 1 mm intermediate focus of a projector. Those numbers

are calculated for a source that radiates over the full solid angle and thus requires an efficient

optical collection system.
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The fact that Thomson backscattered EUV radiation is confined to a small cone of a few de-

gree, makes collimation and beam transport considerably easier compared to radiation from laser

or discharge produced plasmas, where emission is largely isotropic. Quantitatively, the product of

source size and collection angle (etendue) drops by more than two orders of magnitude. Hence,

the Thomson source length may be a lot longer than 1 mm and also the collection optics of the

scanner could be simplified to less mirrors, which directly lowers the power requirements of EUV

lithography, because less power is lost in the optics.

Considering that only 0.7 W of EUV power are needed on the die itself [14], a simplification of

this imaging system to 4 mirrors due to the small source divergence would mean a new power

requirement of 0.7 W/ (0.66)4 = 3.7 W. The bandwidth requirement of 2% also eases slightly by

a factor of ' 1.65. However, for the sake of direct comparison with other systems, the following

simulations assume the strict 2% bandwidth limit defined by an 11-mirror scanner.

When examining head-on collision between laser beam and electrons, there are mainly ten

parameters to define. These consist of electron bunch parameters, such as energy, charge, bunch

length, bunch diameter, longitudinal and transverse emittance, as well as the laser parameters

wavelength, pulse energy, pulse length and spot size. For the present analysis the strategy is to

first calculate with the help of CLARA, how many photons one can obtain by Thomson scattering

under an optimized setup, when assuming realistic laser pulses and electron bunches including

all non-ideal effects. It is then possible to discuss, whether the required EUV optical power output

is currently achievable through scaling towards higher repetition rates, higher bunch charges or

higher laser pulse energies through power enhancement cavities.

The laser wavelength is determined by currently available technology, i.e. diode-based laser

systems at about 1.06 µm, which are in principle able to provide ps-long pulses at high repetition

rates on the order of MHz with a pulse energy of about 1 mJ [17, 18], corresponding to an average

optical power in the kW-range. For easy scaling and for evaluating space-charge effects, an initial

scenario with 1 nC of electron bunch charge is assumed. The electron energy, as determined by

the laser wavelength and the target wavelength 13.5 nm is 1.76 MeV and thus can be provided by

a dedicated electron gun system. The normalized transverse and longitudinal emittance εn,trans =

2.5πmm mrad and εlong,norm = 40π keV ps are assumed to be similar to the ELBE facility at

the HZDR when using the new SRF gun [19, 20]. Additionally, an optimistic scenario in which

these emittances are decreased by a factor of 4 is also considered. An overview on these basic

parameters can be found in Table 4.2.

λ 1.06 µm
laser pulse energy [mJ] 1.0

γ 4.43
energy[MeV] 1.76

maximum ∆E[MeV] 0.0227
required bandwidth (BW) [%] 2.0

required energy spread ∆γ/ γ = BW/ 2 = 0.01
charge[nC] 1.0

norm. trans. emittance [π mm mrad] 2.5 (0.625)
norm. long. emittance [π keV ps] 50 (12.5)

Table 4.2: Overview on the general parameters for an EUV Thomson source.

90 Chapter 4 Thomson scattering – Lasers as optical undulators



Spatial and Temporal Overlap

Optimal spatial overlap is realized when the laser waist size w0 equals the minimum electron

bunch diameter dbunch. Since the transverse spatial distributions here are assumed to be Gaus-

sian, any substantial mismatch between the electron number and laser intensity distributions

decreases either the total number of scattered photons or scattering electrons. Therefore, all

following scenarios assume equal laser spot and electron bunch diameters.

In order to maintain temporal overlap, the interaction between laser and electrons has to take

place within the Rayleigh range (Table 4.1), while on the other hand the electron bunch has to be

long enough to avoid a large energy spread due to the finite longitudinal emittance. This situation

is further complicated by the presence of high space-charge [21–23] which for nC-beams at can

increase both the energy spread or the beam divergence. Thus the impact of space-charge on

the photon yield is similar to a large longitudinal emittance alone.

In Fig. 4.5 and 4.6, the scattered on-axis intensity within the 2%-bandwidth is depicted for two

different longitudinal emittances (εn,long = 50π keV ps and 12.5π keV ps), as well as three bunch

charge scenarios (1 nC, 250 pC and 75 pC). The yield of the 250 pC and 75 pC bunch charge

scenarios was multiplied by 4 and 16 respectively, so that the efficiency of a 1 nC Thomson

source can be directly compared to a 250 pC source with four times the laser repetition rate.

In all scenarios the on-axis yield slowly saturates due to a decreasing influence of both bunch

charge and longitudinal emittance as the bunch becomes longer. While for the 50π keV ps case

in Fig. 4.5 the yield reduction is determined still to a large degree by longitudinal emittance,

space-charge becomes the dominant influence in Fig. 4.6. Hence, for the performance of an EUV

Thomson source a small longitudinal emittance is less of a critical issue. In order to minimize

space-charge effects at 1.8 MeV, a 1 nC-beam needs to be close to a bunch length of 10 ps – or

exceed it – before the space-charge-induced spectral broadening becomes significantly smaller

than 2%. In the following a bunch length of τbunch = 15 ps is assumed.

The laser pulse length has rather weak constraints, for it can be shorter or longer than the

electron bunch without affecting the scattering yield. It merely has to be long enough to guarantee

the laser bandwidth fulfills the bandwidth goal of 2% (τlaser > 60 fs) and the laser pulse has

to be short enough for the interaction to happen within the Rayleigh range (τlaser < 80 ps for

w0 = 65 µm). For these reasons the pulse length of 15 ps is chosen mainly for convenience and

is otherwise a free parameter.

Optimal interaction diameter

For optimizing the photon yield of Thomson sources, the diameter of the interaction region is

a crucial parameter. Decreasing both electron and laser diameters while maintaining the total

energy of the laser leads to a higher intensity per electron – without having to invest in more

laser photons. Thus, the total yield is inversely proportional to the square of the laser waist

size. Therefore the important question is: How small can the laser waist size and the electron
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Figure 4.5: For the temporal overlap the electron bunch duration τbunch is varied. For each laser
scenario there is one parameter scan with a longitudinal emittance of εn,long = 50π keV ps for
bunch charges of 75, 250 and 1000 pC. The interaction diameter dbunch = 65 µm was suitably
chosen in hindsight to match later parameter optimizations. In general, an increase in EUV photon
yield until saturation at longer electron bunches is observed.

bunch diameter be made before non-ideal effects mainly from transverse emittance take over and

decrease the bandwidth-limited yield?

For the radiated on-axis intensities, such an optimization is depicted in Fig. 4.7. Here one finds

the highest intensity at w0 = dbunch = 50.0 µm for ELBE-like beams and w0 = dbunch = 15.0 µm
for the optimistic scenario featuring a four times smaller emittance.

As word of warning, while on-axis scans are often a good way of analyzing the presence of

non-ideal effects and can give a first estimate on the optimal parameters of a Thomson source

without having to calculate various observation angles, this strategy fails here. At low electron

energies, the absolute electron divergence can well be in the range of several degrees, so one

cannot neglect the shift in on-axis scattered wavelength

λsc =
λ0

2γ2(1− β0 cos Φ)
' λ0

4γ2
(

1− ∆Φ2

4

) , with Φ = π + ∆Φ (4.13)

due to the laser side-scattering at electrons traveling at an off-axis angle. For that reason, elec-

trons have different scattered intensities in their respective direction of propagation. Therefore it

is necessary to optimize the yield over the full radiation cone and calculate total bandwidth-limited

photon numbers that can be used for a potential EUV lithography application.

Generally the solid angle has to be scanned in both azimuthal and polar angles. However,

the scenario is rotationally symmetric with respect to the electron density and laser intensity

distributions, such that only the spectra in azimuthal observation angles need to be calculated.

The following photon numbers are numerically integrated by assuming rotational symmetry in φ.

The main result is depicted in Fig. 4.8 and shows the total bandwidth-limited EUV photon
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Figure 4.6: For the temporal overlap the electron bunch duration τbunch is varied. For each laser
scenario there is one parameter scan with a longitudinal emittance of εn,long = 12.5π keV ps for
bunch charges of 75, 250 and 1000 pC. Compared to Fig. 4.5, the relative effect of space-charge
compared to the lower longitudinal emittance is more pronounced.

numbers from a mJ laser beam scattering at a nC electron bunch at various interaction diameters.

The inset of Fig. 4.8 depicts the radiation cone of the optimum setting for the 65 µm scenario

with its rotational symmetry. At large interaction diameters the laser photon density around

each electron is small, thus decreasing the scattering efficiency. Towards very small interaction

diameters, the scattering efficiency and thus the total photon yield is high, but the finite electron

beam emittance leads to a large divergence angle at small interaction diameters. Therefore, a

large fraction of the side-scattered photons is Doppler-shifted outside of the target 2 % photon

bandwidth. In between these two extremes one achieves an optimal bandwidth-limited photon

yield.

In actual numbers (see Fig. 4.8), one expects an optimal yield of 400 photons/(mJ nC) at

w0 = dbunch = 135 µm for ELBE-type electron beams and 1300 photons/(mJ nC) at w0 = dbunch =

65 µm for transversally and longitudinally improved emittances.

In Fig. 4.9 the angular profiles of the diameters of 25 µm, 60 µm and 195 µm are shown. In all

cases the relevant radiation is constrained by the 2 % bandwidth goal and thus covers only about

2/ 10 of the 1/ γ-cone, which is little more than 2.5°.

Scaling towards EUV lithography

By knowing which laser energy to photon number efficiency to expect, it has become straight-

forward to calculate the requirements of a full scale EUV source for lithography. The remaining

options to achieve a high photon flux in the range of 1× 1017-1× 1019 photons/s are increasing

the laser pulse energy, the repetition rate and last but not least, the electron bunch charge. The

actual EUV photon flux is then determined by available technology.
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Figure 4.7: The on-axis yield is optimized by simultaneously varying the electron bunch diameter
dbunch and the laser waist size w0, while keeping spatial overlap w0 = dbunch and the pulse energy.
The parameter scan is shown for a transverse emittance of εn,trans = 2.5π mm mrad and an
optimistic setting of εn,long = 0.625π mm mrad.

On the electron accelerator side, repetition rates can be in the GHz range, whereas laser

oscillators operate in the MHz range. Since only a tiny fraction of all laser photons is used for

scattering, it is useful to recycle the laser pulses by building a resonator cavity around the interac-

tion area. According to the Q-factor of the resonator, a defined amount of laser pumping power

can achieve a Q times higher EUV photon yield without increasing the thermal load in the laser

amplifiers. A similar argument can be also made for the electron pulses, so an energy-recovering

linac would substantially lower power consumption. However, the main bottleneck of current

linacs with regard to Thomson scattering is the maximum charge per electron bunch.

Each interaction of the laser beam with an electron bunch within a (laser) resonator as de-

picted in Fig. 4.10 means that by reflection at the end mirrors one has losses. In order to keep

the energy loss per backscattered photon low it is essential to maximize the charge of the bunch.

Three basic photo-injector technologies are available. There are DC photo-injectors, normal con-

ducting photo-injectors and superconducting photo-injectors. The first two technologies are ma-

ture proven technologies, the latter combines the best of both worlds, efficiency of DC-guns and

performance of RF-guns. Due to the EUV requirements, high-average currents exceeding 1 A
become necessary and thus only superconducting guns remain an efficient option. A review on

this topic can be found at [24]. Another idea [25–27], conceptionally still at the beginning, is the

generation of secondary electrons in a diamond slab directly behind the photoelectron gun. In

such a microns-thin diamond slab, each electron of the original beam excites through inelastic

scattering many electrons in the diamond from the valence into the conduction band, which then

in 1-10 ps thermalize by phonons towards the lowest conduction band. With the help of an ex-

ternal electric field, these electrons drift to the diamond surface, where these are field-emitted

into the vacuum, forming a new secondary electron bunch for subsequent acceleration. Such an

electron bunch can have 1-2 orders of magnitudes more electrons than the original bunch. Its

electron temperature tends towards the lattice temperature of the diamond slab. Using such an
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Figure 4.8: Main optimization result shows total EUV photon scattering yields at 13.5 nm with
respect to the common interaction diameter of both electron and laser beam w0 = dbunch.

approach, the e-RHIC aims for 16 nC bunches at 28.15 MHz corresponding to an average current

of 450 mA [24].

For the driving laser system, diode-pumped fiber lasers using solid core photonic crystal fibers

(PCF) are especially suitable for ps-pulse, high-repetition rate systems with high average power.

These lasers have favorable thermo-optical properties and feature wall-plug efficiencies beyond

50%. The tremendous advance on this field in recent years led to the experimental realization of

1 mJ,1 ps lasers at 1 MHz [17, 18, 28, 29].

For pulsed lasers, power enhancement resonators routinely feature enhancements on the

order of 102. Additionally, for stacking continuous wave (CW) laser beams in Fabry-Perot cavities

there exists a lot of experience in various fields such as in gravitational wave astronomy, so that

these techniques could be successfully demonstrated for ultrashort lasers pulses [30, 31].

With regard to a potential EUV source for lithography, a fairly optimistic stance is taken with

respect to available and near-future technological capabilities. For one the calculated result of

1300 photons/(mJ nC) assumes an excellent electron gun emittance of εn,trans = 0.6π mm mrad.

Then a laser system with 25 MHz repetition rate and a pulse energy of 1 mJ is considered, which

probably would be an efficient 25 kW diode pumped fibre laser that is currently just beyond tech-

nological realization as a single laser system, but which could be arranged by using several lasers

in parallel. Furthermore a 0.5 A superconducting RF-gun accelerating 20 nC bunches at the laser

repetition rate is envisioned. Finally, an enhancing resonator cavity with a power enhancement

factor of 10,000 [31] recycles the laser power. This scenario would lead to an EUV source with

104 ·25 MHz ·1 mJ ·20 nC ·1.3× 103 photons/(mJ nC) = 6.5× 1015 photons/s or 0.1 W. In terms

of EUV yield for lithography this is by 2–3 orders of magnitudes short.

Depending on the scenario, photon yields on the order of 1300 photons/(mJ nC) at a band-

width of 2% at 13.5 nm can be obtained by Thomson backscattering. These numbers include

non-ideal effects. Depending on the normalized transverse emittance, electron bunches should
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Figure 4.9: Angular profile of the peak positions of Fig. 4.8. The solid lines correspond to ELBE-
like emittances of εn,trans = 2.5π mm mrad and the dashed lines to emittances improved by a
factor of 4. (Inset) Displays the rotational symmetry of the calculated angular profile cone. Any
deviation from symmetry is smaller than 1%.

feature spot sizes in a range of (50-150 µm) and exceed 10 ps in duration. Towards higher photon

yields, a high bunch charge per shot and an efficient power-enhancement resonator has priority

before repetition frequency because this keeps energy losses down. With foreseeable technol-

ogy, an average power on the order of several tenth of Watts at 13.5 nm and 2% bandwidth

seems to be within the range of possibilities. To the desired specs stated by semiconductor

industry there is still a gap of more than two orders of magnitudes. However, considering that

on the die level only a power of 0.7 W is needed and that Thomson radiation has a divergence of

4 ◦ and below, an eventual simplification of the EUV collector system from 11 to 4 mirrors could

lower the photon number requirement and increase the maximal bandwidth acceptance to bridge

the aforementioned performance gap and bring an application within reach.

Figure 4.10: Laser resonator as power-enhancement cavity for high-average yield Thomson
sources.

For further improvements in photon yield other than merely scaling up laser or electron

sources, one needs to increase the efficiency of the scattering process itself. Since the Thomson

cross section is fixed, the only option left is coherent light emission. In practice this is equivalent
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to aiming for a free-electron laser (FEL) type process that causes micro-bunching in the electron

beam and thus coherent radiation.

4.4 SINGLE-SHOT THOMSON SOURCES WITH ELBE AND LASER-
WAKEFIELD ACCELERATED BEAMS

Thomson sources are very promising for pump-probe experiments, as these can deliver hard X-

rays (> 10 keV) at small bandwidth in a fs to ps time frame. Especially due to the short laser

wavelength, Thomson sources quickly exceed the photon energies available in conventional syn-

chrotron and FELs. Potential experiments are time-resolved Kα-spectroscopy of high-Z materials,

X-ray backlighting of optically overdense plasmas from solids, as well as nuclear physics at MeV
photon energies. In such pump-probe type of experiments, a high number of photons per shot is

crucial.

The main difference compared to a high-repetition Thomson sources is that the objective is to

get as many X-ray photons as possible into a single, short X-ray pulse (high peak brilliance) rather

than a high photon yield spread over many pulses (high average spectral brightness). Therefore

maximum energy efficiency or scalability towards high repetition rates is less important.

The electron source can be both a conventional linear accelerator or a laser-wakefield accel-

erator (LWFA). Whereas LWFA electrons are of little use for high-repetition Thomson sources,

because the technical challenges of providing laser pulse energies on the Joule level and a well

controlled gas target for each shot currently prevent LWFA from achieving repetition rates beyond

tens of Hz. However, when aiming for high-photon numbers per pulse, the ultrashort electron

bunch duration and the small emittance of LWFA are key advantages over conventional accelera-

tors. On another, more practical note, using LWFA electrons for Thomson scattering is desirable,

since a single CPA laser system can be used for both the Thomson source and the ultrashort

pump beam driving the LWFA electron beam. Hence, a sophisticated beam synchronization be-

tween two different lasers or an additional beam stretcher-compressor system for the same laser

is not necessary.

The required laser systems are by definition low-repetition laser systems, providing intense

laser pulses (TW to PW) with high pulse energies. In addition to the constraints from geometry,

electron bunch emittance and space-charge, these laser pulse intensities become high enough,

for nonlinear Thomson scattering effects, such as spectral shifting, spectral broadening and the

generation of higher harmonics, to come into effect.

Due to the strong relativistic length contraction ∝ 1/ (4γ2), the resulting X-ray pulse duration

[see eq. (2.108)]

τxray = τbunch +
τlaser

2(1− β cosφ) · γ2 . (4.14)

is primarily determined by the electron bunch duration τbunch and only weakly related to the initial

laser pulse duration τlaser. Therefore, one possible way around high laser pulse intensities is to in-

crease the laser duration in exchange for lowering the laser intensity. However, for low-emittance
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electron beams there exists, as for high-repetition Thomson sources, an optimal interaction di-

ameter at a small laser spot size w0 on the order of µm. As a result, the maximum usable laser

pulse duration is restricted by a short Rayleigh length Z0 = πw2
0 / λ0 corresponding to a few ps.

Therefore trading laser intensity to laser pulse duration to avoid the nonlinear Thomson regime is

only of limited applicability.

The following analysis highlights what is possible for head-on Thomson scattering in terms

of single shot photon yields with both conventionally accelerated and laser-wakefield accelerated

electrons using existing high-power lasers. As a reference for applications, the X-ray photon

yields, for a range of X-ray bandwidths down to 5% is shown. Note, that in this chapter, the

minimum X-Ray bandwidth is still constrained by the laser bandwidth. In the next chapter this

limitation is going to be lifted.

The laser beam assumed for the Thomson source corresponds to the DRACO laser system

(4 J per pulse,25 fs,800 nm). To avoid the nonlinear Thomson backscattering regime, the beam

is recompressed to merely 1 ps, such that the laser strength parameter a0 � 1.0 remains below

unity. The transform-limited bandwidth of the laser and thus the minimum bandwidth of the

Thomson source driven by the DRACO laser is 4.7%. To retain a higher degree of generality, the

scenarios were calculated for the smaller bandwidth of a transform-limited 1 ps, so the results

remain applicable for other lasers with shorter bandwidths than DRACO. The bandwidth of the

respective laser then determines the applicable spectral resolution limit.

For the electrons two different electron beams are compared: A conventionally accelerated

electron beam (ELBE-beam) with a normalized transverse emittance of εtrans,rms = 2.5π mm mrad
at 40 MeV as in the high-repetition rate scenario and a laser-accelerated electron beam at 1 GeV
with low emittance εtrans,rms = 0.1π mm mrad, see also Table 4.3.

Many of the results are given in terms photon densities with respect to photon energy and

solid angle. This has the benefit of giving quick access to absolute photon numbers as these

are often used for designing experiments with X-rays, and in contrast to the radiation energy the

number of photons is invariant with respect to electron energy. Therefore it is easy to generalize

the results for other scenarios at different electron energies. However, using a scale of scattered

energy as in Fig. 4.4 and Fig. 4.11-4.13(f) has the advantage of showing what relative proportions

of the laser pulse energy go into which part of the scattered spectrum. Angular-resolved spectra

as shown in Fig. 4.11(a),(b),(d) are averaged over all polar angles, weighted with respect to the

azimuthal observation angle according to the integration factor sin θ in spherical coordinates. In

addition the spectra are normalized to photon energies, such that summing up the photon density

over some specified diagram area immediately results in the respective photon yield.

For each the ELBE and the LWFA scenario, angular-resolved spectra are shown for several

interaction diameters. Due to the finite electron bunch emittance, the electron bunch divergence

increases towards smaller interaction diameters and leads to spectral broadening through the

off-axis Doppler effect. Since this broadening happens in the angular coordinate only, the sharp

edge at the maximum scattered photon energy is maintained, see Fig. 4.11(d). Physically, this is

equivalent to affirming that the maximum electron energy is always scattered into the respective

direction of propagation.
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The reason, why this edge blurs at small interaction diameters is solely an intensity-related

phenomena from nonlinear Thomson scattering. According to theory in chapter 2, the scattered

photon energy decreases with the factor (1 + a2
0/ 2)−1, where a0 ∝

√
I0 ∝ w0. Since the temporal

laser pulse profile is Gaussian, rather than a rectangular pulse, the photon redshift arising from

the “photon drag” in (2.90) is zero at the beginning of the laser pulse, reaches the maximum

in the middle and afterwards decreases to zero again. This range of different maximum photon

energies causes the blurred, intensity-broadened edge on the energy scale of the spectrum.

Depending on the electron bunch emittance, the other telltale sign of nonlinear Thomson

scattering being higher harmonics, is not always distinguishable from emittance or pulse-profile

related broadening. While for εn,trans = 2.5π mm mrad and εn,trans = 0.1π mm mrad, the second

and the third harmonics are visible, this is not possible in the emittance dominated scenario

εn,trans = 10π mm mrad, where most of the spectral features are gone.

Summing up the photon density or correspondingly the spectral intensity over the full cal-

culated solid angle yields Fig. 4.11-4.13(e) and (f). From the photon number figures 4.11-4.13(e)

it is evident that due to the linear ~ω-energy dependency, there exist sizable quantities of low

energy photons, that can even exceed the main photon peak as depicted in Fig. 4.13(e). For this

reason and for an unambiguous definition the maximum in the spectral intensity spectra Fig. 4.11-

4.13(e) is chosen as the reference central X-ray energy around which photon numbers at various

bandwidths are to be determined.

Parallel to Fig. 4.8, the diameter dependency on the total photon numbers at various band-

widths is shown in Fig. 4.11-4.13(g) and (h). Since X-ray focusing optics require the radiation to be

constrained within a defined solid angle [32] the use of an aperture of 5 mrad half-angle or 40%

the 1/ γ cone was assumed in Fig. 4.11(h) and 4.12(h). For better comparison the aperture in the

LWFA case, see Fig. 4.13(h), was chosen accordingly to be 200 µrad half-angle.

The results in Fig. 4.12(h) and Fig. 4.13(h) show, that for realistic beam parameters, the

expected photon yields are in a range of 3× 107(5%) to 2.7× 108(total) for 1 nC ELBE-beams

and 1× 107(5%) to 2.6× 108(total) for 0.1 nC laser-accelerated electrons. In contrast to the low-

intensity, high-repetition case, the number of photons per bunch charge at 5% bandwidth scales

only weakly with a reduced emittance. Due to this intensity-dependent nonlinearity and despite

the smaller phase space volume occupied by the low-emittance electrons, small photon energy

bandwidths become increasingly difficult, thus identifying the laser intensity as a major bottleneck

in single-shot Thomson scattering.

As soon as the electron transverse emittance is good enough for smaller and thus more

efficient interaction diameters, the depth of focus becomes shorter than a mm. This in turn

requires high-quality electron beams and laser pulses that are both shorter than one ps and

temporally synchronized with respect to each other. Whereas these requirements can be met by

high-end conventional electron beams and in particular by LWFA electrons, the deciding limitation

arises from high laser intensities (a0 ' 1). When aiming for high photon yields at small bandwiths,

these intensities cannot be avoided in head-on Thomson scattering without sacrificing either

spatio-temporal overlap or the small interaction diameter, hence lowering the number of scattered

X-ray photons per incident laser energy.
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(a) photon density at w0 = 10 µm (b) photon density at w0 = 20 µm

λ0 800 nm
γ0 79.3

Energy[MeV] 40
1st Harmonic

39
photon energy [keV]

Charge[nC] 1.0
Laser pulse

4.0
energy [J]

εtrans,rms [π mm mrad] 10.0
εlong,rms [π keV ps] 50

(c) ELBE beam parameters (d) photon density at w0 = 40 µm

(e) total photon yields for varying w0 (f) total scattered energy for varying w0

(g) bandwidth limited photon yields (h) bandwidth and acceptance angle limited
θ < 5 mrad ' 0.4 · 1/ γ0 photon yields

Figure 4.11: CLARA simulation results for Thomson scattering at εtrans,rms = 10π mm mrad ELBE
electrons.
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(a) photon density at w0 = 10 µm (b) photon density at w0 = 10 µm

λ0 800 nm
γ0 79.3

Energy[MeV] 40
1st Harmonic

39
photon energy [keV]

Charge[nC] 1.0
Laser pulse

4.0
energy [J]

εtrans,rms [π mm mrad] 2.5
εlong,rms [π keV ps] 50

(c) ELBE beam parameters (d) photon density at w0 = 40 µm

(e) total photon yields for varying w0 (f) total scattered energy for varying w0

(g) bandwidth limited photon yields (h) bandwidth and acceptance angle limited
θ < 5 mrad ' 0.4 · 1/ γ0 photon yields

Figure 4.12: CLARA simulation results for Thomson scattering at εtrans,rms = 2.5π mm mrad
ELBE electrons.
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(a) photon density at w0 = 5 µm (b) photon density at w0 = 10 µm

(c) photon density at w0 = 20 µm (d) photon density at w0 = 40 µm

(e) total photon yields for varying w0 (f) total scattered energy for varying w0

(g) Bandwidth limited photon yields (h) Bandwidth and acceptance angle limited
θ < 0.20 mrad ' 0.4 · 1/ γ0 photon yields

Figure 4.13: CLARA simulation results for Thomson scattering at low-emittance (εtrans,rms =
0.1π mm mrad) LWFA pulses
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λ0 800 nm

Laser pulse energy [J] 4.0

γ0 1958

Energy[MeV] 1000

1st Harmonic photon energy [MeV] 23.8

Charge[nC] 0.1

εtrans,rms [π mm mrad] 0.1

∆γ/ γ0 0.01

τel [fs] 30

Table 4.3: Laser and electron beam parameters for Thomson scattering at laser-wakefield accel-
erated (LWFA) electrons.

In conclusion, it can be stated, that present laser and electron beams can provide ultrashort,

monochromatic X-ray pulses with beyond 107 photons per pulse at 5% bandwidth, which is of

great interest for a broad range of experiments and applications. However, the low emittance

of LWFA electrons cannot be fully exploited in head-on Thomson scattering with regard to its

potential photon yield. In addition, the minimum bandwidth of the X-ray spectrum is ultimately

constrained by the transform-limited bandwidth of an ultrashort laser pulse.

As a consequence, if orders of magnitudes more photons in a single X-ray pulse at smaller

bandwidths are desired, difficulties in scaling up the photon yield make it inevitable to abandon

the present head-on Thomson approach. Therefore, the following chapter will take a more general

view on Thomson scattering and detail a novel experimental geometry that has the potential to

overcome all these limitations.
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5 SCALABLE OPTICAL
UNDULATORS WITH
TRAVELING-WAVE THOMSON
SCATTERING

In the previous chapters it has been shown that laser wakefield-accelerated electrons are ul-

trashort, monoenergetic and originate from a small source volume (ch. 3), so that undulator or

Thomson scattering techniques can be used to generate brilliant radiation pulses of the same

ultrashort duration (2.108).

However, currently achievable photon numbers of 106 − 107 per pulse are still too few for

many experiments. In pump-probe experiments, which look at transient atomic or nuclear states,

the cross-sections can easily become small, narrow in energy or a nonlinear transition requires a

minimum photon flux. In single-shot imaging techniques at high-resolution, the detector needs to

be illuminated by many photons in every pixel, channel or resolvable area to provide a high signal-

to-noise ratio. The same is important in warm dense matter experiments, where bremsstrahlung

and other radiation processes in the plasma provide a high radiation background, which has to be

overcome by a probe in the same spectral range.

Therefore, scaling up these numbers is one major question and the starting point here. More

precisely, the question is whether it is possible to increase photon yields on a per shot basis

rather than by increasing the repetition rate of the source. Otherwise the main advantage of

ultrashort light pulses, that all photons arrive at a target in a single event, is rendered irrelevant.

The high densities within small beam diameters achieved by such laser-accelerated electron

beams suggest that laser foci can be reduced accordingly in size to increase the photon scattering

efficiency of laser beams for Thomson scattering. However, optical focusing limits the interaction

region to the Rayleigh length Z0 = πw2
0 / λ0, which is typically on the order of mm or below. So
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with decreasing laser spot sizes the limited interaction length starts to counteract these efficiency

gains and becomes the most limiting factor in scaling up the photon yield in head-on (180°)
Thomson scattering geometries.

Naturally, this calls for a waveguide approach to prevent laser beam diffraction. However, a

waveguide would need to withstand high laser intensities far beyond typical ionization thresh-

old intensities around 1014W/cm2 of condensed matter and keep both laser and electron beam

unchanged. For these reasons, classic glass fibers or dielectric waveguide structures [1] cannot

work. In principle, the ionization problem could be solved by using a plasma waveguide [2–4], ex-

cept that both the electron beam and the intense laser create wakefields. As in a laser-wakefield

accelerator, those strongly modulate energy and spectrum of both electron and laser beam. How-

ever, this defeats the purpose of controlling electron acceleration and the scattering interaction

independently of one another and prevents direct scaling of the photon yield.

In this chapter, a novel traveling-wave Thomson scattering (TWTS) scheme is introduced [5],

that does not rely on pulse guiding and efficiently converts high-intensity laser pulses into X-ray

photons. It is shown how this can be realized in a side-scattering geometry at arbitrary interac-

tion angles, in which ultrashort laser pulses with defined pulse-front tilts are used to maintain

continuous overlap between electrons and the laser beam over cm to m distances. One of the

main challenge towards experimental implementation is going to be increasing laser pulse du-

rations resulting from pulse propagation with a tilted pulse-front. Those become significant for

large interaction angles ' 10°, but can be compensated using varied-line spacing (VLS) gratings.

Here, the spatio-temporal dispersion requirements on the laser pulse are derived and it is demon-

strated how a ray-tracing approach can be utilized to optimize experimental setups for a range of

interaction angles. This new flexibility in side-scattering angles allows for tuning the scattered

radiation over the entire spectral range from EUV to hard X-rays at keV and MeV energies, even

for electron sources of constant energy.

Compared to head-on scattering geometries the longer interaction distances of the TWTS

design increase X-ray photon yields by several orders of magnitude. Using the 1D-FEL scaling

from chapter 2, it is shown that for small interaction angles these photon yields can be so high

that the radiation reaction could be used to efficiently drive an FEL instability. In order to better

exhibit both potential advantages and disadvantages of a TWTS-FELs, the differences in physics

compared to standard FELs are highlighted.

5.1 PHOTON YIELD LIMITATIONS IN HEAD-ON THOMSON SCAT-
TERING GEOMETRIES

In principle, the photon yield (2.107)

Nphot = 2παf N0Nba2
0(∆ωsc/ωsc) (5.1)

of a Thomson source can be linearly scaled up by either increasing the incident laser intensity

I0 ∝ a2
0 or the number of oscillation periods N0 through a longer laser pulse duration at same
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intensity. However, both approaches have limits.

The intensity can only be increased until the electron oscillation becomes relativistic and the

v ×B-term of the Lorentz-force (2.87) noticeably alters the electron dynamics. Then the nonlinear

Thomson scattering regime is reached and the scattered laser energy spreads out over multiple

higher harmonics [6, 7]. In addition, intensity related redshifts and broadening, arising from the

a2
0/ 2 term in (2.95)

ωsc = nω0 ·
2γ2

0(1− β0 cosφ)

1 + a2
0/ 2 + γ2

0θ
2

, (5.2)

further deteriorate the resulting Thomson spectrum (see Fig. 4.11–4.13). Thus for efficient scatter-

ing into the first harmonic it is essential to avoid the nonlinear regime and keep the laser strength

parameter below unity a0 � 1, which corresponds to an intensity I0 � 1018 W/cm2 for an 800 nm
beam. In comparison, existing laser facilities feature focal intensities up to the 1021 W/cm2 range,

which is already orders of magnitudes beyond this nonlinearity limit.

Alternatively, the laser energy W0 can be distributed at reduced intensities over longer laser

pulses and hence longer interaction distances Lint. That however, is limited by the Rayleigh

length Z0 = πw2
0 / λ0, which determines the length of the focal region and thus the maximum

interaction distance Lint. Longer laser pulses defocus before they have the chance to interact

with the electrons. Especially for electron bunches with small diameters this becomes a severe

restriction. For example, a laser beam with a waist size matched to the 4 µm diameter of a laser-

plasma wakefield-accelerated electron bunch features a Rayleigh length of mere 63 µm, which

suggests laser pulses should become no longer than 210 fs.

Certainly, the Rayleigh length Z0 could be increased by using a different focal geometry with

a larger laser waist size w0. But this also requires an increase in laser energy W0 ∝
√

w0 just

for the option to use longer laser pulses. All that leads to a poor spatial overlap between a large

laser waist and a smaller electron bunch, so large parts of the laser pulse do not participate in the

interaction and are thus wasted. Accordingly, when both Rayleigh and nonlinear intensity limit

are reached for a given electron diameter, any further increase in the scattered photon yield Nphot

becomes prohibitively expensive. In order to increase the yield by one order of magnitude, one

now needs two orders of magnitude more in laser pulse energy

Nphot ∝W 2
0 . (5.3)

Hence it is clear that in a traditional head-on scattering geometry a small interaction diameter

is mutually exclusive to a long interaction length defined by the laser pulse duration, which makes

the head-on approach by design exceedingly inefficient for low-emittance, high-charge electron

bunches and ultrashort, high-power lasers. So the question arises: is it possible to resolve these

two conflicting goals?
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(a) (b)

Figure 5.1: (a) depicts the largest interaction volume, for which head-on Thomson scattering
works without losing energy either to poor overlap or nonlinear Thomson scattering. In such a
scenario the electron beam is focused to the minimum, emittance-limited diameter determined
by the desired radiation bandwidth. The counter propagating laser has an intensity just below the
nonlinearity threshold at a0 =' 0.2, overlaps tightly with the electron beam and fills the entire
Rayleigh length Z0. Higher intensities lead to nonlinear Thomson scattering and longer laser
pulses give rise to defocusing during the interaction. (b) features the overlap, when the Rayleigh
length is increased. Since such an increase can only be realized through a larger focal spot size,
parts of the laser beam do not interact with the electrons anymore. Increasing the electron bunch
size could only improve overlap, but not intensity, interaction duration or the resulting photon
yield. This laser energy is thus wasted.

5.2 TRAVELING-WAVE THOMSON SCATTERING

In order to overcome the Rayleigh limit a beam setup in which the electrons do not leave the focal

region of the laser becomes necessary. That is possible with cylindrical optics, where the laser

is focused – in one direction only – to a focal line. If now the electrons travel along that line as in

Fig. 5.4(a), they remain in the focal region over the entire laser beam width dbeam.

This implies that a side-scattering geometry [8] with some interaction angle 0° < φ < 180°
has to be used (see Fig. 5.4(b)). However, that also leads to laser and electrons propagating

in separate, non-collinear directions, so in these scenarios spatial overlap usually is lost after

relatively short distances that are comparable to the beam dimensions. One solution to this

problem is tilting the laser pulse-front by some angle α with the purpose that despite of beam

propagation there always exists a region of overlap with the electrons (see Fig. 5.4(c)).

Such a pulse-front tilt α can be derived by simple geometrical arguments. Fig. 5.2 shows the

laser to be incident on the electrons at an arbitrary angle φ. In the laboratory frame, the electron

bunch moves with v‖ = β0c · cosφ in direction of the laser propagation and, perpendicular to that,

with v⊥ = β0c · sinφ along the phase front; β0 denotes the ratio vel/c =
√

1− 1/ γ2
0 . Because

the laser itself propagates with the speed of light, the phase slipping velocity of the electrons is

vslip = c − v‖ = c · (1− β0 cosφ). The ratio vslip to v⊥ now determines the angle

α = arctan

(
vslip

v⊥

)
= arctan

(
1− β0 cosφ

β0 sinφ

)
γ0�1
' φ/ 2 , (5.4)

by which the laser field envelope has to follow up the electrons for these to remain stationary

with respect to the temporal laser field envelope. According to Fig. 5.3, the tilting angle relation

(5.4) quickly converges towards α = φ/ 2 for γ0 � 1. In the following this approximation is

always assumed to be fulfilled. However note, that β0 in (5.4) identifies an arbitrary speed of the
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Figure 5.2: An electron bunch propagates at an incidence angle φ through a laser pulse and thus
experiences a phase slipping velocity vslip. For the electron bunch to remain stationary with regard
to the laser envelope centerline, the laser pulse front needs to be tilted by α = arctan(vslip/v⊥) '
φ/ 2 (black line).

interaction zone, similar to a moving spotlight cast by distant flashlight, and not a propagation

speed of light. Therefore, it should be kept in mind that other, sub-luminar or super-luminar

velocities β0 can become interesting for alternative targets (ch. 5.8). Note that the pulse-front tilt

only alters the envelope, but not the wave fronts, which determine the frequency of the scattered

light. In other words, the pulse-front tilt introduces a spatially dependent group velocity delay,

which shifts the laser envelope with respect to the carrier phase. As a result of the electrons

being stationary with respect to the temporal field envelope, their motion in the laboratory frame

is determined by the laser carrier frequency ω0 divided by the geometric factor (1 − β0 cosφ)

arising from phase slippage.

In Fig. 5.4(d) the entire Thomson scattering scheme is summarized in one graph, where it

depicts the laser and electron beam positions at three different times (1-3) — at beginning, middle

and end of the scattering interaction. The combination of the three different geometries is shown:

the focusing line along the electron trajectory, the side-scattering with interaction angle φ and

pulse-front tilted by an angle α. Furthermore, the figure illustrates how in the course of the

interaction, the entire laser beam slides across the electron bunch, so all parts of the laser interact

with the electrons. In this sense the electrons and thus the resulting X-ray pulse are continuously

pumped by the laser as both travel along the laser line focus. These distinctive features are

summarized by the name traveling-wave Thomson scattering (TWTS).

In order to calculate the minimum laser duration τmin required for full spatial overlap, an ellip-

soidal geometry of the electron bunch is assumed and its semi-axes are c τbeam/ 2 and dbeam/ 2.

Therefore, the tilted laser pulse fronts at angle φ/ 2 as in eq. (5.4) must be long enough to be at

minimum tangent to the electron bunch ellipse. Hence one arrives at a minimum laser duration,

τmin ≥ dbeam/c ·
(

1 +
(c τbeamdbeam)2 − (c τbeam)4

(c τbeam)4 + d4
beam tan2(φ/ 2)

)−1/ 2

. (5.5)

For the number of oscillations N0 experienced by the electrons, the effective interaction dis-

tance dbeam/ sinφ has to be divided by the effective laser wavelength λ0/ (1− β0 cosφ).

Traveling-wave Thomson scattering 109



Figure 5.3: Tilt angle α with respect to the interaction angle φ according to eq. (5.4). The different
curves correspond to various bunch velocities β0, where the diagonal curve denotes the limit for
γ0 � 1.

N0 =
dbeam

λ0
· 1− β0 cosφ

sinφ
' dbeam

λ0
tan(φ/ 2) . (5.6)

The advantages of traveling-wave Thomson scattering (TWTS) come at the cost of additional

optics introducing a large pulse-front tilt. In the following the means for realizing such a pulse-front

tilt using reflective gratings are described in more detail and it is shown what kind of difficulties

are to be expected.

5.3 EXPERIMENTAL APPROACHES AND CONSTRAINTS

Two methods for pulse-front tilt (PFT) generation as depicted in Fig. 5.5 are known: PFT by angu-

lar dispersion [9–11] and PFT by a combination of a spatial chirp and group delay dispersion [12].

However, the requirement for ultrashort pulses within the region of the line focus excludes the

second possibility because a minimized spatial chirp is desired in the interaction region. Other-

wise, the electrons would experience a spatially separated spectrum and thus a frequency chirp,

which would broaden the bandwidth of the scattered radiation. In addition, the efficiency of the

interaction would be affected by the intensity drop due to the laser pulse being elongated by

spatial dispersion. Hence the pulse-front tilt

PFT ≡ tanα = ω0

∣∣∣∣dθout

dΩ

∣∣∣∣
Ω=ω0

≡ ∂(c∆tout)

∂xout
(5.7)

has to be realized by angular dispersion. Here, α, ω0 and θout represent the pulse-front tilt angle,

the central angular laser frequency and the deflection angle compared to the central ray passing

110 Chapter 5 Scalable optical undulators with traveling-wave Thomson scattering



(a) line focus (b) side-scattering (c) pulse-front tilt

(d) Overview of traveling-wave Thomson scattering

Figure 5.4: In traveling-wave Thomson scattering (TWTS) the laser is (a) focused with a cylindrical
mirror to a line focus along the electron trajectory. (b) This leads to a side-scattering geometry
with φ being the enclosing angle between laser pulse and electron bunch. (c) In order to main-
tain continuous overlap during the interaction the laser pulse envelope must be tilted by φ/ 2 to
compensate for the different propagation directions. (d) shows an overview of the TWTS scheme
that combines above design principles in one graph and depicts the laser pulse envelope at the
beginning, middle and end of the interaction (1-3). The result is a comoving interaction region in
which scattered X-ray radiation can accumulate over propagation distances that are much longer
than the laser Rayleigh length.

through the dispersive element respectively. The second definition of the pulse-front tilt (5.7)

arises from a ray-picture. In a group of rays after a dispersion element, the pulse front tilt defines

the distance by which an off-axis ray with distance xout to a central ray is advanced or delayed

with respect to that central ray.

Reflective gratings are ideal for this purpose as they can introduce large linear angular chirps

dθout

dΩ

∣∣∣∣
Ω=ω0

=
sinψout − sinψin

ω0 · cosψout
(5.8)

tanα =
sinψout − sinψin

cosψout
(5.9)

without having issues with higher order dispersion. One grating can easily introduce the required

pulse-front tilt. However, complications arise through the requirement of zero spatial dispersion
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(a) (b)

Figure 5.5: (a) A diffraction-limited laser pulse of duration τ0 is incident on a grating. Since the
propagation distance of beam (1) is longer than the distance of beam (2), there exists a pulse-
front tilt α. The angular dispersion – different angles Ψout for varying frequencies – introduced
by the grating leads over the subsequent propagation distance L to both spatial dispersion and
pulse elongation through group delay dispersion. (b) depicts a laser pulse with spatially dispersed
spectrum SD 6= 0, which by passing through a dispersive medium is delayed as a function of
frequency according to the index of refraction n(ω) and thus results in a pulse-front tilt. That
tilting mechanism is complementary to (a).

within the interaction region. The angular dispersion (AD)

AD ≡ 2π
dθout

dΩ

∣∣∣∣
Ω=ω0

≡ ∂θout

∂∆ν
(5.10)

introduced by the grating is responsible for a growing spatial dispersion (SD)

SD ≡ ∂xout

∂∆ν
(5.11)

which after some propagation distance then gives rise to a temporal broadening of the beam by

both a spectral walk-off, reducing the local frequency bandwidth. Likewise, angular dispersion

with subsequent beam propagation gives leads to group delay dispersion (GDD)

GDD ≡ ∂∆tout

∂∆ν
(5.12)

because the individual spectral components propagate into different directions [13]. In the fol-

lowing the spectral walk-off can be neglected (2 tanα/ τ0ω0) · L � dbeam as the beam diameters

considered here are in the centimeter range. That is different for the GDD, which broadens a

tilted beam as it propagates off the plane of ideal temporal compression. According to [13], the

laser pulse duration τ of collimated, transform-limited beams that are tilted by an angle α changes

with propagation distance L as given by

τ2 = τ2
0

(
1 +

L2λ2
0 tan4 α

π2(cτ0)4

)
. (5.13)

Note that this equation is valid only in the limit of geometrical optics, which requires the
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Rayleigh length Z0 to be much longer than any propagation distance L in the optical setup. Here,

this condition is easily fulfilled, since the waist size of a collimated 800 nm laser beam is on the

order of w0 ' 10 cm, which corresponds to a Rayleigh length of Z0 ' 40 km.

Small tilt angles

As the second term of (5.13) is proportional to tan4(α), laser pulse elongation due to the pulse-

front tilt α = φ/ 2 becomes negligible for small scattering angles φ . 10°, when laser and electron

beams are almost collinear. Such a small-angle limit is a good starting point for relatively simple

experimental setups as in Fig. 5.6, because those can ignore propagation-induced effects from

angular dispersion and thus need only one standard grating. In addition, the resulting scattered

wavelengths λsc ' λ0/ (2γ2
0(1− β0 cosφ)) are much longer compared to a colliding geometry and

the interaction distance Lint = dbeam/ sinφ, due to the small angle, quickly scales up into the

meter range. Compared to magnetic undulators, setups exploiting this small-angle limit provide

optical undulators with effective undulator periods λeff = λ0/ (1 − β0 cosφ) that are 1-2 orders of

magnitudes smaller and correspondingly feature greater photon energies as shown in Fig. 2.8.

For a geometry as shown in Fig. 5.6 an upper limit can be found for the propagation length

L ≤ 2fcyl/ sinφ from grating to interaction region with fcyl denoting the focal distance of the

cylindrical mirror. With a pulse-front tilt of α = φ/ 2 and (5.13), one arrives at the pulse duration τ

for small angles φ

τ = τ0

√
1 +

(
fcylλ0φ

2π(cτ0)2

)2

. (5.14)

This scaling improves when an additional pair of gratings preceding the setup is used to pre-

compensate spatial and group delay dispersion emerging between the last grating and the line

focus. Then the relevant distance for dispersion is set by the laser propagation distance during

interaction, dbeam/ tanφ. As a consequence, eq. (5.14) becomes

τ = τ0

√
1 +

(
dbeamλ0φ

4π(cτ0)2

)2

. (5.15)

and scales with the laser diameter dbeam instead of the focal distance fcyl.

It should be noted that the appeal of such small-angle arrangements becomes apparent when

the Pierce parameter ρ

ρ =
1

2γ0

(
Ip
IA

(
λua0

2
√

2πσb

)2
)1/3

(5.16)

is calculated, which defines the efficiency of an FEL [14, 15]. In (5.16) Ip denotes the electron peak

current, IA = 4πε0m0c3/e = 17.0 kA the Alfvén current, σb the RMS electron bunch diameter and

λu is the effective optical undulator period λeff = λ0/ (1 − β0 cosφ). For conditions achievable

by conventional, small-scale linear accelerators and high-power lasers around 100 fs, for ρ one

typically arrives within a range of 10−4 − 10−3, which is comparable to existing facilities [16–19].

The discussion of such a TWTS-FEL as an X-ray source with its potential and requirements is

postponed until later in ch. 5.7.
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Figure 5.6: Setup for small interaction angles φ, where the propagation-induced laser pulse
elongation is negligibly small. First, a single grating introduces the pulse-front tilt φ/ 2 corre-
sponding to the interaction angle φ. Then a cylindrical mirror focuses to a line focus, where
the tilted laser slides across the electrons, thus generating X-rays at a photon energy of
Wγ = ~ω0 · 2(1− β cosφ)γ2.

Large tilt angles

Since the aforementioned small-angle scheme results in photon energies much smaller than

in head-on scattering geometries, a method to compensate for the spatial dispersion at larger

angles φ becomes essential. As known from grating compressors, a pair of gratings in principle

can accomplish that. However, this is not enough, because here the laser pulse propagates

non-negligible distances ∆L > π(cτ0)2

λ0 tan2 α
, see eq. (5.13), while interacting with the electrons. The

group delay dispersion and the spatial dispersion of the laser must be zero, not only at one

point in time, but along the entire interaction distance to prevent efficiency losses from laser

pulse elongation and frequency chirp in the scattered radiation. It turns out that such a situation

cannot be arranged with standard grating optics. The reason for this lies in its almost linear

transformation properties with respect to the set of possible optical path length differences in

wave optics or correspondingly the ray bundles in geometric optics. When optics are used,

where two arbitrary rays with relative position, angle, time and frequency properties can always

be related to one another by a linear transformation, one can describe the system in a first-

order theory. For example, this means that two parallel rays of the same wavelength remain

parallel after hitting a plane, standard grating. Therefore, if the desired properties of an optical

system cannot be defined by linear transforms, it follows that this system cannot be realized

using (locally) linear optics such as mirrors, lenses and plane, standard gratings. For illustration of

the problem encountered here, consider one electron bunch overlapping with a tilted laser pulse.

In a first-order theory one has

SD(x) = ∆L(x) · AD , (5.17)

where SD(x) denotes the spatial and AD the constant angular dispersion. The x-coordinate is the

transverse position deviation from the center beam in Fig. 5.8. Although in the context presented

here x = xout, this convention refers to the laser beam properties around the interaction region

and not to a particular choice of preceding optics. Precompensation of the spatial dispersion

by an additional grating pair sets SD(0) = 0 for ∆L(0) = 0. Now as the electrons move in

x along the laser pulse front, the laser continues to propagate another distance ∆L(x), so the

spatial dispersion SD(x) is not zero anymore. The only way to compensate for that is to modify

the spatial dispersion in advance, so it also becomes a function of x. But this means SD′(x) =

(∂2xout/ ∂∆ν∂xin)|x=xout 6= 0 and thus one cannot operate anymore in the framework of a first-order
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theory and require optics that feature non-negligible higher order derivatives in x.

It is useful to formulate the necessary TWTS conditions on laser beam dispersion independent

of specific optics. Thereby the basic design principle of TWTS is kept in mind: Only at the current

electron bunch position and nowhere else, good overlap and a high quality laser beam is required.

First, the spatial dispersion condition can be stated with the help of Fig. 5.7. The change in spatial

dispersion SD(x, t) = ∂xout/ ∂∆ν along the electron trajectory xel(t) and hence across the laser

beam diameter

SD(x, t)|x=xel(t) ≡ SD(xel(t), 0)− AD(xel(t)) ·∆L(xel(t))�
πcτ2

0

tanφ/ 2
(5.18)

∆L(x) = (tan(π/ 2− φ) + tanφ/ 2) · x (Minimize spatial dispersion)

needs to counterbalance the spatial dispersion gained by the beam propagation distance ∆L(x)

to the line of interaction. According to Fig. 5.7 this propagation distance ∆L(x) is defined by

the difference in slopes of electron bunch trajectory and laser pulse-front tilt with respect to the

wave front. The limit on the right hand side of (5.18) derives from the temporal walk-off (5.14)

generated by the angular dispersion (5.17).

Then, the required pulse-front tilt PFT (x) = c · (∂∆t(x)/ ∂x) from (5.4) needs to be constant

across the entire laser pulse width, so the pulse front does not bend.

c ·∆t(x)− x · tanφ/ 2� cτ0 (Minimize pulse-front bending) (5.19)

Finally, the temporal laser profile should not change, thus the group velocity delay has to be kept

smaller than the transform-limited pulse duration

GDD(x, t)|x=xel(t)∆ν0 =
∂∆tout(x, t)

∂∆ν
|x=xel(t) ∆ν0 � τ0 (Optimal pulse compression) ,

(5.20)

along the entire electron bunch trajectory xel(t). For general non-Gaussian temporal profiles, as

well as nonlinearly chirped pulses, above eq. (5.20) can be expressed [9] as〈(
∆ν

2π
GDD(x, t, ∆ν)|x=xel(t)

)2
〉

∆ν

� τ2
0,rms . (5.21)

The proposed setup in Fig. 5.8 is similar to the small-angle case in Fig. 5.6, but includes spatial

dispersion (SD) and group delay dispersion (GDD) precompensation. For the first order dispersion

of the beam from the grating to the interaction region this is achieved by some additional grating

combination at the beginning of the setup. Such SD and GDD compensation is standard tech-

nology and is extensively used in the stretchers and compressors of chirped pulse amplification

(CPA) lasers.
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Figure 5.7: During propagation of a tilted laser pulse over a distance ∆L, spatial dispersion (SD)
and group delay dispersion (GDD) change due to angular dispersion. In order to maintain best
laser pulse compression and thus efficient overlap with the electrons, both SD and GDD need to
be zero along the electron trajectory. This requires the spatial dispersion SD(x) to vary linearly
across the transverse laser pulse coordinate at any fixed point in time.

However, the goal is to have zero SD and GDD, not only at one instant of laser beam propaga-

tion, but reasonably small SD and GDD at the current electron positions along the entire interac-

tion distance. Hence, higher order dispersion compensation to satisfy the conditions (5.18),(5.19)

and (5.20) is required. In the setup (Fig. 5.8) this is accomplished by changing the last grating to a

VLS grating with a quadratic line-spacing chirp (see Appendix A). In this way, an additional angular

dispersion

AD(xin) = AD0 + SD0 C1 · xin , (5.22)

which varies linearly across the laser beam diameter, is realized, such that the linear spatial dis-

persion condition (5.18) is fulfilled in the line focus after the final propagation distance L0 = ABC.

Considering that the spatio-temporal beam imaging properties of a VLS grating are by defini-

tion nonlinear, setup designs and their limitations can quickly become difficult to assess. Thus

a theoretical description for modeling laser beam dispersion to higher orders is essential for de-

signing efficient large angle scattering geometries that provide high X-ray energies. Moreover

it should be emphasized here, that these techniques of tailoring the laser beam to alternative

interaction volumes using VLS gratings are rather general and are also applicable for other areas

in laser-matter interactions (see ch. 5.8), since the target does not need to be an electron beam,

but can be anything that moves close to the speed of light.
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Figure 5.8: A CPA laser system provides a stretched laser pulse with spatial dispersion. The
last grating (A) introduces the required pulse-front tilt φ/ 2. The corresponding angular dispersion
introduced by the grating subsequently compresses the laser pulse until best compression and
zero spatial dispersion is reached in the line focus of the setup. The grating has a varied line-
spacing (VLS) such that zero spatial dispersion is reached not only at one instant in time, but
spatially along the entire line focus.

5.4 THEORETICAL TOOLS FOR DESIGNING VLS GRATINGS

To begin with, it is useful to reduce the problem to plane waves in two dimensions, which is

possible because the cylindrical mirror focuses only in one dimension, which is perpendicular

to the plane of projection in Fig. 5.4(a). Thus the wavefront curvature parallel to the interaction

plane, that is spanned by the laser and electron beam directions, can be neglected. Considering

that all the gratings introduce dispersion in the same way for each plane parallel to the interaction

plane, it is a good approximation to evaluate only the interaction plane. Hence, the laser pulse

can be modeled in 2D using a ray-tracing approach.

The most comprehensive treatment for the first order behavior of an optical system was

given by Kostenbauder [20] and utilizes 4 × 4 “ray-pulse” matrices to model the laser beam

coordinates (position x, angle θ, time delay ∆t and frequency shift ∆ν), relative to a central ray.

This formalism is adopted in order to define the first order properties of the grating-based setup

in Fig. 5.8 and to satisfy the constraints on AD, GDD and SD for the central ray and its close

vicinity at x = 0. In a next step, this linear solution is analytically extended to higher orders

for off-axis rays x 6= 0. At that point it is possible to describe the required line-spacing function

of the grating as a second order correction to a linear ray transfer operator. Beyond this second

order analysis, numerical calculations up to the 4th order are performed over a range of interaction
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angles φ. With the help of these numerical calculations, optimal angles and grating parameters

are determined by minimizing dispersion according to (5.18)-(5.20) in an optimization approach.

For one, this constitutes a numerical test on the range of validity of the analytical approximation

– especially of the analytical grating chirp. But even more important, it provides physical insight

on the useful range of a VLS grating with regard to interaction angles φ and maximum achievable

interaction lengths. For the technical details on the Kostenbauder formalism and its extension,

the reader is referred to the Appendix A and the discussion here is continued with the linear case.

The requirement of a φ/ 2 pulse-front tilt defines the first order grating properties. Thus the

grating equation combined with (5.9) simplifies to

ψin = arcsin (cosψout(tanψout − tanφ/ 2)) , (5.23)

with the grating period d0

d0 = λ0/ (sinψout − sinψin) . (5.24)

The stretcher-compressor combination of a CPA laser at the beginning of the setup has to

ensure in first order zero GDD and SD at the final focus, so together with (5.23) the first order

precompensation for spatial dispersion and group delay dispersion has to be

SD0 =
∂xout

∂∆ν
=

L0λ0 tanφ/ 2
c · cosψout

√
cos (φ− ψout) cosψout/ cos2 φ/ 2 (5.25)

and

GDD0 =
∂∆t
∂∆ν

=
L0λ0

c2 tan2 φ/ 2 . (5.26)

According to (5.23) and (5.25) the angle ψout is constrained by

− π/ 2 + φ < ψout < π/ 2 + φ . (5.27)

Up to this point, everything in the design could be obtained using the Kostenbauder formalism

or any other first order theory. As a correction to these first order constraints, now a varying

grating period featuring a quadratic dependency

d(s) = d0 + bgλ0s2 , (5.28)

along its surface coordinate is introduced.

By extending the Kostenbauder formalism to higher orders in x as shown in Appendix A,

the spatial, angular and temporal ray displacement components xout(xin, ∆ν), θout(xin, ∆ν) and

∆tout(xin, ∆ν) are obtained for above setup. Thus, the spatial dispersion ∂xout(xin, ∆ν)/ ∂∆ν in

the interaction region after a distance L0 can be calculated to higher orders in the transverse

beam coordinate xin. As a result the condition (5.18), using (5.17), (5.22), (5.25) and (5.23), can be
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rewritten as

SD(xin, 0)

xout(xin)
= AD(xin) · (tan(π/ 2− φ) + tan(φ/ 2))

−
2λ0bgL2

0 tan3 φ/ 2
c · cosψout

=
λ0

c
tanφ/ 2 · (tan(π/ 2− φ) + tan(φ/ 2)) +O(x, ∆ν) ,

so when neglecting higher order dispersion, this condition is satisfied for quadratic line-spacing

chirps

bg = −cosψout · (tan (π/ 2− φ) + tanφ/ 2)

2L2
0 tan2 φ/ 2

. (5.29)

Note, that above quadratic VLS profile in (5.28) is a useful parametrization, but it is not necessarily

the best solution with regard to higher order dispersion. Ideally one would optimize for a whole

range or even arbitrary grating period functions to achieve better results with less dispersion.

However, such a general approach is rather technical and distracts from the main point, which is

how traveling-wave Thomson scattering can experimentally be realized. Therefore, for the sake

of simplicity, the following analysis focuses exclusively on a second order polynomial as the VLS

grating function.

The only remaining degrees of freedom in this setup are now the length L0 between the VLS

grating and the line focus and the outgoing angle ψout. Over that remaining parameter space, the

dispersion conditions (5.18) to (5.20) are calculated and subsequently minimized. For accuracy

reasons higher order terms up to the third order in x are included. The optimizations below

are performed numerically on a computer using a combination of a global optimization algorithm

(Differential Evolution [21]), followed by a local optimization technique.

5.5 INTERACTION DISTANCES USING VLS GRATINGS – CALCULA-
TION RESULTS

For a discussion of the optimization results, the local laser pulse duration τ / τ0 along the line focus

is of special interest. It is calculated from the frequency dependence of the remaining GDD after

optimization (see eq. (5.21)) and is normalized to the transform-limited laser pulse duration τ0.

If this local pulse duration τ / τ0 is significantly larger than unity, it indicates a chirped pulse and

can be interpreted as the stretch factor by which the laser is elongated. Such an elongated

pulse leads to a less efficient overlap with the electrons. Moreover, it can also broaden the

scattered spectrum, because the carrier frequency of a chirped beam varies across the electron

bunch. Physically, this is the result of higher order dispersion from the VLS grating that becomes

significant further away from the central laser beam axis and critical for the broad spectra of

ultrashort laser pulses. Therefore, this quantity is an indicator for the limits on the available

interaction length Lint of a given large angle TWTS design.

As an example, Fig. 5.9 (a) and (b) show the results for some typical scenario of a 30 fs and
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(a) (b) (c)

Figure 5.9: For a scattering angle φ = 60°, (a) shows the local pulse elongation τ / τ0 of a 30 fs
laser pulse (blue) in comparison to the corresponding scenario using standard gratings (red), (b) is
the same as (a), except that a 60 fs laser pulse is used. (c) depicts the nm-scale deviation in the
line-spacing profile d(s) of a typical VLS grating compared to the corresponding standard grating.

60 fs laser pulse at 800 nm and an interaction angle of φ = 60° at a fixed VLS grating to line focus

separation of L0 = ABC = 1 m. Additionally, these results are compared to the corresponding

scenario, using a standard grating (red line) instead of a VLS grating (blue line). The influence

of propagating laser pulses with pulse-front tilt on the pulse duration was calculated according

to (5.13), where L = (tan(π/ 2− φ) + tanφ/ 2) · x denotes the displacement from the plane of

maximum beam compression. In that case best pulse compression (red line) is only maintained

for a couple of mm around the beam center, so outside that region the intensity loss due to

temporal pulse broadening quickly approaches one order of magnitude. In contrast, the beams

in the VLS grating setup remain at good compression (blue line) over a laser beam diameter of

125 and 420 mm. This enables effective Thomson scattering over an interaction distance of many

times the Rayleigh length. The VLS grating function required for such a setup (Fig. 5.9(c)) shows

an overall variation in the groove spacing, which is well below the central grating period d0 and

thus technologically viable.

Such optimal configurations at the same fixed grating to focus separation distance L0 =

ABC = 1 m can be found for a whole range of interaction angles φ. As an indicator for the

limits of this setup due to the higher order dispersion terms in x and ν, Fig. 5.10(a) depicts the

maximum interaction distances Lint over which the local pulse duration remains below τ / τ0 = 2,

i.e. does not double (blue lines). This again is compared to scenarios with standard gratings (red

lines) instead of the VLS gratings. The limitations at very small or large angles φ are explained

by the geometry. According to (5.18) the required slope in the spatial dispersion is proportional

to tanφ/ 2 · (tan (π/ 2− φ) + tanφ/ 2) and becomes infinite for φ → 180°. Hence, towards larger

angles φ increasingly higher SD chirps become necessary and higher order effects noticeable. A

similar argument applies for the small-angle limit φ → 0°, where a small but precise compensa-

tion is required, so that in between these two extremes, the usable interaction distance attains a

maximum.

Thus for VLS gratings it is found that dispersion precompensation becomes more difficult to-

wards larger angles φ which in practice defines an upper limit for φ. This upper limit depends

on the laser pulse duration (5.13), the interaction length Lint over which good dispersion compen-
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(a) (b)

(c) (d)

Figure 5.10: (a) depicts the maximum interaction distances with respect to the interaction angle
φ, for 60 fs (solid) and 30 fs (dashed) pulses in a VLS grating setup (blue) as in Fig. 5.8 compared
to using standard gratings (red). In (b)-(d) the corresponding optimized parameters are shown:
(b) the normalized quadratic chirp of the VLS grating, (c) incident and output angles, and (d) the
central grating frequency of the VLS grating. In all calculations, a laser wavelength of 800 nm has
been assumed.

sation is required in the application, as well as the VLS grating function and the optical setup.

For standard gratings however it is again confirmed that these perform well towards very small

angles φ and hence complement the VLS gratings at large angles.

Another important measure for the quality of the setup is the local pulse front displacement,

which quantifies the difference between the desired straight pulse front and a curved one. Such

non-ideal pulse fronts are an unwanted side effect that arise from the higher order nonlinearities

of VLS gratings. If that displacement ∆τ / τ0 becomes larger than the local laser pulse duration

τ / τ0, overlap is lost. For a setup configuration with a 60 fs laser pulse at 60° one arrives at a

maximum overlapping distance of 20 mm, as depicted in Fig. 5.11(red). Though this is still longer

than the interaction distances achievable by standard gratings, it is considerably smaller than

the interaction distances possible according to Fig. 5.10. However, this can be compensated by

modified setups or VLS grating functions. For example two VLS gratings can be used: the first

Interaction distances using VLS gratings – calculation results 121



Figure 5.11: Local pulse front deviation of a 60 fs laser pulse at φ = 60° in a setup with a single
quadratic VLS grating (red) and an improved setup using an additional quadratic VLS grating (blue)
to reduce the bending of the pulse front.

grating to precompensate a quadratic shift in pulse front as shown by the red curve in Fig. 5.11,

and the second grating to apply the remaining compensation in SD. If such an additional VLS

grating with a well-adjusted, quadratic line-spacing chirp replaces the last compressor grating in

the setup discussed here, the quadratic deviation of the pulse-front tilt can be removed and a

much longer overlapping distance of 160 mm is obtained, see Fig. 5.11 (blue line).

It should be stressed that these optimizations belong to one specific setup type using VLS

gratings with a quadratic chirp. These results change significantly, when non-polynomial VLS func-

tions or different optical setups are being used. Since the optimization conditions (5.18) to (5.20)

become increasingly stringent for shorter laser pulses or interaction angles beyond φ = 120°,
more specialized solutions for controlling higher order dispersion warrant further investigations.

5.6 SCALING FOR INCOHERENT TWTS SOURCES

In the previous section, it was discussed how traveling-wave Thomson scattering (TWTS) can be

realized in experiment. The question arises: how does it compare to head-on scattering and what

kind of lasers profit most of that scheme? Generally, basic properties remain similar to head-on

Thomson scattering, so the resulting X-ray pulses still have durations corresponding to the coprop-

agating electron bunches τxrays ' τbunch. Also the natural bandwidth, i.e. the monochromaticity,

continues to be determined by the number of laser oscillation periods

∆ωsc/ωsc = 1/N0 =
λ0

dbeam sinφ tanφ/ 2
, (5.30)

seen by the electrons. The resulting photon energy scales with the scattering angle ∝ (1 −
β0 cosφ), thus allowing for a large degree of tunability from EUV to hard X-ray radiation, even for

electron sources that operate at a fixed energy. However, the main advantage of TWTS with

regard to head-on scenarios is that it allows to increase the photon numbers per pulse by several

orders of magnitudes without entering the nonlinear Thomson regime.
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Since in head-on focal geometries today’s high-power lasers easily exceed the nonlinearity

threshold

I0,max[W/cm2] = 1.37× 1018
(

a0,max

λ0[µm]

)2

with a0,max ' 0.2� 1 . (5.31)

Currently discussed designs plan to use high-repetition systems in both laser system and electron

sources. Here, each laser pulse has a low intensity, but is matched to a small electron beam

diameter for good efficiency. The added yield over many shots then gives rise to substantial X-

ray photon fluxes. For such designs high-repetition laser systems in the MHz range with kW of

average power from fiber based laser systems [22, 23], in combination with laser enhancement

cavities [24], and high-average current linacs are envisioned. Yet, important applications such as

pump-probe studies or single molecule imaging, require high photon numbers in a single short

X-ray pulse rather than a high flux spread over many pulses.

In the following two high-repetition rate systems are compared to a TWTS using a high-power

laser. All these systems feature the same average laser power of 200 W. For the electrons,

ELBE parameters (1 nC, 40 MeV, εnorm,rms = 2πmm mrad, τbunch < 150 fs) using the new SRC-

Injector [25] are assumed.

The minimum laser waist size w0,min has to match the bunch diameter of the focused electron

beam, which according to the angle term γ2θ2 in (5.2) is determined by a divergence and hence

emittance criterion

w0,min = 2εnorm,rms/
√

∆ωsc/ωsc , (5.32)

where ∆ωsc/ωsc denotes the bandwidth design goal of the scattered radiation.

The first high-repetition laser is an ytterbium-doped fiber CPA system at 1 MHz repetition

rate [22, 23]. The second laser is a kHz-system based on Yb:YAG, which at 200 mJ per pulse is

already a challenge with respect to the current state-of-the-art [26]. In contrast to the MHz-system

the intensities reached are close to the nonlinear intensity limit.

In the TWTS scenario a petawatt class, diode-pumped laser (200 J, 150 fs, 1 µm, > 1 Hz)

as planned for the HZDR [27, 28] is used. Note that the long pulse duration of 150 fs here

considerably simplifies GDD, SD and pulse front compensation compared to the 30 fs and 60 fs
pulses discussed above. Therefore, large angles exceeding φ = 90°, hence higher X-ray energies

(5.2), and longer interaction lengths Lint become experimentally feasible. In fact, the maximum

interaction distance in this example is not limited by the TWTS scattering geometry, but by the

electron divergence, which determines the characteristic distance

Lmax = w2
0,min ·

γ0

2εnorm,rms
, (5.33)

after which the electrons leave the laser focus. As a consequence, the laser waist size of the line

focus has to be increased until the effective interaction length Lmax is long enough to achieve a

focal intensity

I0,TWTS =
W0

π/ 4 · dbeamw0τ0
≤ I0,max (5.34)

below the nonlinear intensity limit I0,max. The final photon yields are estimated for ∆ωsc/ωsc =

5% scattered bandwidth using (5.1), where for TWTS the number of oscillations N0 along the
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MHz head-on kHz head-on PW-TWTS PW-TWTS

(φ = 180°) (φ = 180°) (φ = 120°) (φ = 120°)

repetition rate [Hz] 106 103 1 1

λ0[µm] 1 0.5 1 1

w0[µm] 18 18 62 17

τ [ps] 1 1 0.15 150

I0[W/cm2] 7.9× 1013 7.9× 1016 5.5× 1016 5.7× 1016

W0 [mJ] 0.2 200 200× 103 200× 103

avg. laser power [W] 200 200 200 200

Lint[mm] 0.3 1.5 57.6 200

~ωsc[keV] 31 62 23 3500

Nphot,5% per pulse 2.5× 105 1.2× 108 4.9× 1010 3.4× 1010

Table 5.1: (Col. 1-3) Comparison of TWTS per shot photon yields with high-repetition laser sys-
tems in head-on geometry. The laser systems of photon yield scaling (∆ωsc/ωsc = 5%) us-
ing the planned petawatt laser at the HZDR (200 J, 150 fs, 1 µm) and ELBE electrons (1 nC,
40 MeV, εnorm,rms = 2.0πmm mrad, τbunch = 100 fs). (Col. 4) Example of photon yield scaling
(∆ωsc/ωsc = 5%) with the planned petawatt laser at the HZDR (200 J, 150 fs, 1 µm) and laser
wakefield-accelerated electrons (0.2 nC, 500 MeV, εnorm,rms = 0.1πmm mrad).

interaction length is given by

N0 =
Lint

λ0
· sinφ tanφ/ 2 . (5.35)

As a result, the TWTS yield Nphot,5% of 4.9× 1010 photons per shot from ELBE electrons (see

Table 5.1) exceeds the ones from the high-repetition laser systems by more than two orders of

magnitudes respectively.

As suggested by (5.32) to (5.35), the combination of TWTS and laser wakefield-accelerated

laser-wakefield accelerated (LWFA) electrons is especially promising. With transverse emittances

as low as εnorm,rms = 0.1πmm mrad and electron energies up to the 1 GeV [2] range, long in-

teraction distances at small diameters (see eq. (5.33) and (5.34)) and thus high photon yields

are possible. In addition, such a setup profits of an easy synchronization when using the same

laser. Especially for laser wakefield-accelerated electrons it is not straightforward to change the

resulting energy. Hence the scalability of the resulting X-ray energy with respect to the angle φ

facilitates tuning the energy of optimized electron sources that operate in a limited energy region.

Since LWFA electrons are not available at high-repetition rates, a high flux cannot be obtained by

aforementioned high-repetition designs (ch. 4.3), but by TWTS that also works at low repetition

rates. As shown in Table 5.1 X-rays in the MeV range with photon yields over 1010 photons at an

electron bunch charge of 200 pC can be achieved. The small source size on the order of µm and

the ultrashort time scale of tens of fs [29] make this an X-ray source (see Fig. 1.3) with a brilliance

on the order of 1026 − 1027 mm−1 mrad−2 s−1[0.1 %BW].

124 Chapter 5 Scalable optical undulators with traveling-wave Thomson scattering



5.7 TRAVELING-WAVE THOMSON SCATTERING FEL

A major incentive for small-angle scattering setups as shown in Fig. 5.6 in ch. 5.3 is the prospect

of realizing interaction lengths which are long enough for an FEL instability to develop. Inserting

typical laser and electron parameters, achievable by small, conventional accelerators and current

high-power lasers into

ρ =
1

2γ0

(
Ip
IA

(
λua0

2
√

2πσb

)2
)1/3

, with λu = λ0/ (1− β0 cosφ) (5.36)

yields an FEL parameter ρ in a range of 10−4 − 10−3, which corresponds to power gain lengths

Lgain = λu

4π
√

3ρ
on the order of cm, while the available interaction distance can be on a meter

scale. Since the effective undulator periods of the scenario are in the sub-mm to mm range,

FEL radiation in the XUV to X-ray region is possible in a much more compact setup and at lower

electron energies compared to existing FEL systems. As summarized in Table 5.2, the main ad-

vantage of a TWTS based SASE-FEL would be its small scale in the sub-mm to meter range.

With lower electron energies, as used for FELBE (IR-FEL resonator), XUV (13 nm) to X-ray wave-

lengths (1 Å) could be achieved, which up to now are the domain of large facilities such as FLASH

and LCLS. An important prerequisite for TWTS-FEL operation are low-emittance electrons below

εn,trans = 1π mm mrad, which arise from the small interaction angle φ and are discussed later in

this chapter (eq. (5.60)). Thus LWFA electrons with 100 pC charge and 10 fs duration are assumed

in this example.

In contrast to earlier proposals of optical FELs [30, 31], the other distinct advantage of TWTS-

based, optical undulators is that it is not limited by the Rayleigh length, but instead can in principle

be arbitrarily long. This is crucial, because with TWTS it is possible to trade longer interaction

lengths for smaller intensities in the FEL design without sacrificing peak field strength. Note, that

a low laser strength parameter a0 � 1 keeps the scattering process firmly in the linear regime.

Hence, varying laser envelope amplitudes have largely reduced effect on the nonlinear shift of

the resonant FEL frequency (5.2), which from an experimental perspective makes the process

significantly more robust and less dependent on specific laser intensity profiles.

Furthermore, as an optical undulator, TWTS takes place in vacuum, so that the driving field

is not bound to any material structure near the electron beam. Especially resistive feedback

effects [32, 33], such as wall-wakefields, where the electron beam interacts with the undulator

structure and thus limits the minimum gap size in magnetic undulators, do not exist in optical

undulators.

Since the effective undulator period is λu = λ0/ (1−β0 cosφ), all major operational parameters

of a TWTS-FEL fundamentally depend on what interaction angle φ between laser and electrons

is being used. Thus, this added flexibility in φ leads to new scalings. First of all, φ naturally affects

the resonant wavelength

λsc =
λ0

2γ2
0(1− β0 cosφ)

1/γ0�φ�1
≈ λ0

γ2φ2 , (5.37)

and together with the laser beam diameter dbeam the length of the line focus (see Fig. 5.4(a)) and
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thus the maximum interaction distance

Lint =
dbeam

sinφ

φ�1
' dbeam

φ
. (5.38)

For a given laser system with an on-axis intensity according to (5.34) and laser strength a0 (2.89)

and the angle dependent λu the FEL parameter scales as

ρ =
1

2γ0

(
Ip
IA

(
λua0

2
√

2πσb

)2
)1/3

φ�1∝ γ−1
0 φ−4/ 3 . (5.39)

Note that for small φ the role of γ0 and φ are similar in both (5.37) and (5.39). The gain length

Lgain =
λ0

(1− β0 cosφ) · 4π
√

3ρ

φ�1∝ γ−1
0 φ−10/ 3 (5.40)

on the other hand has more than an inverse cubic dependence on φ, which in practice is more of a

feature, rather than a problem, because it allows a TWTS-FEL to be scaled in its length dimension

from several mm to m without negatively impacting the FEL parameter.

However, for scaling towards an X-ray SASE FEL it is not only necessary to adjust the resonant

wavelength and maximize the FEL parameter. One also needs to consider the overall energy

output of an FEL, given by the saturation energy

Wsat ' γ0mc2 · ρ = mc2 ·

(
Ip
IA

(
λua0

2
√

2πσb

)2
)1/3

∝ φ−4/ 3 (5.41)

of the resulting X-ray pulse. Since (5.41) depends on φ instead of γ0, it now becomes appar-

ent that the FEL resonant condition (5.2) is preferably fulfilled by high electron energies γ0 and

small scattering angles φ. Combining modern high-power lasers with the ongoing progress in the

quality of laser wakefield electrons [34, 35] achieving low-emittance and high peak-current elec-

tron bunches at high energies with small energy spreads, this could lead to compact all-optical

SASE-FELs.

Differences of TWTS- compared to conventional FEL

Aside from the much smaller undulator period of an optical undulator, TWTS has additional differ-

ences compared to conventional FELs. These differences mainly arise from the laser beam being

incident from a non-collinear angle φ and hence lead to new questions on potential geometry

effects with regard to transversal coherence or the SASE amplification process. Furthermore, the

question of tolerances with respect to the initial laser and electron beam requirements, such as

intensity or emittance, needs to be investigated in a broader context.

In principle relativistic electrons all radiate into a narrow 1/ γ0-cone. If these electrons radiate

coherently the superposition of that radiation forms according to Huygens’s principle a plane

wave, which in conventional undulators is parallel to the mean electron direction of propagation.

In TWTS however the incident laser wave comes at an angle and thus defines a varying phase
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Parameter FELBEa TWTS TWTS FLASHb

FEL type IR Resonator XUV-SASE XRAY-SASE XUV-SASE

peak current [kA] 0.11 10.0 10.0 2.5

electron energy [MeV] 34 100 500 1000

bunch length (FWHM) [fs] 1648 10 10 393

und. period [mm] 27.3 1.0 0.2 27.3

K 0.7 0.1 0.1 1.2

wavelength [nm] 5000 13.0 0.1 13.0

Pierce parameter 4.0× 10−4 1.4× 10−3 1.0× 10−4 9.8× 10−4

gain length [m] 3.1 0.032 0.091 1.28

interaction length [m] 1.86 0.65 2.0 27

peak photon power [MW] 1.54 1.4× 103 4.8× 102 2.5× 103

aHelmholtz-Zentrum Dresden-Rossendorf (HZDR)
bDESY

Table 5.2: Compares a potential TWTS based FEL with existing facilities. The TWTS scenarios are
all based on laser wakefield-accelerated electrons with 10 fs duration, 100 pC of charge, 20 µm
RMS beam diameter and a normalized transverse emittance εn,trans = 0.1π mm mrad. The inter-
action angles φ for the XUV and X-ray TWTS-SASE scenarios at a laser wavelength λ = 1.0 µm
are 2.6° and 5.9° respectively.

across the beam cross-section. The resulting coherent superposition leads to a plane wave that

does not propagate in direction of the electrons, but at an angle φsc. Due to relativity this angle

is contracted compared to the incident angle φ. In Fig. 5.12(a) the incident laser beam is shown

with a phase difference between (1) and (2) across the beam. The resulting angle φsc can be

determined by taking into account the Lorentz invariance of phase, so in the plane wave of the

resulting radiation (1) and (2) have the same phase difference. In addition the resulting wavelength

in the forward direction is known to scale according to (5.2) as (1+γ2
0θ

2)(2γ2
0 (1−β0 cosφ)), where

θ denotes the observation angle. Therefore the distance along the phase gradient contracts by

the same factor and hence the coherently scattered angle φsc becomes

sinφsc '
(1 + γ2

0φ
2
sc)

2γ2
0 (1− cosφ)

· sinφ

tanφsc =
sinφsc

cosφsc
=

1 + γ2
0φ

2
sc

2γ2
0 (1− cosφ)

· sinφ

cosφsc
. (5.42)

For γ � 1 eq. (5.42) has simple solutions.

φsc =


φ for φ < 1

γ0
,

1
γ2

0 ·φ
for φ > 1

γ0
and φ� 1,

arctan
(

sinφ
2γ2

0 ·(1−β0 cosφ)

)
for φ� 1

γ0
.

(5.43)
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(a) incident laser plane wave (b) coherently scattered radiation in laboratory
frame

Figure 5.12: (a) depicts a laser plane wave (red) which is incident onto an electron bunch under
an angle φ in the laboratory frame. Due to this angle there exists a relative phase difference
transverse to the electron direction of propagation (between 1 and 2). (b) shows the plane wave
resulting from coherent scattering. Since the phase differences compared to the incident plane
wave remain the same, but the scattered wavelength contracts by a factor proportional to γ2

0 ,
this correspondingly leads to a contraction of the outgoing angle φsc with respect to the electron
direction of propagation.

The first case represents light scattered at such small angles that in both the electron rest

frame and the laboratory frame it is radiated into the forward direction without change in angle.

The situation becomes more interesting above the angle φ > 1/ γ0, where the backscattered

radiation in the electron rest frame is radiated into the forward direction in the laboratory frame.

In this case the resulting wavelength of the coherently scattered plane wave becomes

λsc '
λu

2γ2
0

(1 + γ2
0φ

2
sc)

=
λ0

2γ2
0 · (1− β0 cosφ)

(
1 +

1
γ2

0φ
2

)
.

(5.44)

According to (5.43) and Fig. 5.13 the resulting angle φsc does for no incident angle φ become

larger than 1/ γ0. Thus the amplitude of the scattered wave remains comparable to the one at

zero angle.

Another consequence of side-scattering is that the microbunching instability does not develop

along the electron propagation direction, but along the direction of the scattered wave. Therefore

the FEL resonant condition

λr =
λu(1− βz,0)

βz,0
(5.45)
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Figure 5.13: Scattering angle φsc of a coherently scattered plane wave with respect to the inci-
dent angle φ. The red (dash-dotted) curve and the green (dashed) curve, represent the forward-
and backscattered contribution according to the approximations in (5.43). The black (solid) curve
shows the numerical result from (5.42) for a γ = 40 electron beam and illustrates the validity of
the approximation in (5.43).

for maintaining a constant “ponderomotive force phase” (2.34),

φpond = 2π
(

1
λr

+
1
λu

)
z − ωt + Ψ (5.46)

has to be written with the effective undulator wavelength λu → λu/ cosφsc and the electron

velocity βz,0 = β0 · cosφsc, both projected into the direction of the scattered wave. Hence, the

new resonance condition becomes

λr =
λu(1− β0 · cosφsc)

β0 · cos2 φsc

' λu

(
1−

(
1− 1

2γ2
0

)
·
(
1− φ2

sc/ 2
))

' λu

2γ2
0

(
1 + γ2

0φ
2
sc

)
.

(5.47)

Together with eq. (5.43) and λu = λ0/ (1 − β0 cosφ) one obtains the resonant condition for

traveling-wave Thomson scattering based free-electron lasers

λr =
λ0

2γ2
0 · (1− β0 cosφ)

·
(

1 +
1

γ2
0φ

2

)
, (5.48)

which is the same as the wavelength λsc for coherent and oblique scattering (5.44) and thus is in

agreement with TWTS driving an FEL instability.

However, the angle φsc between electron trajectory and the resulting radiation causes the

latter to leak out of the interaction zone and thus loss of radiation to the amplification process.

For the SASE process not to be affected, it is necessary for that leakage to be much smaller than

the FEL gain. Therefore the radiation walk-off over one gain length needs to be smaller than the
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width of the interaction zone, which corresponds to the electron bunch diameter dbunch ' 2σb.

φsc · Lgain︸ ︷︷ ︸
∝γ−2φ−13/ 3

� dbunch ' 2σb (5.49)

Due to the strong γ0 scaling, (5.49) can become an issue for lower electron energies. In the 13 nm
example of Table 5.2, the leakage offset is with 18 µm already a significant fraction of the 40 µm
beam diameter, which will lead to a longer effective gain and saturation length. In the other 1 Å
example with the higher electron energy, the leakage offset is merely 2 % of the electron bunch

diameter and is thus negligibly small.

Requirements on laser beams

In contrast to undulators it is experimentally more challenging to precisely tune the spatial and

temporal envelope of the field – and especially so for high power lasers. In order to stay tuned on

the FEL resonance ∆λsc/ λr � 2ρ for all electrons over the entire interaction length, the laser field

has to meet requirements on both spatial and temporal field envelopes or equivalently intensity

profiles.

Since high laser fields shift the FEL resonance through the nonlinear laser-electron interaction

by a factor of (1 + a2
0/ 2), it is necessary to keep variations in the laser field δa, small enough to

satisfy

1 + (a0 + δa)2/ 2
1 + a2

0/ 2
− 1� 2ρ

a0δa + δa2/ 2
1 + a2

0/ 2
� 2ρ . (5.50)

In addition field variations are field gradients that lead to ponderomotive forces, that expel the

electrons out of the laser region of highest intensity. The resulting change in direction by the

angle θ leads to a change in the radiated wavelength λsc according to (5.2). Hence for continuous

FEL resonance
γ2θ2

1 + a2
0/ 2
� 2ρ , (5.51)

the relativistic expression for the ponderomotive force (2.92) is

Fp =
dp

dt
= −mc2∇γ , (5.52)

with the cycle averaged γ-factor for linearly polarized laser fields

γ =

√
γ2

0 +
a0(r)2

2
a0�γ0' γ0 +

a2
0

4γ0
. (5.53)

For an upper estimate of the ponderomotive force (5.52) and thus the ensuing angular de-

flection θpond, the force can be assumed to be at constant maximum over the entire electron
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interaction time ∆t = Lint/c, the resulting ponderomotive deflection angle can for γ � 1 and

a0 � γ0 be written as

θpond =
dp
dt
· ∆t

p‖
' |∇γ| · Lint

γ0
. (5.54)

Inserting (5.53) and (5.54) into (5.51) yields the condition

γ2θ2
pond

1 + a2
0/ 2

=
L2

int

1 + a2
0/ 2

(
|∇a2

0(r)|
4γ0

)2

� 2ρ . (5.55)

When supposing a0 ⊥ β0, an order of magnitude estimate can be made by setting the inten-

sity gradient ∇a2
0(r) ≈ δa2/w0, where w0 denotes the laser beam waist size.

In practical terms the conditions (5.50) and (5.55) mean that optical wiggler schemes with

a0 approaching or even exceeding unity require near perfect beams δa/a0 � ρ that are “flat

top” in transverse profile and rectangular in the temporal profile, which makes optical wiggler

FELs extremely demanding for technical realization and is one major reason optical wigglers have

not been built yet. This however is different for TWTS-FEL scenarios: In contrast to head-on

setups, the maximum interaction length is not anymore limited by the Rayleigh length, which

makes it possible to trade lower laser intensities for longer gain lengths and avoid nonlinearities

and ponderomotive effects. In the example of the XUV and X-ray TWTS-FEL scenarios in Ta-

ble 5.2 at a0 = 0.1, according to (5.50), the maximum relative variation of laser beam intensity

δI/I0,TWTS ' 2(δa/a0) only needs to be smaller than 58% and 4% respectively, which is clearly

within the capabilities of existing laser technology. The corresponding restrictions arising from

(5.55) are even weaker: smaller than 111% for the XUV and smaller than 72% for the X-ray sce-

nario. Therefore one of the advantages of a potential TWTS-FEL is that it is much less of an optical

wiggler, rather than an optical undulator. Also on the experimental side, the TWTS mechanism

(Fig. 5.4) has the advantage that the electrons are stationary with respect to the temporal enve-

lope of the beam and thus remain in the laser beam center where less intensity variation occurs,

so that intensity variations mainly originate from the transverse laser profile, which is easier to

modify in a laser system.

Requirements on electron beams

In order to remain within the FEL resonance, there are two main conditions on the electron beam.

First the energy spread has to be
σγ
γ0
� ρ , (5.56)

which is equivalent to ∆λsc/ λr � 2ρ. Then according to (5.2), the off-axis Doppler effect ∆λsc/ λr ∝
γ2

0θ
2 has a similar effect than an energy spread and leads to a constraint on the normalized trans-

verse emittance

γ2
0θ

2 � 2ρ(
εn
σb

)2

� 2ρ , (5.57)
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where σb denotes the RMS beam diameter. An alternative notation of (5.57)

εn �
4ρβphγ0λr

λ0
(1− β0 cosφ) (5.58)

includes the so called β-parameter βph = γ · σ2
b / εn, as defined in accelerator physics [36], where

it parameterizes the phase space ellipse of an electron beam.

However for side-scattering the angle φ in (5.2) becomes also relevant, because electrons

propagating off-axis in a direction ∆φ have also a different laser incidence angle φ + ∆φ. Hence

the condition for a central side-scattering angle φ0 � 1/ γ0 is

∆λsc

λr
=

∣∣∣∣ β0 sinφ0

1− β0 cosφ0

∣∣∣∣ ·∆φ� 2ρ . (5.59)

After identifying ∆φ with the divergence from transverse emittance ∆φ = εn,trans/ (γ0σb), in-

serting (5.36) for ρ and approximating for small angles (5.59) becomes an additional transverse

emittance constraint

εn,trans �

(
Ip
IA

(
λ0a0

2
√

2πσb

)2
)1/ 3

σb(1− β0 cosφ)1/ 3

β0 sinφ

φ�1∝ φ−1/ 3σ1/ 3
b , (5.60)

which in practice is far more strict than (5.57). Additionally, the condition only scales weakly

in φ, such there is no big difference between the emittance requirement of the 1 Å and 13 nm
TWTS-FEL example of Table 5.2, which are 0.19π mm mrad and 0.25π mm mrad respectively.

For incoherent TWTS, where much larger angles φ are being used, this is much less an issue.

Here it is useful to examine (5.59) for the condition that its broadening contribution becomes

negligible

γ2
0∆φ ·∆φ� (∆ωsc/ωsc)

⇒
∣∣∣∣ sinφ0

1− β0 cosφ0

∣∣∣∣� γ2
0∆φ , (5.61)

when compared to (5.57). It is thus clear that the side-scattering term only can be neglected for

γ0
εn
σb
� 1. From (5.61) it follows that there exists a minimum scattering angle

φmin = arccos

(
(γ0εn/ σb)2 − 1
(γ0εn/ σb)2 + 1

)
, (5.62)

which has to be exceeded, before the contribution of wavelength spread from (5.59) becomes

smaller than (5.57). For most practical cases (5.62) is small compared to the large interaction

angles. For example the LWFA-driven TWTS Thomson source in Table 5.1 features a φmin of 8.4°,
which is much smaller than the targeted 120°. In principle it is also possible to exploit this limit

for TWTS-FEL, but note that according to (5.39) the Pierce parameter ρ becomes smaller towards

larger angles φ.
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5.8 OUTLOOK ON TRAVELING-WAVE THOMSON SCATTERING

Since a short Rayleigh length is a limiting factor to many light-matter interactions, the basic idea

and the tools provided here in the scope of efficient Thomson scattering can be applied to a large

range of experiments and applications.

The pulse front tilt in combination with the line focus provides a small interaction volume of the

size of the laser focus which, depending on the tilting angle, moves with velocities comparable

to the speed of light. Therefore, if the interacting matter or some generic excitation mode moves

with the same speed, the result is an effective interaction length, which can be much longer than

the Rayleigh length. Consequently, this scheme is interesting not only for relativistic, charged

beams, which can be made up of electrons, protons, ions, positrons or ionized clusters, but can

be also be extended towards light-matter interactions that take place in gases, solids, liquids or

plasmas. This broad applicability is motivated in the following by two examples.

Phase-matching in nonlinear light-matter interactions

In general, TWTS could be used in nonlinear light-matter interactions to improve conversion ef-

ficiencies. Hereby frequency conversion through sum-frequency or second harmonic generation

such as in KDP (Potassium Dihydrogen Phosphate) crystals is a well known and prominent ex-

ample, where the total energy efficiency for the frequency upconversion is largely determined by

the degree of phase-matching [37] between the interacting modes. In order to achieve phase-

matching between ordinary and extraordinary beams in type-II second-harmonic generation pro-

cesses, non-collinear geometries are widely used. However, this usually comes at the cost of

having only a limited overlapping region. This can be circumvented by a traveling-wave interac-

tion scheme as shown in Fig. 5.14. When compared to other techniques such as quasi phase-

matching techniques [37], where the nonlinear properties of a medium are spatially modulated,

for example through periodic poling, to achieve a net phase-matching effect over longer distances,

this technique has the main advantage of being independent of the crystal material. Quasi-phase

matched crystals have to be manufactured for a specific process and can not be realized for all

crystal materials. Also, parasitic higher-order processes can generate light at additional wave-

lengths, which can be disturbing in various ways. Hence, for many applications it could be easier

and cheaper to utilize a traveling-wave setup with VLS gratings and a homogeneous nonlinear

crystal without microstructure. Since it is easier to manufacture homogeneous large aperture

nonlinear crystals of considerable thicknesses, this technique is in principle also useful for high-

power applications. Also, the flexibility provided by the line focus and the dispersion correction

through VLS gratings, makes it possible to break the symmetry in angle φ of the two beams

with respect to the focal line and account for some additional energy walk-off angle within the

nonlinear medium.

As an example there is High Harmonics Generation (HHG) in gases [38, 39]. Here especially

for higher order harmonics, phase matching between the laser pulse driving the process and

the resulting emitted light is one of the grand challenges [40] for increasing photon fluxes. In

general the gas is a mixture of ionized and non-ionized atoms at a certain gas pressure. The
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Figure 5.14: The nonlinear medium is aligned with the line focus and two counterpropagating,
pulse-front tilted laser pulses k1,laser and k2,laser at angle φ and −φ overlap within the nonlinear
medium. The angle φ is chosen according to the nonlinear medium to satisfy the phase matching
condition (5.63) to allow for sum-frequency generation k1,laser + k2,laser = k3,HH. The advantage
of this approach is that it enables angle-based phase matching over long propagation lengths in
the nonlinear material without loss of overlap. Since direction and velocity of the laser pulse
envelopes along the region of interaction can be controlled independently of the two laser beam
k -vectors, it is thus possible to arrange the laser beams such that their main pulse energy follows
the energy flow (Poynting vector ) of the radiation generated in the nonlinear material. Hence, this
has the effect of eliminating energy walk-off.

differences in phase velocities between laser and HHG radiation lead to phase mismatch. Espe-

cially a high degree of ionization, leads to laser phase velocities greater than the speed of light

and dominates other dispersive contributions to laser and the HHG. A novel approach to achieve

full phase matching could be two TWTS-type laser-beams focused along the line of interaction

as in Fig. 5.14, one at some angle φ and the other one at an angle −φ. The superposition of

both beams then leads to a wave propagating along the focus with a longer phase velocity and a

standing wave pattern in the transversal direction. A particular choice of angle φ, can reduce the

enough to fully compensate for the phase dispersion

cosφ · qklaser − kq = 0 , (5.63)

where kq denotes the wavenumber of the qth radiated harmonic. For a plasma with an electron

density of ∼ 1019 cm−3 and a 1 µm laser, the angle would be about 5°. This design of phase

matching works without a waveguide in a long gas jet geometry, so the laser is for most of its

time propagating outside of the gas, which make it much less prone to propagation effects, such

as density and intensity induced defocusing or frequency shifts. Since the focusing happens

perpendicular to the focal line, the Gouy phase shift is not contributing. This approach needs a

reasonably high electron density, such that the required angle φ is large enough to be realized in

some realistic experimental setup, but on the other hand the angle needs to be small enough to

allow for a sizable coherence length in the transverse direction, which is defined by the period of

the standing wave in transversal direction Ltrans = λ0/ sinφ. If this length becomes comparable

with the wavelength of the radiated harmonic, the periodic phase-structure has the same effect

as a refractive phase-grating and leads to diffraction of the higher harmonic to higher (diffraction)

orders into other angles, thus reducing intensity in the main direction (0th order).
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Electron cooling

Right after electron energy and bunch charge, transverse electron beam emittance is crucial to

many experiments in accelerator physics, but advances in smaller beam emittances have been

slow and mostly depend on better electron beam guns. Therefore it was proposed [41–43] to

improve emittances by a cooling process during circulation in a storage ring (Fig. 5.15). For cooling

it was proposed to use the electron recoil of Compton backscattering to decelerate all electrons

in the direction opposite their individual direction of propagation. By reacceleration by a RF-cell

the original electron energy is restored. However, as the reacceleration takes place in the mean

direction of propagation of the entire electron bunch, the transverse velocity components of the

individual electrons are not restored . The result is a decrease in divergence and hence transverse

emittance. The net effect of alternating Compton scattering and reacceleration over many round

trips in a storage ring is a cooling of the electron beam. The number of round trips nd required to

damp away an e1-fold of the initial electron energy E is according to [42] in practical units

nd =

(
∆Eγ

E

)−1

' 1.6× 105λ0[µm]Z0[mm]

EL[J]E[MeV]
=

5.0× 10−4λ0[µm]w2
0 [µm]

EL[J]E[MeV]
. (5.64)

For a laser with λ0 = 1 µm with EL = 1 J pulse energy and a Rayleigh length of 1 mm the

characteristic number of round trips for cooling is 1600. This formula is valid only for the linear

Compton regime, where transverse electron velocities are sub-relativistic a0 � 1.

Neglecting other sources of emittance growth, this process could in principle cool the beam

down to the limit, where the quantized nature of the Compton process with its photon recoil ~k

limits further cooling. The resulting lower limit in normalized transverse emittance [42]

εn,min =
3
10
λc

λ0
β?x,y =

3
10
λc

λ0
γ0
σ2

x,y

εn,0
(5.65)

could with λ0 = 1 µm and β?x,y = 1 cm be much lower εn,min = 7.3× 10−9 m than any known

electron source. Here β?x,y and λc = h/mc ' 2.43× 10−13 m denote the electron beta function

(also: depth of electron focus) in the x or y direction [36] at the laser interaction region and the

electron Compton wavelength respectively.

The energy spread on the other hand can grow due to the energy fluctuations of the scattered

photons, but is also damped in a storage ring. The scaling of the minimum energy spread at

equilibrium [42] (
σγ
γ

)
min

=

√
7
5
λc

λ0
γ0 (5.66)

is proportional to
√
γ and for moderate electron energies at 100 MeV the energy spread can be

already as high as 2.6 %.

Although the physics of the cooling process is straight forward and well-known, the techni-

cal realization of such an electron cooling concept is challenging and has not been realized yet.

Especially the average power requirements of the required laser system are demanding. Also

the energy spread issue prevents many interesting applications such as free-electron lasers that

require electron beams with both small emittance and small energy spread.
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Figure 5.15: An electron beam is circulating in a storage ring. A laser beam in a TWTS scatter-
ing geometry oscillates in a power enhancement cavity and requires TWTS-specific dispersive
elements inside the cavity. By Compton/Thomson scattering (1 → 2) the individual electrons are
decelerated opposite their direction of propagation. In the RF cavity, all electron are re-accelerated
(2 → 3) into the common forward direction. The result is a reduction in transverse momentum
of the individual electrons. Over many round trips, this leads to a cooling effect of the electrons
from reduction of transverse momenta.

This problem is analogous to efficient Thomson sources, where high photon yields are limited

by the requirement of non-relativistic intensities a0 � 1 and the Rayleigh limit Lint ≤ 2 · Z0.

Sufficiently low intensities and long interaction lengths are again achieved with ultrashort

lasers by using small interaction diameters and long interaction lengths, so it is possible to in-

crease EL and decrease w0 in (5.64) without approaching laser strengths a0 near unity. Scattering

at small angles φ becomes especially useful at a later stage of cooling, when the cooling process

has decreased emittance to a level where both the electron focus and the laser waist w0 can be

reduced. In (5.64) to (5.66) the effective laser wavelength becomes λ0 → λ0 · 2/ (1− β0 cosφ), so

in the limit of small angles φ� 1

nd =
E

(∆E)γ
'

5.0× 10−4λ0[µm]w2
0 [µm]

EL[J]E[MeV]
· 4
φ2 (5.67)

εn,min =
3
10
λc

λ0
β?x,y ·

φ2

4
(5.68)(

σγ
γ

)
min

=

√
7
5
λc

λ0
γ0 ·

φ

2
, (5.69)

the final limits on transverse emittance and energy spread are considerably decreased. One of

the main technical challenges in realizing a TWTS scenario inside a power enhancement cavity is

the reduction of intensity losses within the dispersive elements of TWTS.

In these examples it has become apparent, that the methods presented here in the framework

of traveling-wave Thomson scattering can go far beyond the originally intended goal and could

possibly open up interesting experiments and applications in other fields. The next major step

in developing the technology for these applications is to demonstrate TWTS-type laser beams in

experiment.
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6 CONCLUSIONS

In this work the use of laser wakefield accelerated electrons and optical undulators for brilliant

radiation sources was explored both in experiment and theory.

The ultrashort duration of laser-wakefield accelerated electron bunches, which is an essen-

tial requirement for brilliant X-ray sources was confirmed in an experiment at the ASTRA laser

(500 mJ,45 fs) at RAL for the first time in an experiment to be shorter than the laser pulse and

comparable to the plasma period. The duration of these laser-accelerated electron bunches was

determined by electro-optic measurements of coherent transition radiation to be 32 fs (FWHM)

at the best fit with an upper confidence limit at 38 fs. Due to this ultrashort bunch duration, these

low-emittance electron beams are attractive for use in table-top-scale undulators as a potential

driver of compact, synchrotron source or free-electron lasers (FEL). Such an application of laser-

accelerated electron beams as a synchrotron radiation source was then demonstrated in a first

proof-of-principle experiment at the JETI laser (430 mJ,85 fs) in Jena.

Theoretical investigations targeted the potential and scalability of optically driven X-ray sources

at keV and MeV photon energies from Thomson scattering at ultrashort electron bunches using

high-power lasers. For optimization, a general radiation code CLARA (CLassical RAdiation Code)

was created that in combination with a particle tracker takes into account all non-ideal effects

from overlap, phase-space, space-charge as well as ponderomotive effects. This code was conse-

quently used to optimize for high scattered photon fluxes from both low-intensity, high-repetition

and high-power, single shot laser systems. Hereby, high-power lasers in traditional, head-on

Thomson scattering geometries were found to have severe scaling limitations due to the finite

Rayleigh length, when aiming for small bandwidth and high-photon yields on a single shot basis.

As a consequence, an alternative Thomson scattering setup that entirely avoids the Rayleigh

length limitation became necessary and it was discovered that this is indeed possible by using

a line-focused, side-scattering geometry with tilted laser pulse fronts. This novel traveling-wave

Thomson scattering (TWTS) scheme was established from the fact that the laser pulse needs to

achieve the target beam properties only at time and position of the interactions with the electrons.

The payoff is that both small interaction diameters in the range of micrometers and interaction
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lengths up to meters become possible.

Towards experimental realization of such an approach using ultrashort laser pulses, it has been

shown that precompensation of higher-order dispersion is essential. Furthermore, it has been

shown in theory, that this becomes feasible with grating compressor designs that use varied-line

spacing (VLS) gratings, i.e. gratings with a chirp. An extension of the Kostenbauder formalism

to higher orders has been provided to analytically calculate and numerically optimize the required

VLS spacing functions. The scope of this new technique is not restricted to Thomson sources

only – instead it is a general, non-Rayleigh limited scheme for interactions with targets moving

close to the speed of light.

For incoherent Thomson sources this novel approach can potentially increase photon yields

per shot by several orders of magnitudes. Especially ultrashort, high-power laser systems that

are being built in the coming years benefit from the new technique. Furthermore, the additional

flexibility through the interaction angle in the TWTS geometry leads to tunability of the scattered

photon energy even for electron beams with no adjustability in energy.

Coherent X-ray sources could become possible. Since, interaction lengths with at the same

time small diameters can be so long, such that the radiation field amplitude becomes large

enough to significantly act back onto the electrons, the regime of optically driven SASE-FELs

seems attainable – even for sub-relativistic laser field strengths a0 � 1.

In summary, this work has shown that ultrashort, high-power lasers can provide both, sources

of ultrashort electron bunches and optical undulators that are truly scalable in length. Laser-

accelerated electrons can be combined with magnetic undulators and conventional electron

beams go together with optical undulators. Ultimately however, this provides a foundation for

a compact, all-optical radiation source that integrates both a laser-wakefield accelerator and an

optical undulator for hard X-rays of high brilliance.

On the medium time scale of a decade, ultrashort, monochromatic and intense, hard X-ray

beams of a small source size from novel radiation sources, such as incoherent undulator and

Thomson radiation by LWFA, table-top FELs or optical FELs, have a broad applicability with regard

to structure analysis [1, 2], pump probe experiments [3, 4] and imaging [5, 6]. Such advanced

radiation sources are of special interest to life science, material sciences, medicine and semi-

conductor industries.

The idea of a quantum FEL (QFEL) [7, 8], however, is more of a long shot that drives basic

research. It relies on the classical FEL resonance ρmc2 becoming more narrow in energy than

the resulting photon energy ~ωr . As a result quantum effects become relevant and allow only one

energy transition. This leads to each electron emitting a single photon at the same energy, so the

resulting spectrum consists of a single line, whose width is Fourier limited (∆ω/ωr) = λr /Lbunch.

In contrast to a classical SASE-FEL, where the beam consists of many different frequency modes

around the resonant frequency, a QFEL contains a single mode and thus is truly coherent in time.

There are daunting requirements with regard to both undulators – magnetic undulators would

need to be km long – and electron bunches, which require relative energy spreads below 10−4.

Here, TWTS could provide compact optical undulators with long interaction lengths and be a

driver for electron cooling technology to improve electron beam parameters.
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Likewise on a longer term perspective, brilliant, hard X-ray beams could be even used to probe

the vacuum, when perturbed by intense counter-propagating laser beams on the petawatt scale

and above [9]. Quantum electrodynamics predicts that the QED vacuum dressed by an intense

field becomes birefringent and thus introduces a small ellipticity in the polarization of an X-ray

beam passing this region. Using a sufficiently intense X-ray pulse from Thomson scattering, this

change could be measured.

Since its discovery [10] fifty years ago, lasers have become an indispensable tool for science

and engineering. Numerous applications ranging from fundamental science, over medicine to

entertainment have emerged and now permeate everyday life. In the last decade, an amazing

drive in laser technology towards higher intensities has given access to the field of relativistic

optics, where the laser light has become intense enough to accelerate particles to relativistic

energies. Now, the vision is to realize table-top accelerator technology using lasers and make it

available to scientists and engineers across all fields. Since brilliant electron and X-ray beams are

both window and scalpel on the spatial and temporal scale of atoms and molecules, applications

for these “dream beams” extend from the life sciences to semi-conductor industry. One can only

guess what the advances of the next five decades will be, but most certainly lasers are continuing

to surprise and their future is bright.
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A RAY-TRACING OF VLS GRATINGS

The Kostenbauder formalism [1–4] is a first order theory for arbitrary optical systems using matri-

ces to describe the mapping of input to output rays and thus the beam characteristics. All rays are

denoted relative to a central ray as position, angle, time and frequency deviations xin, θin, ∆tin, ∆ν.

An optical system, which can be optical elements like mirrors or gratings, empty space or com-

prise an entire optics arrangement, is formally parameterized by an input and output plane that

are connected by a mapping between the rays entering at the input plane and the rays exiting at

the output plane. These planes can in principle be chosen arbitrarily for analytical convenience,

do not need to be parallel to one another and can also intersect. This approach is especially

useful when the aforementioned mapping constitutes a linear transform, which makes it straight-

forward to chain several optics elements one after another to form a combined optical system

that is again described by a linear mapping of ray coordinates. From a practical point of view, the

Kostenbauder formalism is useful for quickly extending calculations to optical setups consisting of

many different optical elements. From a theoretical point of view the formalism is at the intersec-

tion between geometrical optics and wave optics, since the matrices considered here describe

geometrical optics, but can also be used as a point-to-point eikonal in a integral formulation of Fer-

mat’s principle, such as the Kirchhoff integral [1, 5], to extend to a wave-optics description. This

derivation shows how this Kostenbauder formalism can be extended to include VLS-gratings.

In general a Kostenbauder matrix

xout

θout

∆tout

∆ν


=



∂xout
∂xin

∂xout
∂θin

0 ∂xout
∂∆ν

∂θout
∂xin

∂θout
∂θin

0 ∂θout
∂∆ν

∂∆tout
∂xin

∂∆tout
∂θin

1 ∂∆tout
∂∆ν

0 0 0 1


︸ ︷︷ ︸

M

·



xin

θin

∆tin

∆ν


(A.1)
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M =



A B 0 E

C D 0 F

G H 1 I

0 0 0 1


=



spatial magn. offset by angle 0 SD

focus angular magn. 0 AD

pulse front tilt time-angle 1 GDD

0 0 0 1


(A.2)

consists of constant first order derivatives, which is a valid assumption for small changes in the

ray coordinates. For plane waves the matrix elements of M have direct physical meanings, such

as spatial magnification for element A or group delay dispersion (GDD) for element I. The zero

elements arise from assuming stationary (i.e. time-invariant) optical elements without frequency

conversion. Furthermore, it can be shown [1], that in a first-order theory only six matrix elements

are independent of each other. Therefore there exist three additional relations

AD − BC = 1

BF − ED = λ0H (A.3)

AF − EC = λ0G

between the nine non-zero elements. Other dispersion phenomena, such as the pulse front tilt

(PFT) directly depend on these six dispersion quantities, so that in this framework the pulse front

tilt by angular dispersion is defined as

PFT ≡ c
∂∆t
∂xin

∂xin

∂xout

=
cG
A

=
c(AF − EC)

λ0A

=
cF
λ0

, for C=0 in collimated beams , (A.4)

where the last relation in (A.3) is used.

In the following it is shown how this formalism has to be extended for VLS gratings, where

the spatial variation in the grating period leads to non-negligible higher order terms in the ray

coordinate xin.

For a general, planar VLS grating it is necessary to derive the behavior of spatially displaced

rays and include the position dependency in all other relations involving the grating constant. As

shown in Fig. A.1 the ray displaced by a distance xin hits the VLS grating at the grating surface

coordinate s = AB = −xin/ cosψin, which determines a diffraction angle ψout(xin) different from

the central ray outgoing angle ψout,0. The two reference planes represent the wavefront of the

incoming and outgoing beam. All changes to the ray characteristics have to be considered relative

to the central ray and its reference planes. Thus the resulting spatial displacement with respect

to the central ray is the distance AC and the temporal delay is the difference (DB−BC)/c. Using

Fig. A.1 one finds for the angles α = ψout,0, β = π/ 2− ψout(xin) and γ = π/ 2− (ψout,0 − ψout(xin)).
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Figure A.1: Two rays (red), spatially displaced by xin = −s · cosψin, are incident on a varied-line
spacing (VLS) grating (green). Due to the varying line spacing of the grating the ray incident at B

is deflected at a different angle Ψout(xin) than at A.

After applying the law of sines, one arrives at

A(xin) · xin = AC = − cosψout(xin)

cos(ψout,0 − ψout(xin))
· xin

cosψin
(A.5)

G(xin) · xin = (DB−BC)/c =
sinψout,0

cos(ψout,0 − ψout(xin))
· xin

c · cosψin
. (A.6)

In contrast to uniformly spaced grating, VLS gratings have focusing properties because the

outgoing angle ψout changes with the incident position on the grating surface, hence

C(xin) · xin = ψout,0 − ψout(xin). (A.7)

The angular magnification D(xin) = ∂θout/ ∂θin and the angular dispersion F(xin) = ∂θout/ ∂∆νin

are both derivatives of the grating equation.

D(xin) = −∂ψout(xin)

∂ψin
(A.8)

AD(xin) = F(xin) = −∂ψout(xin)

∂ν
(A.9)

As in the linear case [1], the matrix elements B,E, H and I are zero, because rays reflect at the

grating surface without time delay or spatial displacement. The remaining matrix elements can

be obtained by substituting the custom grating spacing function

d(s) = d0 + agλ0s + bgλ0s2 , (A.10)

which is chosen to be a second order polynomial into the grating equation

ψout(xin) = arcsin(c/ (ν · d(xin/ cosψin)) + sinψin) , (A.11)

and by inserting the result into eqs. (A.5) to (A.9).
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Finally, all matrix elements are expanded to the first order in a Taylor series around xin = 0, so

one arrives at:

A(xin) = − cosψout/ cosψin

+ agxin tanψout · (tanψin − sinψout/ cosψin)2

C(xin) = −ag
(sin(ψin)− sin(ψout))

2

cos(ψin) cos(ψout)

+ xin
(
4bg + 4bg cos(2ψout) + 8a2

g sin(ψin)− a2
g sin(2ψin − ψout)

−7a2
g sinψout − a2

g sin(3ψout) + a2
g sin(2ψin + ψout)

)
· (tanψin − sinψout/ cosψin)2/ (8 cos3 ψout)

D(xin) = − cosψin/ cosψout − agxin(cos2 ψout sinψin + cos2 ψin sinψout)

· (tanψin − sinψout/ cosψin)2/ cos3 ψout

F(xin) = (λ0/c(tanψout − sinψin/ cosψout))

− agxinλ0/c(sinψin − sinψout)
2

· (sinψin sinψout − 1)/ (cosψin cos3 ψout)

G(xin) = (− sinψout/ cosψin + tanψin)/c (A.12)

The Taylor-expansion is justified on practical grounds, because the grating chirps are in most

cases gradual and of non-oscillatory nature. As a result the matrix becomes a nonlinear vector

function

vout = OVLS(vin) , (A.13)

which operates on input ray vectors vin = (xin , θin , ∆tin , ∆ν). Because the nonlinearity of OVLS

exists only in the spatial displacement coordinate xin, it remains linear in the other coordinates.

Thus locally, the structure of the new operator still corresponds to a Kostenbauder matrix as in

eq. (A.1),

xout(xin, θin, ∆ν) = A(xin) · xin + B(xin) · θin + E(xin) ·∆ν

θout(xin, θin, ∆ν) = C(xin) · xin + D(xin) · θin + F(xin) ·∆ν

∆tout(xin, θin, ∆tin, ∆ν) = G(xin) · xin + H(xin) · θin

+ ∆tin + I(xin) ·∆ν

∆ν = ∆νin = ∆νout

here: B(xin) = E(xin) = H(xin) = I(xin) = 0 . (A.14)

In the limit of uniform gratings, i.e. ag and bg → 0, (A.14) assumes as expected the usual form
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of a Kostenbauder matrix for a standard grating

Mg =



− cosψout
cosψin

0 0 0

0 − cosψin
cosψout

0 λ0(sinψout−sinψin)
c cosψout

sinψin−sinψout
c cosψin

0 1 0

0 0 0 1


. (A.15)

For the optical setup of chapter 5, in which a laser from an arbitrary stretcher-compressor

system reflects off a VLS grating and propagates further to the interaction zone, the operators

have to be successively applied to the input rays

vout = Mp(AB) ·OVLS(ψin,ψout, bg) (Mgen(SD, GDD)·vin) , (A.16)

where the second factor in (A.16) denotes the nonlinear part of the system that operates on non-

delayed, collimated input rays vin = (xin, θin = 0, ∆tin = 0, ∆ν). The matrix Mgen represents the

first order or the Kostenbauder matrix for a generic stretcher-compressor system, as depicted by

Fig. 5.8, that introduces a defined group delay dispersion (GDD) and spatial dispersion (SD).

Mgen(SD, GDD) =



1 0 0 SD

0 1 0 0

0 −SD 1 GDD

0 0 0 1


(A.17)

The Kostenbauder matrix for free space propagation Mp(L) is denoted by

Mp(L) =



1 L 0 0

0 1 0 0

0 0 1 0

0 0 0 1


. (A.18)

Note, that in general the combined operator expression of (A.16) does not solely depend on

the input displacement xin, but rather all input ray coordinates. Thus for a collimated input beam

(∆xin, 0, 0, ∆ν) the output beam components (xout(xin, ∆ν) , θout(xin, ∆ν) , ∆tout(xin, ∆ν) , ∆ν) in

this example denote higher order polynomials in xin and ∆ν, with the coefficients being functions

of the setup parameters, such as the distances, angles and grating chirps.

When designing optical systems using VLS gratings, it is useful to reduce the complexity of

the grating function, such that at a given order it modifies only one matrix element. According
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to (A.12) the lowest order is exclusively affected by a linear chirp ag that modifies the focusing

element

C(xin) = −ag
(sin(ψin)− sin(ψout))

2

cos(ψin) cos(ψout)
+O(xin) . (A.19)

The corresponding effective focusing distance feff can be derived, by calculating in first order the

distance a ray requires to propagate to the beam center.

(C0 · feff + A0) · xin = 0

⇒ feff =
− cos2 ψout

ag(sinψin − sinψout)2 (A.20)

However, ag has to remain zero, since focusing the beam is not the goal in this work. Instead, the

lowest order behavior of a quadratic grating chirp bg becomes important. Of all matrix elements,

only

C(xin) = xin (4bg + 4bg cos(2ψout)) ·
(tanψin − sinψout/ cosψin)2

8 cos3 ψout︸ ︷︷ ︸
C1

+O(x2
in) (A.21)

is modified, such that it is proportional to xin. In chapter 5, that property is exploited in spatially

chirped beams to introduce an additional angular dispersion, that varies linearly across the beam

diameter. According to (A.1) and (A.17), the angular dispersion of (A.16) yields

Fgen+VLS = 1 · FVLS + Egen · CVLS + 0 · DVLS (A.22)

⇒ AD(xin) = AD0 + SD0 C1︸ ︷︷ ︸
AD1=const.

·xin , (A.23)

for quadratic line spacing gratings as in (A.10). Accordingly, if such a beam propagates over a

distance ∆L, this leads to the desired linear variation of spatial dispersion

SD(xin) = SD0 + ∆L · (AD0 + AD1xin) (A.24)

across the laser beam diameter.
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(2004) , pp. 1, 2, 42, and 56.

[50] C. G. R. Geddes, C. Toth, J. Van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter,

J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator

using plasma-channel guiding,” Nature 431, 538 (2004) , pp. 1, 2, and 42.

[51] J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy,

and V. Malka, “A laser-plasma accelerator producing monoenergetic electron beams,” Nature

431, 541 (2004) , pp. 1, 2, and 42.

[52] W. Lu, C. Huang, M. Zhou, M. Tzoufras, F. S. Tsung, W. B. Mori, and T. Katsouleas, “A non-

linear theory for multidimensional relativistic plasma wave wakefields,” Physics of Plasmas

13, 056709 (2006) , pp. 3, 42, 44, 45, and 47.

[53] John Dawson, “Particle simulation of plasmas,” Reviews of Modern Physics 55, 403–447

(Apr. 1983) , p. 42.

[54] M. Geissler, J. Schreiber, and J. Meyer-ter Vehn, “Bubble acceleration of electrons with few-

cycle laser pulses,” New Journal of Physics 8, 186 (2006) , pp. 3, 42, 45, 47, and 65.

[55] R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S. Deng, S. Lee,

T. Katsouleas, and J. C. Adam, “OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell

Code for Modeling Plasma Based Accelerators,” Lecture Notes in Computer Science 2331,

342–351 (2002) , p. 42.

[56] C. Nieter, “VORPAL: a versatile plasma simulation code,” Journal of Computational Physics

196, 448–473 (May 2004) , p. 42.

[57] S. Gordienko and A. Pukhov, “Scalings for ultrarelativistic laser plasmas and quasimonoener-

getic electrons,” Physics of Plasmas 12, 043109 (2005) , p. 42.

[58] A. Pukhov and S. Gordienko, “Bubble regime of wake field acceleration: similarity theory

and optimal scalings..” Philosophical transactions. Series A, Mathematical, physical, and en-

gineering sciences 364, 623–33 (2006) , pp. 3 and 42.

[59] B. Hidding, K.-U. Amthor, B. Liesfeld, H. Schwoerer, S. Karsch, M. Geissler, L. Veisz,

K. Schmid, J. Gallacher, S. Jamison, D. Jaroszynski, G. Pretzler, and R. Sauerbrey, “Gen-

eration of Quasimonoenergetic Electron Bunches with 80-fs Laser Pulses,” Phys. Rev. Lett.

96, 3–6 (Mar. 2006) , pp. 44 and 72.

Bibliography for Chapter 2 153



[60] W. Lu, M. Tzoufras, C. Joshi, F. Tsung, W. Mori, J. Vieira, R. Fonseca, and L. Silva, “Gen-

erating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D

nonlinear regime,” Physical Review Special Topics – Accelerators and Beams 10, 1–12 (Jun.

2007) , pp. 44 and 45.

[61] A. Pukhov, S. Gordienko, S. Kiselev, and I. Kostyukov, “The bubble regime of laser-plasma

acceleration: monoenergetic electrons and the scalability,” Plasma Physics and Controlled

Fusion 46 (2004) , p. 45.

[62] Francis F. Chen, Klassische Mechanik, 11th ed. (AULA-Verlag Wiesbaden, 1991) , p. 46.

[63] Jorge v. José and Eugene J. Saletan, Classical Dynamics – A Contemporary Approach (Cam-

bridge University Press, 1998) , p. 46.

[64] W. Leemans, E. Esarey, C. Geddes, C. Schroeder, and C. Tóth, “GeV electron beams from a

centimetre-scale accelerator,” Nature Physics 2, 696–699 (2006) , pp. 1, 3, 46, 77, 79, 106,

and 124.

[65] A. Debus, Guiding a high-energy laser beam through a plasma channel, Master’s thesis,

University of Texas at Austin (Dec. 2004) , pp. 46 and 106.

[66] H. M. Milchberg, K. Y. Kim, V. Kumarappan, B. D. Layer, and H. Sheng, “Clustered gases as

a medium for efficient plasma waveguide generation,” Philosophical transactions. Series A,

Mathematical, physical, and engineering sciences 364, 647–61 (2006) , pp. 46 and 106.

[67] S. Karsch, J. Osterhoff, A. Popp, T. P. Rowlands-Rees, Zs. Major, M. Fuchs, B. Marx, R. Hör-

lein, K. Schmid, L. Veisz, S. Becker, U. Schramm, B. Hidding, G. Pretzler, D. Habs, F. Grüner,

F. Krausz, and S. M. Hooker, “GeV-scale electron acceleration in a gas-filled capillary dis-

charge waveguide,” New Journal of Physics 9, 415 (2007) , pp. 1, 46, and 126.

[68] J. Osterhoff, A. Popp, Zs. Major, B. Marx, T. P. Rowlands-Rees, M. Fuchs, M. Geissler, R. Hör-

lein, B. Hidding, S. Becker, E. A. Peralta, U. Schramm, F. Grüner, D. Habs, F. Krausz, S. M.

Hooker, and S. Karsch, “Generation of Stable, Low-Divergence Electron Beams by Laser-

Wakefield Accelerationin a Steady-State-Flow Gas Cell,” Phys. Rev. Lett. 101, 085002 (2008)

, pp. 1, 46, and 126.

[69] J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, “Controlled injection and

acceleration of electrons in plasma wakefields by colliding laser pulses,” Nature 444, 737–9

(Dec. 2006) , pp. 2 and 47.

[70] C. Geddes, K. Nakamura, G. Plateau, Cs. Toth, E. Cormier-Michel, E. Esarey, C. Schroeder,

J. Cary, and W. Leemans, “Plasma-Density-Gradient Injection of Low Absolute-Momentum-

Spread Electron Bunches,” Phys. Rev. Lett. 100, 1–4 (May 2008) , p. 47.

[71] R. M. G. M. Trines, R. Bingham, Z. Najmudin, S. Mangles, L. O. Silva, R. Fonseca, and

P. A. Norreys, “Electron trapping and acceleration on a downward density ramp: a two-stage

approach,” New Journal of Physics 12, 045027 (Apr. 2010) , p. 47.

[72] A. Irman, M. J. H. Luttikhof, A. G. Khachatryan, F. A. van Goor, J. W. J. Verschuur, H. M. J.

Bastiaens, and K.-J. Boller, “Design and simulation of laser wakefield acceleration with ex-

ternal electron bunch injection in front of the laser pulse,” Journal of Applied Physics 102,

024513 (2007) , pp. 2 and 47.

154 Bibliography for Chapter 2

http://dx.doi.org/10.1098/rsta.2005.1729
http://dx.doi.org/10.1098/rsta.2005.1729
http://dx.doi.org/10.1038/nature05393
http://dx.doi.org/10.1063/1.2759878


[73] W. van Dijk, M. J. van Der Wiel, and G. J. H. Brussaard, “Electron bunch compression using

a laser-plasma compressor,” Physical Review Special Topics – Accelerators and Beams 12,

1–12 (Nov. 2009) , p. 47.

BIBLIOGRAPHY FOR CHAPTER 3

[1] J. van Tilborg, C. B. Schroeder, C. V. Filip, Cs. Tóth, C. G. R. Geddes, G. Fubiani, R. Huber,

R. A. Kaindl, E. Esarey, and W. P. Leemans, “Temporal Characterization of Femtosecond

Laser-Plasma-Accelerated Electron Bunches Using Terahertz Radiation,” Phys. Rev. Lett. 96,

014801 (2006) , pp. 49 and 56.

[2] T. Ohkubo, A. Maekawa, R. Tsujii, T. Hosokai, K. Kinoshita, K. Kobayashi, M. Uesaka, A. Zhid-

kov, K. Nemoto, Y. Kondo, and Y. Shibata, “Temporal characteristics of monoenergetic elec-

tron beams generated by the laser wakefield acceleration,” Phys. Rev. Spec. Top. - Accel.

and Beams 10, 031301 (2007) , p. 49.

[3] M. Tzoufras, W. Lu, F. S. Tsung, C. Huang, W. B. Mori, T. Katsouleas, J. Vieira, R. A. Fonseca,

and L. O. Silva, “Beam Loading in the Nonlinear Regime of Plasma-Based Acceleration,”

Phys. Rev. Lett. 101, 145002 (2008) , pp. 50 and 65.

[4] I. Kostyukov and E. Nerush, “Electron Self-Injection in Multidimensional Relativistic-Plasma

Wake Fields,” Phys. Rev. Lett. 103, 1–4 (Oct. 2009) , p. 50.

[5] I. Kostyukov, E. Nerush, A. Pukhov, and V. Seredov, “A multidimensional theory for electron

trapping by a plasma wake generated in the bubble regime,” New Journal of Physics 12,

045009 (Apr. 2010) , p. 50.

[6] E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based elec-

tron accelerators,” Reviews of Modern Physics 81, 1229–1285 (2009) , pp. 1, 2, 3, 37, 40,

and 50.

[7] K. Phuoc, S. Corde, R. Shah, F. Albert, R. Fitour, J.-P. Rousseau, F. Burgy, B. Mercier, and

A. Rousse, “Imaging Electron Trajectories in a Laser-Wakefield Cavity Using Betatron X-Ray

Radiation,” Phys. Rev. Lett. 97, 1–4 (Nov. 2006) , p. 50.

[8] K. Németh, B. Shen, Y. Li, H. Shang, R. Crowell, K. Harkay, and J. Cary, “Laser-Driven Coher-

ent Betatron Oscillation in a Laser-Wakefield Cavity,” Phys. Rev. Lett. 100, 1–4 (Mar. 2008) ,

p. 50.

[9] M.L. Ter-Mikaelian, High-energy Electromagnetic Processes in Condensed Media (Tracts on

Physics & Astronomical) (John Wiley & Sons Inc, 1972) ISBN 0471851906, p. 468, p. 51.

[10] V.L. Ginzburg and I.M. Frank, “To the Theory of Transition Radiation,” Sov. Phys. JETP 16
(1946) , p. 51.

[11] I.M. Frank, “Transition radiation and optical properties of matter,” Soviet Physics Uspekhi 8,

729–742 (May 1966) , p. 51.

Bibliography for Chapter 3 155

http://dx.doi.org/10.1103/PhysRevSTAB.12.111302
http://dx.doi.org/10.1070/PU1966v008n05ABEH003034


[12] V.L. Ginzburg, “Transition radiation and transition scattering,” 16th International Cosmic Ray

Conference 14, 42–50 (1979) , p. 51.

[13] C. B. Schroeder, E. Esarey, J. Van Tilborg, and WP Leemans, “Theory of coherent transition

radiation generated at a plasma-vacuum interface,” Physical Review E 69, 16501–12 (2004) ,

pp. 51 and 68.

[14] J. van Tilborg, C. B. Schroeder, E. Esarey, and W. P. Leemans, “Pulse shape and spectrum

of coherent diffraction-limited transition radiation from electron beams,” Laser and Particle

Beams 22, 415–422 (2004) , pp. 52, 58, 65, and 68.

[15] Walter D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1999), pp. 11, 32,

53, and 80.

[16] S. Casalbuoni, B. Schmidt, and P. Schmüser, TESLA REPORT: Far-Infrared Transition and

Diffraction Radiation, Tech. Rep. 2005-15 (DESY Hamburg, 2005) , p. 53.

[17] G. Berden, S. Jamison, A. MacLeod, W. Gillespie, B. Redlich, and A. van Der Meer, “Electro-

Optic Technique with Improved Time Resolution for Real-Time, Nondestructive, Single-Shot

Measurements of Femtosecond Electron Bunch Profiles,” Phys. Rev. Lett. 93, 1–4 (Sep.

2004) , pp. 55, 56, and 57.

[18] Bernhard Schmidt, “Overview on diagnostics for X-and XUV-FEL,” in Proceedings of the 28th

International Free Electron Laser Conference (FEL 2006), Berlin, Germany (2006) p. 761 , p.

55.

[19] Sara Casalbuoni, H. Schlarb, B. Schmidt, B. Steffen, P. Schmuser, and A. Winter, TESLA

Report: Numerical Studies on the Electro-Optic Sampling of Relativistic Electron Bunches,

Tech. Rep. 2005-01 (DESY Hamburg, 2005) , pp. 55, 58, 62, 66, and 68.

[20] S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor,

E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B.

Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic

beams of relativistic electrons from intense laserŰplasma interactions,” Nature 431, 535
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