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Intention 

 

It is the purpose of these notes to present a short display of the physical issues and the main results 

presented in the lecture "Fundamentals of Ion-Surface Interaction". It is not meant to replace a 

textbook. For details, extended discussions and mathematical derivations, the reader is referred to the 

literature. 

 

 

 

Literature  

 
 
1. N.Bohr: The Penetration of Atomic Particles Through Matter (Kgl.Dan.Vid.Selsk.Mat. Fys.Medd. 

18,8(1948)) 
2. Gombas: Statistische Behandlung des Atoms in: Handbuch der Physik Bd. XXXVI (Springer, 

Berlin 1959) 
3. J.Lindhard et al.: Notes on Atomic Collisions I-III (Kgl.Dan.Vid.Selsk.Mat.Fys.Medd. 

36,10(1968), 33,14(1963), 33,10(1963)) 
4. U.Fano: Penetration of Protons, Alpha Particles, and Mesons (Ann.Rev.Nucl.Sci. 13(1963)1) 
5. G.Leibfried: Bestrahlungeffekte in Festkörpern (Teubner, Stuttgart 1965) 
6. G.Carter, J.S.Colligon: The Ion Bombardment of Solids (Heinemann, London 1968) 
7. I.M.Torrens: Interatomic Potentials (Academic Press, New York 1972) 
8. P.Sigmund, Rev.Roum.Phys. 17(1972)823&969&1079 
9. P.Sigmund in: Physics of Ionized Gases 1972, Hrsg. M.Kurepa (Inst. of Physics, Belgrade 1972) 
10. P.Sigmund, K.B.Winterbon, Nucl.Instrum.Meth. 119(1974)541 
11. H.Ryssel, I.Ruge: Ionenimplantation (Teubner, Stuttgart 1978) 
12. Y.H.Ohtsuki: Charged Beam Interaction with Solids (Taylor&Francis, London 1983) 
13. J.F.Ziegler (Hrsg.): The Stopping and Range of Ions in Solids (Pergamon Press, New York): 
 Vol.1: J.F.Ziegler, J.P.Biersack, U.Littmark: The Stopping and Range of Ions in Solids (1985) 

Vol.2: H.H.Andersen: Bibliography and Index of Experimental Range and Stopping Power 
Data (1977) 
Vol.3: H.H.Andersen, J.F.Ziegler: Hydrogen, Stopping Power and Ranges in All Elements 
(1977) 

 Vol.4: J.F.Ziegler: Helium, Stopping Power and Ranges in All Elements (1977) 
 Vol.5: J.F.Ziegler: Stopping Cross-Sections for Energetic Ions in All Elements (1980) 
 Vol.6: U.Littmark, J.F.Ziegler: Range Distributions for Energetic Ions in All Elements (1980) 
14. R.Behrisch (Hrsg.): Sputtering by Particle Bombardment, (Springer, Heidelberg): 
 Vol.1: Physical Sputtering of Single-Element Solids (1981) 
 Vol.2: Sputtering of Multicomponent Solids and Chemical Effects (1983) 
 Vol.3: Characteristics of Sputtered Particles, Technical Applications (1991) 
15. R.Kelly, M.F.da Silva (Hrsg.): Materials Modification by High-Fluence Ion Beams (Kluwer, 

Dordrecht 1989) 
16. W.Eckstein: Computer Simulation of Ion-Solid Interactions (Springer, Berlin 1991) 
17. W.Möller in: Vakuumbeschichtung 1, Hrsg. H.Frey (VDI-Verlag, Düsseldorf 1995) 
18. M.Nastasi, J.K.Hirvonen, J.W.Mayer: Ion-Solid Interactions: Fundamentals and Applications 

(Cambridge University Press 1996) 

19. J.F.Ziegler, The Stopping and Ranges of Ions in Matter ("SRIM-2000"), Computer software         

package. Can be downloaded via internet http://www.SRIM.org 

20. H.E.Schiøtt, Kgl.Dan.Vid.Selsk.Mat.Fys.Medd. 35,9(1966) 

21. K.Weissmann, P.Sigmund, Radiat.Effects 19(1973)7 

22. P.Sigmund and A.Gras-Marti, Nucl.Instrum.Meth. 182/183(1981)25 

 

 

 

Individual References 

 

Individual references are incomplete. An extended version is in preparation and will be made available 

in 2013. 

 

 

http://www.srim.org/


 3 

Contents 

 

Literature........................................................................................................................................ 2 

 

1. Binary Elastic Collisions in a Spherically Symmetric Potential................................................. 4 

 1.1 Kinematics.................................................................................................................. 6 

 1.2 Cross Section............................................................................................................... 6 

1.3 Example: Rutherford Scattering.................................................................................. 6 

1.4 Momentum Approximation........................................................................................ 7 

2. Atomic Potentials....................................................................................................................... 8 

2.1 Thomas-Fermi Statistical Model................................................................................... 8 

2.2 Exchange and Correlation............................................................................................ 9 

2.3 Other Screening Functions........................................................................................... 9 

3. Interatomic Potentials................................................................................................................. 10 

 3.1 Linear Superposition of Atomic Electron Densities.................................................... 10 

 3.2 Universal Approximation by Lindhard, Nielsen and Scharff (LNS).......................... 11 

3.3 Individual Scattering Cross Sections.......................................................................... 13 

4. Classical and Quantum-Mechanical Scattering.......................................................................... 14 

 4.1 The Bohr Criterion....................................................................................................... 14 

 4.2 Quantum-Mechanical Scattering Cross Section........................................................... 16 

5. Stopping of Ions........................................................................................................................... 17 

 5.1 Effective Charge............................................................................................................ 17 

 5.2 Electronic Stopping – High Velocity............................................................................ 18 

 5.3 Electronic Stopping – Low Velocity............................................................................. 22 

 5.4 Electronic Stopping – Empirical Concepts................................................................... 25 

 5.5 Nuclear Stopping........................................................................................................... 25 

 5.6 Stopping in Compound Materials.................................................................................. 27 

6. Energy Loss Fluctuations............................................................................................................ 28 

 6.1 Thickness Fluctuation.................................................................................................... 28 

 6.2 Charge State Fluctuation............................................................................................... 28 

 6.3 Energy Transfer Fluctuation......................................................................................... 29 

7. Multiple Scattering....................................................................................................................... 31 

8. Ion Ranges................................................................................................................................... 34 

9. The Collision Cascade................................................................................................................. 36 

10. Transport Equations Governing the Deposition of Particles and Energy................................. 38 

 10.1 Primary Distributions.................................................................................................. 38 

10.2 Distributions of Energy Deposition Including Collision Cascades............................ 43  

10.3 Cascade Energy Distribution...................................................................................... 44 

10.4 Spatial Cascade Energy Distribution.......................................................................... 46 

11. Binary Collision Approximation Computer Simulation of Ion and Energy Deposition........... 47 

12. Radiation Damage..................................................................................................................... 53  

12.1 Analytical Treatment.................................................................................................. 53 

12.2 TRIM Computer Simulation....................................................................................... 56 

13. Sputtering.................................................................................................................................. 57 

13.1 Analytical Treatment................................................................................................... 57 

13.2 TRIM Computer Simulation....................................................................................... 62 

14. Thermal Spikes.......................................................................................................................... 63 

15. High-Fluence Phenomena.......................................................................................................... 66 

 15.1 Dynamic Binary Collision Approximation Computer Simulation.............................. 66 

 15.2 Local Saturation.......................................................................................................... 67  

15.3 Sputter-Controlled Implantation Profiles.................................................................... 69  

15.4 Preferential Sputtering................................................................................................. 71 

15.5 Ion Mixing................................................................................................................... 74 

  

 

 

 



 4 

1. Binary Elastic Collisions in a Spherically Symmetric Potential  

 

1.1 Kinematics 

 

Both ion-atom and ion-electron collisions are treated as binary collisions. This sets a lower energy 

limit for the treatment of ion-atom collisions of 10...30 eV. Otherwise, many-body interactions would 

have to be taken onto account [16]. 

 

1 – projectile, 2 – target atom (at rest in laboratory frame) 

 

 

 

Fig. 1.1 

 

 

 

 

 

 

 

 

                   Laboratory System (LS)                                      Center-of-mass System (CMS) 

 

 

Transformation into CMS yields single-particle scattering kinematics 

 

for a spherically symmetric interaction potential V and with the reduced mass 

 

The energy in the CMS system, being available for the collision, is given by 

 

with E – projectile energy in LS. 

 

 

Momentum and energy conservation yield the transformations of the asymptotic scattering angles 

between CMS and LS for an elastic collision 

and the reverse transformation 

 

The energy transferred to the target atom ("recoil") (in LS) is given by 
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with the energy transfer factor 

 

 

 

From this, the LS projectile energy after the collision becomes 

  

or after transformation according to (1.4) 

 

 

Both (1.5) and (1.9) indicate the existence of a maximum scattering angle in LS 

 

For this case, both signs are valid in (1.9), so that two different energies correspond to any LS 

scattering angle below the maximum one. 

 

Trivially, the recoil energy is  

 

Kinematical curves from (1.9) and (1.11) are shown in Fig. 1.2 for different ions, indicating a 

maximum LS scattering angle of 90
0
 for the equal-mass case, and below for heavier projectiles.  
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1.2 Cross Section 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In cylindrical coordinates, the CMS trajectory is described by the distance R and the angle (see Fig. 

1.3)Energy and angular momentum conservation, and integration yield for the asymptotic scattering 

angle at a given impact parameter p the so-called "classical trajectory integral" 

  

with the minimum distance of approach given by 

 

The differential cross section is given by the differential area at p and the scattering into the 

differential solid angle around the scattering angle 

  

and can now be calculated from (1.12). 

 

From (1.4), the transformation into the laboratory system is accomplished according to  

 

 

 

 

1.3 Example: Rutherford Scattering 

 

For a Coulomb potential between two interacting charges Q1 and Q2 

Fig. 1.3: 
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(1.12) yields 

 

with the "collision diameter", i.e. the distance of minimum approach for ion-ion scattering at 180
0
 

 

From this, the Rutherford cross section becomes 

 

 

1.4 Momentum Approximation 

 

Due to the cylindrical symmetry of the scattering problem, large impact parameters and 

correspondingly small deflection angles occur largely preferentially. Therefore, it is often convenient 

to describe the scattering in a small-angle approximation. 

 

 

 

 

 

 

 

 

 

 

 

In the limit of forward scattering, the projectile trajectory is approximated by a straight line (see Fig. 

1.4). A force integral leads to a small transverse momentum py and thereby a small deflection angle 

 

 

(1.4) reads in small-angle approximation 

 

yielding directly (see (1.3)) the LS deflection which is independent on the mass of the target 
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2. Atomic Potentials 

 

For the ion – target atom interaction with a sufficiently large minimum distance Rmin, the interatomic 

potential V(R) is influenced by the presence of the electrons, so that a screened Coulomb potential has 

to be employed. Naturally, the development of proper interatomic potentials V(R) is closely related to 

the choice of the atomic potentials of the collision partners.  

 

The treatment of atomic potentials here will not cover quantum-mechanical calculations of the 

Hartree-Fock-Slater type, but be restricted to statistical models and analytical approximations for 

practical uses.  

 

 

2.1 Thomas-Fermi Statistical Model 

 

From simple quantum statistics in the free electron gas of density ne, the mean kinetic energy density 

(i.e. the mean kinetic energy per unit volume) results as 

 

 

with a0 = 0.053 nm denoting the radius of the first Bohr orbit. 

 

Treating the atom with atomic number Z as the nucleus and an assembly of local free electron gases, 

its electrostatic potential given by 

   

 

A calculus of variation of the total energy  

 

with respect to the electron density yields 

 

 

with an additive constant . Self-consistency is provided by the Poisson equation 

 

 

Combining (2.4) and (2.5) in spherical coordinates and writing the potential as a screened Coulomb 
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and the Thomas-Fermi equation 

 

Eq. (2.8) is solved numerically with the boundary conditions 

 

as the Coulomb potential holds at small distance to the nucleus, and due to the neutrality of the whole 

atom. 

 

The screening function is often approximated by a series of exponentials. The “Moliere” 

approximation to the TF function is valid for about x < 5: 

 

2.2 Exchange and Correlation 

 

Quantum-mechanical exchange and correlation have also been described within the framework of the 

statistical model, resulting in the following energy densities as function of  the electron density: 
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The most simple screening function is a pure exponential according to Bohr: 

 

 

Lindhard has given an approximative, so-called “standard” potential 
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Although the following “Universal” screening functions has been formulated for the interatomic 

potential (see 3.), it is included here for completeness: 

 

in this case with the screening distance 

 

 

 

 

 

 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Interatomic Potentials 
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Expressing the total energy (including Coulomb, kinetic, exchange and correlation terms according to 

sect. 2) as function of the distance R, and subtracting the total energies of the individual atoms yields 

the interaction potential 

 

 

 

 

Eq. (3.2) has to be solved numerically for all R, from which the scattering cross section can be 

obtained according to eqs. (2.12-2.14). This is clearly a lengthy procedure and has to be repeated for 
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For the derivation of a universal scattering cross section, LNS consider the limit of small scattering 

angles given by the momentum approximation (1.19), which is evaluated for a screened Coulomb 

potential yielding 

with b from eq. (1.17) and 

 

 

Further, a reduced energy is introduced according to 

 

 

so that 

 

represents the universal classical scattering integral in the small-angle approximation. In order to 

extrapolate this to wide angles, LNS substitute 

 

 

and introduce a reduced scattering angle by 

Therefore, 

 

becomes a universal scattering integral being valid for all angles. The inverse function of (3.11), 

p(t
1/2

), yields the differential cross section according to d = d(p
2
), which, according to LNS, is 

written as  

 

 

with f to be calculated numerically from g. f(t
1/2

) is defined in such a way that it becomes constant for 

a power law potential (see eq. (2.16)) with s = 2. Fig. 3.2 shows the scattering function f for different 

screening functions. 
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From (3.12) and the transformation to the CMS scattering angle, the differential cross section becomes 

 

 

The evaluation of f(t
1/2

)
 
 for the pure Coulomb potential yields 

 

which, inserted into (3.13) and in comparison with (1.18), confirms that the LNS small-angle 

approximation holds exactly for all scattering angles in the limit of Rutherford scattering. Fig. 3.2 

demonstrates that the scattering in the screened Coulomb potentials converges towards Rutherford 

scattering above t
1/2

  10. 

 

In order to test the validity of the LNS small-angle approximation, the classical trajectory integral 

(1.12) can be evaluated for different , from which individual f-functions can be calculated. Fig. 3.3 

shows that the error being introduced by the small angle approximation is rather small, except for very 

low energies. 
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LNS scattering function f as 

function of t for Thomas-Fermi 

screening (continuous solid line), 

exact scattering functions for 

individual  (solid lines), and 

several approximations (broken 

lines): Low-t approximation, 

Moliere approximation (M; eq. 

(2.10)), and Rutherford limit (R).  
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reduced scattering angle for 
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3.3 Individual Scattering Cross Sections 

 

As compared to the LNS universal approximation, more precise interatomic scattering cross sections 

can, e.g., be obtained by evaluating eq. (3.2) for an individual pair of atoms. The example of Fig. 3.4,   

shows examples for the scattering of energetic argon ions in xenon gas. The scattering cross section 

has been evaluated both for two Lenz-Jensen atoms (see eq.(2.13)) and for electron densities from 

Dirac-Hartree-Fock-Slater quantum-mechanical calculations. The results are compared to the LNS 

universal formula for the Thomas-Fermi and the Lenz-Jensen potentials, and to experimental results. 

The quantum-mechanical prediction reproduces the position of shell oscillations as function of the 

scattering parameter, but underestimates their amplitude considerably.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Classical and Quantum-Mechanical Scattering 

 

The interaction of fast ions with matter may occur via atomic collisions, or by direct interaction with 

the bound electrons or the interstitial electrons of a solid. For the former, the scattering in an 

interatomic potential has to be treated as described in sects. 2 and 3, whereas the interaction with 

individual electrons is governed by the Coulomb potential. So far, classical trajectories have been 

assumed. 

 

4.1 The Bohr Criterion 

 

The validity of the classical scattering problem (sect. 1) is limited by the principle of uncertainty. In 

the quantum-mechanical picture, the incident particle with reduced mass  in the CMS is represented 

by a plane wave with the wavelength   

 

 

with v denoting the ion velocity. (For a target at rest, the relative velocity in CMS is equal to the LS 

velocity). First considering the textbook example of slit interaction at a slit with width d, a classical 

trajectory calculation is feasible provided 

Fig. 3.4 

 

Scattering cross sections, 

normalized to the universal 

LNS formula for the Lenz-

Jensen (LJ) potential, versus 

the scattering parameter t. 

Experimental data for 

different ion energies and 

scattering angles are compared 

to the Thomas-Fermi (TF) 

universal LNS formula as well 

as to individual results for the 

superposition of two Lenz-

Jensen (2LJ) and two DHFS 

atoms (2DHFS).  
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i.e. at sufficiently high velocity of the incident particle. 

 

According to Bohr, a classical calculation can be performed provided the quantum-mechanical 

uncertainty of the scattering angle, , is small compared to the scattering angle itself: 

 

 

The uncertainty of the direction of a wave packet after scattering is composed from the uncertainty of 

the initial direction  and the impact parameter p (see Fig. 4.1). The uncertainty relation for the 

direction normal to the propagation reads 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with the uncertainty of the perpendicular momentum 

 

The uncertainty in p results in a partial uncertainty of . With independent contributions from the 

uncertainties in p and in q, the total uncertainty becomes  

 

 

Using the “=” sign in eq. (4.4) in order to calculate a minimum uncertainty, and minimizing ()
2
 as 

function of (p)
2
, the following condition for a classical trajectory calculation is obtained according to 

eq. (4.3): 

 

 

For a Coulomb potential, (4.7) can conveniently be evaluated for small scattering angles with  = b/p 

according to (1.17), resulting in 
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or the condition for the so-called  “Bohr Kappa” 

 

 

with v0 denoting the velocity of the first Bohr orbit. 

 

Eq. (4.8) demonstrates that the collision diameter b plays the role of the “slit” (see eq. (4.2)). 

However, as b ~ v
 –2

, the velocity dependence is just inverted: Classical trajectory calculations are 

feasible in the limit of low ion velocities. 

 

For the interaction of an ion with an electron, the Bohr criterion reads 

 

 

For the scattering in a screened Coulomb potential, or “nuclear” scattering, eq. (4.7) can, as an 

approximation, be evaluated for the Lindhard standard potential, eq. (2.15), in a small-angle 

approximation for distances large compared to a, resulting in 

 

 

that is, the Bohr criterion becomes dependent on the impact parameter. 

 

 

4.2 Quantum-Mechanical Scattering Cross Section 

 

In the quantum-mechanical picture, elastic ion scattering is described by the transition from an initial 

state |i> to a final state |f>, both being represented by the particle at which the scattering occurs, and a 

plane wave for the incident and outgoing ion. In first Born approximation, the differential cross 

section results as 

 

For elastic scattering, the scattering in a spherically symmetric potential results as 

 

 

For a screened Coulomb potential with a Bohr screening function (eq. (2.14)), (4.13) can be 

conveniently evaluated resulting in 

 

 

which reproduces the Rutherford cross section in the limit of high velocity. In contrast to the 

Rutherford cross section, (4.14) can be integrated to obtain a total cross section 
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as the second term in the denominator is negligible except for very low energies (around 1eV and 

less).  

 

The validity of the first Born approximation requires a total cross section which is small compared to 

the characteristic atomic dimension, i.e. ~ a
2
. Therefore, according to (4.15), the first Born 

approximation would become questionable for low velocities with  >> 1. Therefore, the quantum-

mechanical calculations are not feasible in this regime, and classical trajectory calculations are 

necessary. The Bohr criterion (4.9) delivers a unique limit between quantum-mechanical and classical 

calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

5. Stopping of Ions 

 

 

When travelling along a path s through matter, an ion will continuously loose energy due to the 

interaction with electrons and screened nuclei. The energy loss per unit pathlength is denoted as 

“stopping power”:  

 

Often, the stopping is normalised to the atomic density n of the substance, resulting in the “stopping 

cross section” 

 

where ns is the number of atoms per unit area for a traversed pathlength s. 

 

Although a correlation can be expected between the collisions with screened nuclei and the collisions 

with the electrons, as the local electron density depends on the impact parameter, “nuclear” or 

“elastic” interaction will be separated from the “electronic” or “inelastic” interaction in the following 

for simplicity. (It will turn out that the individual interactions are dominant in distinct ranges of 

energy, so that the approximation can be justified to some extent by the result.) Correspondingly, the 

total stopping is composed linearly from nuclear and electronic stopping: 

 

 

 

The stopping cross section can generally be written as 
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for an interaction with the differential cross section d and the energy transfer T. 

 

 

5.1 Effective Charge 

 

In addition to stopping, the electronic interaction of an ion passing through matter results in charge-

changing collisions, so that the actual charge state of a fast ion in matter is continuously fluctuating 

and determined by a balance between electron loss and electron attachment. The average charge of the 

ion, which depends on its velocity, is denoted as “effective” charge, Z1
eff

, and is quickly established 

(typically within some nm)  when an ion of arbitrary charge state impinges onto a solid surface. In the 

limit of very low energy, the ion becomes neutral with a vanishing effective charge, so that atomic 

electrons interact with the electrons of the solid. Towards high velocities, electron loss dominates, so 

that the ions becomes a naked nucleus with Z1
eff

 = Z1 at sufficiently high energy.  

 

More quantitatively, electron attachment is effective if the ion velocity is lower than the characteristic 

orbital velocity of its atomic electrons. Under this conditions, electrons from the electron gas of the 

solid have sufficient time to accommodate adiabatically with the moving ion. Taking the average 

velocity of electrons in a free electron gas with Z1 electrons  

 

as the characteristic velocity, Bohr has estimated the effective charge of the ion by 

 

 

with a high-velocity extrapolation that ascertains that Z1
eff

 cannot exceed Z1. 

 

 

5.2 Electronic Stopping – High Velocity 

 

For v >> v0Z1
2/3

, corresponding to E >> 25 keVA1Z1
4/3

 where A1 denotes the atomic mass of the 

projectile, the ion is deprived of all its electrons. Then, the evaluation of (4.10) yields for the 

interaction with electrons (|Q2|=1):  

 

 

which does in general not fulfil the Bohr condition for classical trajectory calculations. Therefore, 

quantum-mechanical calculations have to be applied in general. For very heavy ions, however, an 

approximation by classical mechanics might become more feasible. 

 

Both therefore and in order to discuss some physical concepts which will enter the classical 

calculation, we will start here with the latter, though being aware of the fact that it is not justified in 

principle. 

 

The evaluation of (5.4) for Rutherford scattering of the ion free electrons yields  

 

with me denoting the electron mass and be the electronic collision diameter (eq. (1.18)). A difficulty in 

evaluating the stopping cross section arises from the fact that d ~ T
-2

 according to eqs. (1.6) and 

(1.19), so that the integral diverges with a lower limit T 0. Therefore, a lower limit Tmin  has to be 

introduced corresponding to a maximum impact parameter pmax, which appears in (5.8). 
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An estimation of pmax is obtained by the so-called “adiabatic cutoff “. Assuming a characteristic time 

interval  of the interaction, the electrons of a target atom contribute to energy loss only if their mean 

orbital frequency  is small compared to the inverse of the characteristic collision time. Otherwise, at 

large orbital frequencies, the electron would attach adiabatically to the moving ion. 

 

Using the momentum approximation (eq. (1.21)), the characteristic collision time can be estimated 

from the transverse momentum transfer and its associated force integral to be 

 

  

so that the integration is limited to a maximum impact parameter  

 

Then, the result becomes (the classical “Bohr” formula) 

 

 

 

In the classical picture, the energy dependence of the electronic stopping reads as ~E
-1

log(CE
3/2

), C 

being a constant. 

 

Now we will turn to the quantum-mechanical derivation of high-energy electronic stopping, which is 

imposed by the Bohr criterion. 

 

The ion is represented by an initial and a final plane wave (see Fig. 5.2). The total initial and final 

states are 

 

where |i> and |f> denote the initial and final state of the target atom, respectively, and ki and kf the 

wave vector of the ingoing and outgoing plane wave, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With  denoting the total energy of the atom, the stopping cross section becomes according to (5.4) 
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Into (5.13), eq. (4.12) has to be inserted with  = me and the interaction potential 

 

 

 

With the momentum transfer 

 

the intermediate result is 

 

 

 

From energy conservation, maximum and minimum momentum transfer for a given final state are 

 

 

for a maximum energy transfer large compared to the binding energy of the electron.  

 

For simplicity, Hartree wave functions  

 

with the individual orbital wave functions i shall be employed intermediately. (However, the 

following finding also hold for more realistic total wave functions.) Then, the matrix element of (5.17) 

becomes  

 

Due to the orthonormality of the i , (5.19) is only different from zero if exactly one electronic state 

(e.g., numbered j) is altered during the collision: Within the first Born approximation, multiple 

electronic excitation or ionisation is excluded. The matrix element is reduced to 

 

 

to be integrated over the atomic volume. For a characteristic radius a of the atom, the evaluation of 

(5.20) can be discriminated. If the momentum transfer is large compared to the inverse of the atomic 

radius, the exponential term oscillates quickly, and the matrix element only vanishes if 

     

 

i.e., the final state of the electron j is a plane wave. This situation stands for the ionisation of the atom, 
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The contributions to the summation over f and the integration over q in eq. (5.16) are indicated 

schematically in the two-dimensional plot of Fig. 5.3. For q < 1/a, the individual energy levels of  the 

atoms are involved in electronic excitation. (5.16) can now be evaluated individually for the different 

regimes of q. For q > 1/a, the integrand can be converted into generalised oscillator strengths, which 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

drop out due to their normalisation. For q < 1/a, the exponential of (5.20) is expanded to first order, 

which leads to dipole oscillator strengths ffi. Adding the expressions for both regimes, the final result 

is the Bethe formula 

 

 

with the “mean ionisation potential” given by 

 

 

Due to the summation over all possible final states of the excited atom, I cannot readily be calculated. 

A reasonable approximation is according to Bloch 

  

 

It should be noted that the quantum-mechanical result (5.23) differs from the classical one (5.11) only 

in the logarithmic terms which varies slowly with energy, anyway. 

 

Two examples are given in Figs. 5.4a and 5.4b. In the limit of very high energy, both the classical and 

the quantum-mechanical formula are in good agreement with the experimental data. In the light-ion 

case, the Bethe formula works well for  >> 1. However, also the classical result is a rather good 

approximation even for the unsuitable energy regime. For heavy ions, quantum-mechanical 

calculations are only feasible for extremely high energy, and the classical picture holds well at 

sufficiently high energy. 
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For completeness, it should briefly be mentioned the high-velocity electronic energy loss can also be 

derived from the dynamic polarisation of a free electron gas, and the corresponding retarding drag on 

the ion (Lindhard and Winter). Again a result similar to (5.23) is obtained. The comparison yields in 

this case    

 

Thus, the mean ionisation potential can be calculated more easily from realistic local radial electron 

densities ne and the corresponding plasma frequencies 0. 

 

 

5.3 Electronic Stopping – Low Velocity 

 

 

At low velocity with v < v0Z1
2/3

, the combination with the effective charge (eq. (5.6)) yields 
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so that classical trajectory calculations are feasible. In the following, we consider the interaction of the 

ion with the target electrons modelled as a free electron gas. By the scattering events with its electrons, 

momentum is transferred to the ion. The stopping cross section can be written in terms of the change 

of the longitudinal momentum, p=, per time unit: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For low ion velocities being small compared to the Fermi velocity of the electron gas, which is given 

by 

 

for a free electron gas, the Fermi sphere of the target electrons is slightly shifted in the frame of the ion 

(see Fig. 5.4). According to the Pauli principle, electrons can only transfer momentum to the ion when 

their final state lies in a previously unoccupied position beyond the original Fermi sphere. This is 

possible for electrons being positioned outside of a sphere with radius vf – v, as indicated by the 

shaded area in Fig. 5.4. Its volume is about 4vf
2
v. The velocity of the contributing electrons can be 

approximated by vf, and the momentum transfer per scattering event is in the order of mevf. A simple 

estimation then shows according to (5.28) 

 

 

with the ion-electron scattering cross section . As an important result, the stopping cross section is 

proportional to the ion velocity, due to the Pauli principle. 

 

A more rigorous treatment of the scattering geometry yields, still in the limit v << vf  

 

where tr denotes the so-called transport cross section given by  
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The evaluation of the differential cross section is rather complex and has to be performed for realistic 

local electron densities ne(r,Z1,Z2). Lindhard and Scharff arrive at 

 

 

 

where ke is a constant defined by eq. (5.33). The result implicitly assumes that the electronic stopping 

acts nonlocally, i.e. independent of the actual position of the ion trajectory with respect to the position 

of the atoms which are passed by. Therefore, the result is independent of the actual impact parameter 

for a specific collision.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A different approach has been described by Firsov. During the interaction of two atoms, the electron 

clouds penetrate each other. Electrons transverse the intersecting plane between the two atoms, and, as 

v << vf,  accommodate their original directed kinetic energy (for both atoms moving in the CM 

system) to the dynamic electronic configuration of the interatomic system. For a free electron gas and 

a Thomas-Fermi interaction potential Firsov obtains for the electronic energy transfer per atomic 

collision 

 

which offers the possibility to compute the energy loss as function of the impact parameter, with a 

very steep decrease as function of p for p >> a0. The integration over p yields in good approximation 

 

 

Fig. 5.6 gives an example of low-energy electronic cross sections according to (5.33) and (5.35), in 

comparison to experimental values. The average agreement is good, however there are clear shell 

oscillations which cause significant deviations from the free-electron gas pictures.  

 

For practical purposes in particular in connection with computer simulation, Oen and Robinson 

proposed an alternative expression for the local energy transfer (see eq. (5.34)): 

 

 

 
Ek:

ZZ

ZZ

4

ae8
S e

0

2332

2

32

1

2

67

1

0

0

2

e 







 (5.33) 

e-
 

e-
 R 

2 

1 

Fig. 5.5 

 

Electronic energy loss in 

the Firsov picture 

 

 
5

0

31

21

35

21

0

e

a

p
ZZ16.01

ZZ

a

35.0
T


















(5.34) 

  2

0

21

15

e cmeVZZ1015.5S



  (5.35) 



 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where c1 is the decay constant of the leading term of the exponential series approximation of the 

screening function (see eqs. (2.10) and (2.17)) and Rmin the minimum distance of approach (see eq. 

(1.13)). Integration of (5.36) yields the Lindhard-Scharff electronic stopping cross section (eq. (5.33)) 

in good approximation. 

 

 

5.4 Electronic Stopping – Empirical Concepts 

 

As seen above, the electronic stopping can be reasonably well described in the limits of high and low 

energies. The intermediate regime around v = v0Z1
2/3

 is very complex, in particular due to electron loss 

and attachment (see sect. 5.2). A formal approximation for this regime can be obtained by inverse 

interpolation  

 

with a suitable low-velocity extrapolation (towards infinity as v  0) of the monotonically decreasing 

part of the above high-velocity results. Then, (5.37) reproduces the limiting low-velocity and high-

velocity regimes correctly. Fig. 5.7 demonstrates a reasonable agreement with experimental data.  

 

Interpolation formulas similar to (5.37) with proper parameterisation of the low- and high-energy 

formulas have been fitted to experimental data and are available in stopping tabulations (Ziegler, 

Andersen et. al.). A more elaborate concept (Ziegler et al.) makes additionally use of  an effective-

charge concept (see sect. 5.2) for a low-velocity extrapolation of the high-velocity electronic stopping. 

From this and the fit to many experimental data, universal semi-empirical electronic stopping power 

data are available from the SRIM package[19]. Specific data are shown in Figs. 5.4, 5.7 and 5.9. 

 

 

5.5 Nuclear Stopping 

 

 

The definition of a reduced, dimensionless pathlength according to LNS, 
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yields directly a universal formula for the nuclear stopping power in reduced LNS units, making use of 

the universal scattering function for a screened Coulomb potential: 

 

For the Thomas-Fermi screening function, Matsunami has given a good analytical approximation: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eq. (5.40) shows that nuclear stopping, like electronic stopping, is proportional to the ion velocity in 

the limit of low velocity. At very high energy, it is proportional to 
-1
log(), which is just the energy 

scaling of electronic stopping. Fig. 5.8 shows the universal nuclear stopping together with these limits. 
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Figs. 5.9a+b show the nuclear stopping cross section Se, which is transformed from (5.40) to non-

reduced energy and pathlength, in comparison to the electronic cross section. For heavier ions,  

nuclear stopping dominates at low energy and becomes negligible in the limit of high energy. This is a 

further justification of the independent treatment of electronic and nuclear interaction. For very light 

ions, nuclear stopping can be neglected in a broad range of energies.  

 

 

5.6 Stopping in Compound Materials 

 

 

The simplest approximation to the stopping in compound materials is the summation of the pure 

element stopping cross sections. Thus, for a two-component material AnBm with the elemental 

stopping cross section SA and SB, the stopping cross section is according to “Bragg’s Rule” 

 

 

By the simple linear superposition, chemical interaction of the elements are neglected. Nevertheless, 

Bragg’s rule normally holds rather well. With increasing amount of covalent bonding in the 

compound, deviation of up to about 40% are observed, as, e.g., for oxides and hydrocarbons. For a 

number of compounds, stopping data are available in the SRIM package[19].   
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different scales. 
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6. Energy Loss Fluctuations 

 

 

In addition to the mean energy loss which is described by the stopping power, the energy distribution 

of an ion beam is broadened after traversing a sheet of thickness x (see Fig. 5.1)). This is shown 

schematically in Fig. 6.1. There are various reasons for energy loss fluctuations, which are partly 

“immanent”, i.e. connected to the statistical nature of the collisions which result in energy loss. 

However, in an experiment, additional contributions are observed and may obscure the immanent 

mechanisms, such as thickness variations of a foil or the influence of target crystallinity and/or texture. 

Here, we will remain in the frame of a random substance, and address the most important mechanisms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1 Thickness Fluctuation 

 

 

When a thin film of thickness x with a mean square variation x is traversed, the resulting variance of 

the ion energy distribution is 

 

that is, the width of the resulting energy distribution is proportional to the stopping power. 

 

 

6.2 Charge State Fluctuation  

 

 

As discussed in sect. 5.1, ions with intermediate energies undergo charge change collisions, so that 

they exhibit different charge states during their transport through matter. In the energy range of 

interest, the cross sections of charge-changing collisions are smaller than those of the atomic collision 

which determine the energy loss. Thus, as shown in Fig. 6.2 for the simplified case of only two 

different charge states, a fraction  of the total pathlength would be spent with one of the charge 

states, and the remaining fraction with the other charge state. 

 

 

 

 

 

 

 

 

 

 

2

2

2

th x
dx

dE









 (6.1) 

Fig. 6.1 

 

Schematic showing the 

broadening of the energy 

distribution of an ion beam 

after passing through a thin 

sheet of matter 

Pathlength 

Charge 

State 

1 

2 

s

E E-E 

0 2.5 5
1.5

2

2.5

f2( )x

x

4 0 4
0

0.2

0.4

f1( )x

xE E-E E 

fE 

2 

0 0 

fE 

(6.2) 

Fig. 6.2 

 

Charge state 

fluctuation of an 

indvidual ion 



 29 

The resulting energy loss is 

 

where S1 and S2 denote the stopping cross sections associated to the respective charge states. From 

this, the variance of the energy loss distribution becomes 

 

 

 can be expressed by the charge exchange cross sections 12 (from 1 to 2) and 21 (vice versa) 

yielding 

 

The resulting width of the energy distribution is proportional to the pathlength and the difference of 

the stopping powers. 

 

 

6.3 Energy Transfer Fluctuation  

 

 

The conventional treatment of energy straggling covers the statistical nature of the atomic collisions. 

With i denoting the number of collisions with energy transfer Ti, the energy loss becomes for a 

specific trajectory 

 

The variance of the energy loss, assuming Poisson statistics of the collision numbers, i.e. <(i-<i>)
2
> 

= <i>, results in 

 

In continuous notation with i => nsd, this becomes 

 

 

so that the width of the energy distribution scales with the square root of the thickness. 

 

Eq. (6) can easily be evaluated for Rutherford scattering, as first shown by Bohr. (In contrast to 

stopping – see sect. 5.3 – the integral converges for a zero minimum energy transfer.) For sufficiently 

many independent collisions, i.e. when neglecting energy loss, a Gaussian energy distribution results 

with a variance 

 

Energy straggling is thus independent of the ion energy in the limit of high energy. Evaluating (6.8) 

for scattering at free electrons (Q2
2
=1, m2=me, me<<m1, ne=nZ2) yields the Bohr formula 
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For lower ion energy, Lindhard and Scharff calculated the electronic straggling in a local free electron 

gas approximation with the result 

 

with an analytical function and its variable 

 

 

Nuclear straggling can again easily be written in reduced LNS units 

 

 

which reproduces (6.8) for the scattering of totally stripped nuclei in the limit of high energy. 
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Figs. 6.3a+b show the energy straggling as function of the ion energy for two different ion-target 

combinations. For very light ions, the nuclear straggling can roughly be neglected, whereas it is 

dominant for heavy ions (note that the total straggling results from the linear addition of the nuclear 

and electronic variances which are shown in the figures.) 

 

It should, however, be noted that only simplified results have been presented, assuming sufficiently 

thick layers and neglecting energy loss, which is a contradiction in general. Very thin films, in 

particular at high ion energy,  may yield strongly asymmetric energy distributions, whereas for thick 

films the energy loss has to be taken into account. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Multiple Scattering 

 

 

As discussed in chapter 5, the stopping of ions results from electronic collisions and the interaction of 

the screened nuclei, with the electronic interaction often dominating the total stopping. The 

geometrical trajectory of each ion, however, results essentially from nuclear collisions only, as the 

electronic scattering is not associated with significant deflections. The statistical nature of the nuclear 

collisions leads to a broadening of the angular distribution of an ion beam, as indicated in Fig. 7.1, 

when traversing through a slab of matter with thickness x. The angular distribution of the ions depends 

on the depth and can be described by a distribution function f(x,), with the normalisation condition 

 

where the latter equality holds for small angles. More precisely, f(x,) represent the distribution over 

the solid angle. Alternatively, the polar angle distribution f(x,) can be employed with the 

normalisation 

 

In comparison with (7.1), both distribution functions can be transformed by 

 

 

for small angles. This is shown schematically in Fig. 7.2. 
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In order to study the evolution of the distribution function at increasing penetration depth, a thin 

incremental slab x is considered as shown in Fig. 7.3, which describes an example of so-called 

"forward" transport. Within this slab, each ion can either change its direction due to a nuclear 

collision, or it may just penetrate without any nuclear collision (any energy losses are neglected). In 

the former case, for an ensemble of ions described by the angular distribution function, the new 

distribution function, f(x+x,), results from scattering events which transform fractions of the 

original function, f(x,’), into the direction . The probability is given by the scattering cross 

sections for all directional changes ’ . In the latter case, the distribution function is reproduced 

with a probability of one minus the total cross section. Therefore: 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Although the resulting angle distribution is axially symmetric, the flight direction of individual ions 

has both a polar and an azimuthal component.  Therefore, in the detailed treatment, two-dimensional 

angles and angular distribution have to be considered, which is not explicitly indicated here for 

simplicity. The Taylor expansion of the left-hand side results in the Boltzmann type transport equation 

 

 

By suitable mathematical techniques, the integro-differential equation can be solved for an initially 

sharp angular distribution, f(0,)=(), resulting in the Bothe equation 
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where J0 denotes the zero-order Bessel function. Following Sigmund, the Bothe equation will now be 

turned into reduced units. The (small) laboratory scattering angle  can be transformed into the 

reduced scattering angle, eq. (3.10), by 

 

  

Correspondingly, the directional angle is transformed into a reduced angle 

 

 

Further, a reduced thickness is introduced for the purpose of multiple scattering 

 

 

Then, (7.6) can be rewritten as 

 

Multiple scattering distributions are tabulated for a large range of reduced angles and thickness in ref. 

[10]. An example is given in Fig. 7.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.4 Multiple scattering distributions for boron in silicon. Note the different presentations: (left) 

solid angle distribution, logarithmic; (right) polar angle distribution, linear. 
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8. Ion Ranges 

 

 

As a consequence of stopping and scattering, each individual incident ion forms a random trajectory as 

shown in Fig. 8.1. Stopping alone defines the total pathlength Rt. From the endpoint of the trajectory 

projected ranges can be defined (longitudinal, Rp
=
, and lateral, Rp


). For practical purposes, the 

(normal) projected range Rp is mostly of interest, since it characterises the implantation depth with 

respect to the surface. Obviously, Rp is equal to Rp
=
 for normal incidence. As in most implantation 

processes the extension of the implanted area is very large compared to the ion range, Rp is mostly also 

the only range quantity which is accessible to measurement.  

 

 

 

 

 

 

 

 

 

 

 

For many incident ions, the range distribution is smeared out parallel to the surface (see Fig. 8.2), with 

a mean projected range Rp. If the range distribution peaks sufficiently far from the surface, the mean 

projected range at an angle of incidence  is related to the mean projected range at normal incidence 

by 

 

at given energy of incidence. 

 

The mean total pathlength is easily calculated from the total stopping cross section by integration 

along the path s, according to 

  

 

Simple analytical solutions can be obtained for certain energy regimes for a given ion-target 

combination. When electronic stopping is proportional to the ion velocity (eq. (5.33)) and nuclear 

stopping can be neglected (see Fig. 5.9), the result is 
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E Fig. 8.1 

 

Schematic of an ion track for  
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with range definitions 
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that is, stopping and range are proportional to the ion velocity. When nuclear stopping dominates, only 

approximate analytical solutions are feasible. Using the power-law approximation  (2.16) for the 

interatomic screening function, the universal result is in reduced units 

 

with a constant s  to be determined from ks. For the approximation s  2 (see Fig. 3.2) the mean total 

pathlength becomes proportional to the ion energy according to 

 

  

which is frequently used as an approximation to "nuclear" ranges. 

 

For certain regimes of parameters, analytical transformations are available to calculate the mean 

projected range from the mean total pathlength (in view of (8.1), we restrict ourselves to normal 

incidence). Generally, for m1 >> m2 it can be anticipated that angular scattering is small, so that the 

total pathlength is a good approximation also for the projected range. 

 

For the nuclear stopping regime, Lindhard et al. found from transport theory, again in power-law 

approximation 

 

where the latter approximation holds again for s = 2. 

 

For the opposite case of high ion energy, where electronic stopping dominates, Schiøtt obtained 

 

 

which is applicable only in a narrow regime of parameters, in particular for light ions. 

 

For more precise data of projected ranges, transport theory calculations have to be performed (see sect. 

10). Alternatively, computer simulations of the binary collision approximation (BCA) type can be 

employed (see sect. 11). Both are available in the SRIM computer package [19]. Fig. 8.3 shows the 

range of nitrogen ions in iron for a broad energy range. The nuclear stopping approximation (8.5) 

yields a rough approximation to the mean total pathlength at sufficiently low energy. The ratio of the 

mean projected range to the mean total pathlength is about 50% at the lowest energies and 75% at the 

highest energies for the present case. For this ratio, eq. (8.6) gives a good result in the nuclear stopping 

regime, whereas the light-ion approximation (8.7) fails. The predictions from transport theory and 

computer simulation being available in the SRIM package [19] are in excellent agreement. 

 

Further, as a "rule-of-thumb", it is seen that the mean projected ion range, measured in nm, is 

approximately equal to the incident energy, measured in keV, which can be used as a first guess for 

many ion-target combinations.  
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9. The Collision Cascade 

 

 

Nuclear collision do not only contribute to the energy loss of fast ions and determine their angular 

distributions, but also transfer energy to the atoms of the material, thus creating "primary" recoil 

atoms. If the transferred energy is sufficiently large, these primary recoils will move along a trajectory 

similar to that of the incident ion, and may again undergo nuclear collisions, thus creating further 

generations of recoils and a "collision cascade". Each individual recoil, according to its initial energy, 

may come to rest at some distance from its original site. This is shown schematically in Fig. 9.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 9.1, the "final" positions of the ion and the cascade atoms are indicated. Strictly speaking, both 

come to "rest" after their kinetic energy has fallen down to the thermal energy of the target substance. 

However, the residual ranges already at eV energies become extremely small and comparable to the 
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dashed line), and mean 

projected range from SRIM 
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associated recoil atoms 
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trajectories. 
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lattice spacing in a solid (see Fig. 8.3). Therefore, if details like the final position in a lattice cell are 

not of interest, it is reasonable to define a cutoff energy in the order of a few eV to determine the final 

position of an ion or a recoil atom.  

 

In this "collisional" picture, recoil atoms with an initial energy of less than a few eV (which is also in 

the order of the binding energy of a lattice atom) are meaningless. Therefore, the generation of cascade 

atoms is limited. In physical reality, however, the cascade will continue to dissipate its energy and 

finally thermalise with the surrounding medium.  

 

Depending on the amount of deposited energy per unit volume, the collision cascade may be more or 

less dense. For low primary energy transfers and an ion range which is large compared to the 

extension of individual subcascades (see Fig. 9.2), i.e. typically in the case of light ions at high energy,  

the complete cascade is split into many subcascades, whereas in the opposite case the extension of the 

subscascades may be in the order of the ion range. Nevertheless, for many incident ions the collision 

cascades will also fill the complete space around the ion trajectory also in the former case, so that in 

average the two situations of Fig. 9.2 are not entirely different. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The density of deposited energy does not only influence the spatial development of the cascade, but 

also its internal dynamics. Conventionally, three regimes are defined (see Fig. 9.3). In the single-

collision regime (Fig. 9.3a), which is typical for light ions at low energy, a cascade does not really 

develop and the atomic motion is stopped after a few collision events. 
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Schematic of the cascade formation 

for an individual ion trajectory, 

depending on the average primary 

initial energy transfer T: Small 

subscascades for light ions at high 

energy (top), and one large cascade 

for heavy ions at sufficiently low 

energy (bottom). 

Fig. 9.3 

 

Cascade regimes (schematically): (a) Single collision regime; (b) Linear cascade; (c) Thermal spike 
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The "Linear Cascade" regime (Fig. 9.3b) is defined by the requirement that collisions take place 

essentially only between fast particles and atoms being at rest (in the collisional sense as discussed 

above, i.e. neglecting thermal motion). This regime is the standard regime in the range of ion energies 

which are covered by the present lecture, and will be the subject of most of the discussions below. As 

the single collision regime, it allows to treat the cascade as a sequence of two-body collisions, which 

have been described in chapters 1-4.  

 

In contrast, in the "Thermal Spike" regime (Fig. 9.3c) the cascade becomes so dense that collisions 

between fast particles play an essential role. In the limit, all lattice atoms within the cascade become a 

thermal ensemble with a high temperature, which may exceed the melting temperature of the solid and 

even its evaporation temperature on a short time scale. 

 

Finally, it is worth wile to address the charactistic time scales of a collision cascade. The slowing-

down time of a fast atom in a target substance is according to the definition of the stopping cross 

section (see eq. (5.2)) with ds = vdt 

  

where m and E denote the mass and the initial energy of the atom, respectively, and Eco the cutoff 

energy. With the stopping being proportional to the velocity, which holds for the electronic stopping 

except for very high energy and for the nuclear stopping at very low energy (see ch. 5), that is for most 

ions and the low-energy cascade atoms, (9.1) becomes with the stopping constant k 

  

For the ion-target combination of Fig. 8.3, a slowing-down time of about 510
-13

 s is obtained, which is 

in the order of the lattice vibration period. The slowing-down time depends only weakly on the initial 

energy and on the ion and target species. Thus, the lifetime of a collisional cascade is in the order of 

10
-13

 to 10
-12

 s. 

 

The lateral extension of a cascade depends both on the characteristic primary energy transfer and the 

trajectory of the ion. In the present range of energies, some nm are a good estimate. From this, a 

typical area of a cascade, projected onto the surface plane, is in the order of 10
-12

 to 10
-13

 cm
2
. For an 

ion flux of 10
16

 cm
-2

s
-1

, which is typical for conventional high-current ion implantation, this area is hit 

by 10
3
 to 10

4
 ions per second. In comparison with the cascade lifetime as given above, this indicates 

an extremely small possibility of overlap of collision cascades initiated by subsequently implanted 

ions in the order of 10
-9

. Thus, cascade overlap by different ions can be excluded. 

 

 

 

 

10. Transport Equations Governing the Deposition of Particles and Energy  

 

 

10.1 Primary Distributions 

 

Eq. (7.4) represents a special form of a so-called "forward" transport equation, which delivers a 

distribution function of a beam property (deflection angle, particle energy), with the depth x as 

parameter. In turn, distributions of particle or energy deposition are defined as functions of the depth 

x, with the properties of the incident beam (incident energy E and incident angle, represented by its 

directional cosine ) as parameters. 
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An incident ion can interact with the substance in a differential element of depth x at the surface, 

which, according to the scattering probabilities, results in a modified energy and/or direction at x. 

These new initial conditions contribute to the deposition function f at x+x, each with their 

corresponding distribution functions as function of x due to the translational invariance of the medium, 

which is assumed to be homogeneous. In x, the ion may undergo a nuclear collision ((3) in Fig. 10.1), 

changing the direction to ' and the energy E to E', an electronic collision ((2)), changing the energy 

E to E-E but not the direction, or no collision. Correspondingly, the following ansatz results, which is 

given in 1-dimensional form for simplicity: 

 

 

Here, v denotes the incident velocity and vt the traversed pathlength through x, such that 

 

 

Taylor expansion on the left-hand side yields 

 

 

Further  expanding 

 

 

 

 

yields the Boltzmann type transport equation 
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For the distribution fR of ion ranges, the normalisation conditions reads 

 

 

so that fR(x,E,)dx denotes the probability to find an implanted ion deposited in the depth interval dx 

at the depth x. 

 

As already indicated by the integration limits in eq. (10.6), the transport equation is normally solved in 

an infinite medium, so that a fraction of f may extend to x < 0. The identification of this fraction with 

the ion reflection coefficient R, according to 

 

 

holds only approximately, since the transport formalism allows a multiple crossing of an ion trajectory 

through the "surface" at x = 0, whereas in reality the ion is lost at the first transmission through the 

surface. 

Different mathematical procedures to solve eq. (10.5) analytically for ion ranges can be found in the 

literature, such as in refs. [3,20,21]. In ref. [21], the angular dependence is separated by means of a 

Legendre expansion   

 

 

so that the transport equation can be written down in an recursive form of the Legendre components 

fRl. For these, the -th moments are defined according to  

  

 

The transformation of the transport equation then allows a stepwise calculation of the moments with a 

proper screened-Coulomb scattering cross section and for a properly chosen electronic stopping cross 

section. With the moments of any distribution function, f

(x), given, the distribution function itself can 

be reconstructed, e.g., by using the Edgeworth expansion 

   

where C is a normalisation constant and  
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k() denote the Gaussian function and its derivatives, 

 

 

  

Finally, the shape parameter "skewness" and "excess" are given by  

 

 

respectively. For a pure symmetric Gaussian function, both  and vanish. 

 

An example of range distribution in LSS reduced quantities for the depth and the energy is given in 

Fig. 10.2. At low energy where the electronic stopping scales with velocity, the depth scale scales with 

the product of the electronic stopping constant and the reduced depth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Depth distributions of the deposited energy can be obtained in the same way as range distributions, as 

long as only primary collisions between the incident ion and the target atoms are considered. These 

"primary" distributions of the deposited energy are a reasonable approximation when the extension of 

any collision cascade between the target atoms, which is triggered by a primary collision, is small 

compared to the ion range, as for light ions in heavy substances where the primary energy transfer is 

small, or for high energy where the ion range is large. 

 

Transport equations like (10.5) can be formulated both for the energy which is dissipated into nuclear 

collisions, and the energy which is dissipated into electronic collisions. The corresponding depositions 

functions are often denoted as "damage" deposition function, fD, and "ionisation" deposition function, 

fI, respectively. For each of these, normalisation conditions hold according to   
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Range distributions at low energy 

for normal incidence ( = 1) in 

reduced LSS units, as obtained 

from a transport theory calculation 

with two moments (dotted line) 

yielding a Gaussian function, and 

three moments (solid line). k 

denotes the electronic stopping 

constant in reduced units, (d/d)e 
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and   

 

with (E) and (E) denoting the total fractions of the incident energy which are dissipated into nuclear 

and electronic collisions, respectively, with 

 

 

The nuclear fraction can be determined from the integrated transport equation. As the distribution 

function vanishes at infinity, (10.5) yields 

 

 

Setting E' = E-T with the nuclear energy transfer T and expanding for T << E results in 
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Schematic representation of high-

energy range, damage, and ionisation 

distributions. (a) density contour, (b) 

and (c) projections of the distribution 

functions onto a plane parallel and 

normal to the direction of incidence, 

respectively.  
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Corresponding evaluations and tabulations can be found in the literature. Fig. 10.3 shows a schematic 

representation of high-energy range, damage and ionisation distributions in three dimensions. At small 

depth, the nuclear energy deposition is small due to the low scattering cross section at high energy. 

Towards the end of the ion trajectories, the ion energy and thereby the nuclear energy dissipation 

becomes low, so that the damage distribution normally peaks at slightly lower depth than the range 

distribution. However, it has to be taken into account that multiple large angle deflections, which 

occur with increasing probability towards the end of the range, may result in multiple energy 

deposition events at the same depth for only one incident ion. This also explains the peak of the 

ionisation distribution function at large depth. Otherwise, it reflects the dependence of electron 

stopping on energy.   

 

 

10.2  Distributions of Energy Deposition Including Collision Cascades 

 

In the general case, secondary collision cascades of the target atoms have to be taken into account for 

the calculation of the energy deposition. This is mandatory for ion-target combinations with about 

equal masses, and for sufficiently low energies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The validity of the linear cascade regime is assumed. The secondary recoil atoms have to be taken into 

account which are generated in nuclear collisions (see Fig. 10.4, case (3)). For the treatment of nuclear 

energy deposition, the three-dimensional "damage" distribution function is defined in such a way that 

the differential amount of energy  

 

is dissipated into the volume element d
3
r around r, at given incident energy E and direction . Adding 

to the nuclear collision term of eq. (10.1) a term for the recoil atom, with an initial energy equal to the 

nuclear energy transfer T and an initial direction '', results in 

 

 

Similarly as above and with 

 

 

the transport equation results as 
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Evaluations for the damage function, and for the ionisation function FI (see 10.1) are again found in 

the literature. Examples in comparison to experimental results are given in Fig. 10.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.5: Normalised damage profiles for He
+
 bombardment of Si and GaAs. The experimental 

data have been obtained by high-energy ion channeling analysis. 

 

It is not straightforward to measure a damage or ionisation function. Only the post-irradiation effects 

are accessible to experiments, as, e.g., the amount of remaining lattice damage. In the case of nuclear 

energy deposition, the creation of lattice damage is subject to a threshold energy of a recoil atom (see 

ch. 12), so that low energy transfer events will contribute to the deposition function, but not to 

physical lattice damage. This might partly explain the difference of the experimental and theoretical 

data in Fig. 9.5. Moreover, the survival of lattice defects depends strongly on the type of material and 

the temperature. Most semiconductors exhibit stable defects still at room temperature, whereas metals 

have to be kept typically below 5...30 K. 

 

 

10.3 Cascade Energy Distribution 

 

In 10.1 and 10.2, transport formalisms have been described which cover the deposition of the incident 

ions and the energy which is carried into the target substance. In the following, the energy distribution 

of the cascade atoms will be discussed. Assuming that the cascade is initiated by a primary recoil atom 

with initial energy E, a distribution function FE of initial energies of all cascade atoms, which are 

subsequently generated by nuclear collisions, can be defined in such a way that  

 

 

denotes the average number of cascade atoms which are generated in the interval of starting energies 

E0...E0+dE0. F is called "recoil density", with the condition 

 

 

Similarly as above, the ansatz for the corresponding transport equation is 
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Formally compared to eq. (10.21), an additional nuclear collision term has to be taken which describes 

the direct conversion of the primary atom to an atom with energy E0. This is not contained in the 

second term as a starting energy of E0 will not contribute by further collision according to (10.25). The 

Taylor expansions, as formerly, yield 

 

If electronic stopping is neglected in view of the rather low energy of most of the cascade atoms, and 

the nuclear scattering cross section is evaluated for the power-law screening function (2.16), (10.27) 

can be solved analytically by using Laplace transforms and the convolution theorem, yielding 

  

 

 

where m = s
-1

 denotes the inverse of the power index of the screening function (see (2.16)) and 

 

 

with (y) denoting the Gamma function, and  

 

According to (10.28), the number of cascade atoms scales with the inverse square of  their starting 

energy (so-called "Coulomb" spectrum), so that (10.28) describes the vast amount of all cascade 

atoms. The cascade density diverges with E00, which is a contradiction with the assumption of a 

linear cascade. However, the lattice atoms are bound to their original sites which has been neglected so 

far. With a binding energy U, an approximate solution is, replacing (10.28) 

 

Taking electronic stopping rigorously into account would be rather complicated. Therefore, the total 

available energy E is simply replaced by the fraction which is dissipated in nuclear rather than 

electronic collisions, resulting in (if the binding is neglected again) 
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Note that (E) in this context is different from the nuclear energy dissipation as defined for the 

primary damage distribution (see (10.15)-(10.19)), as secondary recoils are included. Here, the 

corresponding transport equation is 

 

 

(10.33) can only be solved numerically. Fig. 10.6 shows the result as function of the primary energy 

for different materials. Often,  

 

is taken as a good approximation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Typical starting energies of most of the cascade atoms are in the order of 10...100 eV corresponding to 

minimum distances of approach of about 1 nm. Here, the "hard core" approximation s   or m0 is 

reasonable. Then, (10.32) becomes 

 

 

 

 

10.4 Spatial Cascade Energy Distribution 

 

In order to fully describe the energetic and spatial development of the collision cascade, the results of 

10.2 and 10.3 have to be combined now. The angular distribution of the direction of motion of the 

cascade particles is assumed to be isotropic, since a full momentum relaxation can be expected for 

most of  the cascade atoms with sufficiently low energy. Therefore, the angular distribution is 

neglected here. 

 

Defining a spatial recoil density F such that  

 

  

is the number of atoms starting in the volume element d
3
r around r and at an energy between E0 and 

E0+dE0, in a cascade which is initiated by a primary recoil of energy E and with direction , the 

transport ansatz becomes 
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Fig. 10.6 

 

Energy (E) of the primary 

recoil which is dissipated in 

nuclear collisions. The 

corresponding electronic fraction  

is (E) = 1-(E). 
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with the resulting transport equation 

 

 

with the conditions 

 

and 

 

 

 

The solution of eq. (10.38) proceeds via moment equations (for comparison, see eq. (10.9)). For the 

higher moments, the cutoff condition, eq. (10.39), is neglected, as the few additional high-energy 

atoms, which are artificially included, will little influence the main fraction of the cascade atoms. 

Then, the solution is straightforward. With the correct normalisation, the result is 

   

which is plausible as it simply combines the damage function (see eq. (10.20)) with the recoil density 

(eq. (10.35)). 

 

 

 

 

11. Binary Collision Approximation Computer Simulation of Ion and Energy Deposition 

 

 

As demonstrated in the preceding chapter, transport theory calculations of ion slowing down and the 

associated recoils atoms, in the linear cascade regime, can provide valuable analytical expressions 

which describe the important physical mechanisms and dependencies. However, the solutions are 

often complicated and require simplifying assumptions. A major obstacle, e.g., is the treatment of the 

surface, as the transport equations can, without considerable additional effort, be solved only in an 

infinite medium, thus describing the physical situation of an internally starting beam. The treatment of 

an infinite medium in the transport calculations allows for multiple crossing of a given recoil 

trajectory through an arbitrary plane in the substance, whereas in reality the particle is lost when first 

crossing the surface. Therefore, also the formation of collision cascades near the surface is 

overestimated in infinite medium calculations. This problem arises in particular for low energies 

and/or heavy ions with a significant fraction of the total energy being deposited very close to the 
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surface. Consequently, also the treatment of the single collision regime becomes doubtful when it is 

applied to near-surface phenomena. 

 

An alternative solution, which also covers the linear cascade regime, is the application of computer 

simulations in the so-called binary-collision approximation (BCA). In the following, only the main 

issues of BCA will be described. As in the preceding chapters, a random distribution of atoms in the 

substance will be assumed, and any effects of crystallinity will be neglected, although "crystalline" 

BCA codes are available. The features described below are consistent with the TRIM (TRansport of 

Ions in Matter) family of BCA codes. Also the BCA simulation code of the SRIM package[13,16,19] 

belongs to this group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The physical model of the BCA simulation is depicted by the ion slowing-down and cascade 

formation schematic of  Fig. 9.1. The trajectory of an incident ion or an recoil atom is approximated 

by a polygon track given by subsequent nuclear collisions. A section is shown in Fig. 11.1. Directly 

after a nuclear collision with atom i (or when entering the substance), the moving atoms is 

characterised by a state given by its energy Ei, and its directional polar and azimuthal angles i and i, 

respectively. The atom is allowed to move along a free path . In TRIM,  is defined by the mean 

atomic distance of the substance 

 

rather than choosing it randomly. Thus, the TRIM model is more valid for an amorphous solid than for 

a random medium, which would be modelled by an analytical transport calculation. However, the 

impact parameter of the subsequent nuclear collision (i+1) is chosen randomly (see Fig. 11.2). 

According to the cylindrical symmetry, the actual impact parameter p is calculated from a random 

number r, which is equally distributed in [0...1]  

 

 

with a maximum impact parameter pmax which satisfies 

 

 

so that one collision takes place per atomic volume of the substance. With a proper interatomic 

potential (recent versions of TRIM use the universal potential given by eqs. (2.17) and (3.5)), the polar 

scattering angle is calculated from the classical trajectory integral, eq. (1.12). The numerical 

integration for each nuclear collision would be rather time-consuming. Therefore, TRIM makes use of 

an approximate analytical formula, the so-called "magic" scattering formula. 

 

Fig. 11.1 

 

Section of an ion or 

recoil trajectory with 

subsequent nuclear 

collisions with atoms 

denoted by i, i+1 and 

i+2. 
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For a complete definition of the scattering process, the azimuthal deflection angle  is calculated 

according to the axial symmetry from an additional random number r by 

 

Due to the random choice of the impact parameter (or the polar deflection angle) and the azimuthal 

deflection angle, BCA codes are often referred to as "Monte Carlo" simulations. 

 

 is transformed into the laboratory system deflection angle  (see Fig. 11.1) according to eq. (1.4). 

Simultaneously, a recoil atom is generated if desired with an initial polar direction  relative to the 

original direction of the projectile, according to eq. (1.4), and an azimuthal recoil angle + according 

to (11.4). 

 

The idealised trajectories of Fig. 9.1 are represented by the asymptotic trajectories before and after 

each collision. As shown in Fig. 9.2, the asymptotic trajectories after scattering originate from an axial 

position which is displaced from the original position of the recoil atom. In TRIM, the so-called "time 

integrals" are approximated by the hard-sphere approximation 

 

for the projectile and 

 

for the recoil atom. 

 

Electronic energy loss is taken into account either in a "nonlocal" mode along the trajectory, resulting 

in 

 

with Se according to ch. 5, or in a "local" mode in correlation with the nuclear collisions, using the 

convenient "Oen-Robinson" formula 

 

with Rmin denoting the minimum distance of approach (see eq. (1.13)) and a the screening length. 

(11.8) has been derived in a similar way as the Firsov formula, eq. (5.34). Often, an equipartition  

 

Fig. 11.2 
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is chosen rather arbitrarily. 

 

Including the nuclear energy transfer T (eq. (1.6)), the transformation of the state of the projectile is 

now given by 

and 

 

where TR denotes the geometrical transformation to the new directional angles. When recoils are 

included, the initial state of the generated recoil is given by 

 

and  

 

In (11.12), Ub denotes the bulk binding energy of the lattice atoms (a few eV, often it is set to zero due 

to the lack of better knowledge). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The trajectories of each incident ion, and, if included in the simulation, all associated recoil atoms are 

traced in this way until the kinetic energy has fallen below the cutoff energy Eco, which again is chosen 

to several eV (see remark at the beginning of ch. 9). 
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Ion only (a,c) and ion 

plus recoil (b,d) 

trajectories for 20 keV 

nitrogen ions incident on 

iron, for 5 (a,b) and 100 

(c,d) incident ions, as 

obtained from a TRIM 

computer simulation. 

The three-dimensional 
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onto a plane. Note that 
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Fig. 11.3 shows the spatial distributions of ion and recoil trajectories for 10 keV nitrogen ions in iron, 

as obtained from SRIM (Version 2000.39). In Fig. 11.3(a), it is evident that one of the 5 ions is 

backscattered. Fig. 11.3(b) indicates that, for the present ion-target combination, an individual ion 

creates several smaller subcascades with little overlap, in agreement with the qualitative picture of Fig. 

9.2(top). The overlap of many incident ions (Fig. 11.3(d)) forms a cascade region which is similar to 

the region of the ion tracks (Fig. 11.3 (c)). 

 

It should further be noted that the presentations of Fig. 11.3 assume that each ion enters the substance 

at exactly the same point. With this respect, the lateral extension of the ion deposition and cascade 

formation zone is artificial, since the beam spot of an ion beam on the surface extends over mm or cm 

dimensions in conventional ion implantation, and a few ten nm even in most advanced focused ion 

beam devices. The real lateral distribution is smeared out along the surface when many ions are 

implanted. Nevertheless, the lateral extension of the ion deposition and cascade formation can be 

physically meaningful and important for practical application, such as for masked ion implantation 

into microstructures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For very high nuclear energy deposition, the space filling of the cascade is much more efficient 

already for one incident ion, as shown in Fig. 11.4. Although the result gets close to the schematic of  

Fig. 9.2 (bottom), still some subcascade formation is observed. (It has to be mentioned, however, that 

the linear cascade treatment becomes doubtful for the ion energy and ion-target combination of Fig. 

11.4.)  

 

For sufficiently many events of ion incidence, the distribution functions of , e.g., projected ion range 

of energy deposition can be obtained directly with sufficient statistical quality (see Fig. 11.5). Each 

incident ion in the computer (often called "pseudoprojectile") represents an increment of ion fluence 

(i.e. the number of incident ions per unit area) 

 

 

where tot  denotes the total experimental fluence which shall be simulated and NH the total number of 

pseudoprojectile histories chosen for the computer simulation. Each deposition or, e.g., recoil 

generation event is subject to the same pseudoparticle normalization, eq. (11.14). When a depth 

interval x is chosen for the sorting of these events and Np(x) of such events fall into the local depth 

interval, the resulting local atomic concentration, normalised to the host atomic density, is 
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In this way, the ordinate of Fig. 11.5 is defined by c(x)/tot. Nevertheless, it should be pointed out that 

standard TRIM computer simulations are only valid for the low-fluence limit, so that the results cannot 

readily be extrapolated to high fluences with, e.g., resulting implant concentrations close to 

stoichiometry or even above, which would be meaningless. In the BCA simulations discussed here, 

each incident projectile finds the same, unmodified substance that any effects of, e.g., ion deposition 

or surface erosion (see ch. 13) are neglected. 

 

In a similar way, distribution functions of deposited energy can be obtained (Fig. 11.6). The electronic 

energy dissipation is sometimes called "ionisation" (such as in SRIM-2000), although the latter 

contributes only a fraction (see ch. 5). Also in SRIM-2000, the nuclear energy dissipation is called 

"energy to recoils". Note that the definition of nuclear energy dissipation is only meaningful for 

primary collisions of the incident ions with target atoms. For the complete cascade, the nuclear energy 

deposition vanishes as the nuclear collisions are elastic (or results from the lattice binding only). For 

the present ion-target combination, the total fractions of the ion energy which are dissipated into 

electronic and nuclear collisions are about equal, in agreement with the fact that electronic and nuclear 

stopping in the present energy range are about equal. The mean depth of electronic energy dissipation 

is somewhat lower than that of the nuclear counterpart, as electronic stopping decreases more rapidly 

with decreasing energy. Although the number of recoils exceeds the number of incident ions by orders 

of magnitude, the electronic contribution of the recoils to the energy distribution is small, due to their 

small average energy. 

 

Finally a general comment related to BCA computer simulation shall be given. Obviously, the results 

depend critically on the choice of certain input parameters, such as the cutoff energy, but they depend 

also to a certain extent on "hidden" parameters such as the choice of the interatomic potential or the 

choice of the electronic stopping (see eqs. (11.7-9)). By varying these "hidden" inputs within 

reasonable limits, variations of the results for, e.g. ranges or energy deposition function, up to several 

10% can be obtained. This depends, however, very much on the given problem and the energy range. 

Ion ranges obtained from TRIM are normally reliable within 10%.    
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Projected range distribution 

of  20 keV nitrogen ions 

implanted into iron, from a 

TRIM simulation with 20000 

pseudoprojectiles (see Fig. 

11.3). The mean projected 

range is Rp = 24.5 nm, the 

standard deviation  = 12 nm, 

the skewness 1 =  0.19, and 

the kurtosis 2 = 2.4. 
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12. Radiation Damage 

 

 

12.1 Analytical Treatment 

 

The term "radiation damage of materials" covers a wide area of effects which can be observed after 

irradiation of a solid with energetic particles. In the present "collisional" picture in the linear-cascade 

regime (see beginning of ch. 9) only the initial stage of damage is considered, which is caused by the 

permanent displacement of lattice atoms from their original sites by the energy transfer received in 

nuclear collisions. It should be mentioned that, in particular in certain oxides but also in other 

materials at extremely high energy density which is deposited into electronic collisions, electronic 

energy dissipation can be converted into atomic displacement. Further, the restriction to the initial 

stage of damage applies only to selected physical situations. It represents a low-fluence approximation 

since any interaction of the resulting defects is neglected. It is also a low-temperature approximation 

since any thermal migration or recombination of the defects is neglected. However, the definition of  

low temperature in this context depends critically on the choice of the material. In metals, simple point 

defects may become mobile already at a few K, whereas they are stable around room temperature in 

common semiconductors. 

 

Fig. 12.1 depicts the elementary event of radiation damage schematically. In order to produce a 

"stable" Frenkel pair consisting of a vacancy at the original site of the recoil and an interstitial atom at 

its final position, the distance between the interstitial-vacancy has to be sufficiently large so that an 

immediate recombination due to elastic forces in the lattice and/or due to directed atomic bonds is 

prevented. Therefore, the initial energy transfer to the recoil has to be sufficiently large. This critical 

energy transfer depends on the crystalline direction into which the recoil is set into motion. Therefore, 
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Distribution of  deposited 

energy into electronic (top) 

and nuclear (bottom) 

collisions for one 20 keV 

nitrogen ion implanted into 

iron, from a full-cascade 

TRIM simulation with 2000 

pseudoprojectiles (see Fig. 

11.3). The electronic fraction 

is split into the energy loss by 

the incident ions and by all 

recoil atoms in the collision 

cascade. The nuclear energy 

deposition results only from 

primary collisions (see text). 
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the "displacement threshold" energy Ud must be understood as an average over different directions. 

Thus, for any recoil starting with an initial energy transfer T below the threshold energy, the number 

of generated Frenkel pairs is close to zero, even if secondary recoils in a subsequent collision cascade 

are taken into account. 

 

   

 

 

 

 

 

 

 

 

 

 

. 

 

After terminating the collision cascade, a stable Frenkel pair is characterised by its formation energy 

Uf, i.e. the gain of potential energy with respect to the undisturbed lattice, with a contribution from the 

vacancy and the interstitial atom: 

 

 

Apparently, the bulk binding energy Ub is smaller than the Frenkel pair formation energy. On the other 

hand, the displacement threshold energy must be larger than the Frenkel pair formation energy since 

kinetic energy is dissipated during the slowing down of the recoil. Thus 

 

 

Typical bulk binding energies are a few eV, compared to Frenkel pair formation energies of 5 to 10 eV 

and displacement threshold energies of 20 to 80 eV. 

 

 

 

 

 

 

 

 

 

 

There are other mechanisms than the simple transfer of a recoil depicted in Fig. 12.1. For low recoil 

energies, so-called "replacement" collision sequences become increasingly important (Fig. 12.2), 

which travel in particular in low-indexed directions of a crystal being "focussed" by the potential 

resulting from the surrounding atoms, but contribute significantly even in amorphous materials. In 

head-on sequences, the nuclear energy loss is effectively switched off in homonuclear materials, so 

that the range can become rather large (up to a few hundred atomic distances). 

 

With these considerations, a displacement probability can be defined for each recoil starting with an 

energy E0, according to 

 

Fig. 12.1 

 

Elementary radiation damage event in 

a collision cascade. A recoil atom 

generated by a nuclear collision is 

moved from its original site into an 

interstitial position, thus forming a 

vacancy- interstitial or "Frenkel" pair. 
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Schematic of a replacement 

collision sequence. 
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which is depicted in Fig. 12.3. The middle expression of  eq. (12.3) shall, in a rather handwaving way, 

take into account the reduction of Frenkel pair production per recoil atom due to replacement 

collisions at low energy transfers, as many correlated over-threshold recoils generate only one Frenkel 

pair.   

 

The total number of Frenkel pairs for one recoil atom starting with energy T, including the complete 

associated cascade, is then given by 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with FE denoting the recoil density (see sect. 10.3). Inserting eqs. (10.35) and (12.3) results in 

 

 

This is the so-called "modified Kinchin-Pease" formula. It has to be noted that the bulk binding energy 

is implicitly neglected (see sect. 10.3). Originally, Kinchin and Pease had treated the problem using 

hard spheres rather than a screened Coulomb potential, and consequently neglecting inelastic energy 

loss, resulting in 

 

which, compared to (12.4), makes hardly a difference in view of the theoretical approximations and 

the experimental uncertainties in determining NF. Formally, eq. (12.4) allows for subthreshold 

damage, too. Therefore, a corrected formula is often employed, where eq. (10.34) for the nuclear 

deposited energy has already been used:  

. 

 

The energy range of the middle contribution guarantees a continuous transition to the modified 

Kinchin-Pease formula.  

 

The total number of Frenkel pairs generated by an incident ion of energy E is obtained by integrating 

NF(T) according to the cross section of nuclear collisions and along the ion path: 
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Displacement probability 

model employed for the 

modified Kinchin-Pease 

model. 
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where  denotes the energy transfer factor (eq. (1.7)). Inserting the simple Kinchin-Pease result, eq. 

(12.6), for simplicity, and assuming an average energy transfer E' which is large compared to the 

displacement threshold, the inner integral in (12.8) can, in reasonable approximation, be replaced by 

the nuclear stopping cross section Sn. For such a "dense cascade", which occurs for large nuclear 

energy deposition, electronic stopping is small, so that Stot  Sn. Thus, in the dense cascade 

approximation, the total damage is given by the simple Kinchin-Pease expression with the incident 

energy: 

 

All above results for the Frenkel pair generation represent an upper limit since a certain amount of 

"dynamic annealing" will take place already in the collisional phase, given by the probability of 

recombination of interstitial atoms with vacancies. This probability of dynamic recombination 

increases with increasing cascade density. In this sense, a "cascade efficiency" (T) is defined so that 

the effective number of Frenkel pairs is given by   

 

 

The cascade efficiency is between 1 in the low-density limit (e.g., light ions) and about 0.3 for very 

dense cascades for heavy ions with large nuclear stopping. 

 

 

12.2 TRIM Computer Simulation  

 

There are two different possibilities to treat damage in TRIM computer simulations. In the so-called 

"quick" calculation of damage just the ion trajectory is traced rather than the complete collision 

cascade. For each primary collision with energy transfer T to the primary recoil, eq. (12.6) is applied 

for the generation of Frenkel pair at each primary nuclear collision. In addition to the approximations 

implied in the Kinchin-Pease formula, this simplified simulation neglects the spatial extension of the 

individual subcascades. If the latter is small compared to the ion range, such as for light ions or at 

sufficiently high energy, the error with respect to the depth distribution remains small. 
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Depth distribution of Frenkel 

pairs generated by one 20 keV 

nitrogen ion incident on iron, as 

obtained from a full cascade 

TRIM computer simulation with 

2000 pseudoprojectiles, with a 

displacement threshold energy of 

25 eV. The average total number 

of Frenkel pairs per ion is 240. 
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The more time-consuming "detailed calculation with full cascades" generates all recoils with initial 

energies exceeding the threshold Ud, so that all events can simply be counted. Fig. 12.4 shows the 

depth distribution of Frenkel pairs for nitrogen ions incident on iron obtained from a "full cascade" 

simulation. The depth distribution follows the distribution of nuclear energy deposition (see Fig. 11.6), 

with a total number of Frenkel pairs which exceeds the number of implanted ions by more than two 

orders of magnitude. Compared to 240 Frenkel pairs per incident ion obtained from the computer 

simulation, the simple Kinchin-Pease dense-cascade approximation (eq. (12.9)) yields an 

overestimated, but rather close number of 400. In a dense-cascade situation, for 100 keV gold ions 

incident on tantalum (see Fig. 11.4),  the number obtained from TRIM (2075) compares well with the  

prediction of eq. (12.9) (2000). By definition of the binary collision approximation, any dynamic 

annealing in the cascade (see eq. (12.10)) is not taken into account. 

 

Note that the Frenkel pairs are often called "vacancies" in TRIM. Quite formally, the middle regimes 

of eqs. (12.3) and (12.7) can be used in TRIM, as available from the SRIM package, to count the 

contributions of replacement collisions in full-cascade and quick simulations, respectively. The 

contribution is generally minor (in the order of 10% of the Frenkel pairs). The different regimes of 

(12.3) and (12.7) can also be used to discriminate the energetics of the cascade. The energy which 

goes into subthreshold recoils is called the "phonon" fraction. (Clearly, the final energy will be 

transferred into heat, i.e. phonons, even if the BCA simulation is far from treating any recoil-phonon 

coupling in a solid.) On the other hand, over-threshold recoils form the energy which is dissipated into 

"damage".  

 

 

 

13. Sputtering 

 

 

13.1 Analytical Treatment 

 

When a collision cascade intersects the surface, sufficient energy can be transferred to a surface atom 

to overcome its binding to the surface, so that it will be ejected from the solid. A schematic 

presentation of sputtering in the linear cascade regime is given in Fig. 13.1.  

 

The sputtering yield is defined as the number of emitted target atoms per incident ion: 

 

where ji and jsp denote the flux of incident ions and sputtered atoms, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13.1 

 

Schematic presentation of a 

sputtering event in the linear 

cascade regime.  
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Applying cascade transport theory, now - in contrast to the treatment of radiation damage - the spatial 

development of the cascade has to be taken into account in addition to the energetics, as the surface 

introduces a local character. Further, the ejection of a surface atom may - according to the surface 

binding model which will described below - depend on its ejection angle with respect to the surface 

normal, i.e. on its starting direction within the cascade. Therefore, an isotropic angular distribution of 

cascade atoms is added to the spatial cascade energy function, eq. (10.41), 

 

  

 

The number of cascade atoms per energy interval starting into the direction 0 is then obtained by 

integrating over the volume (geometry is indicated in Fig. 13.2): 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where df denotes the surface element. x is a shallow depth element from which recoil atoms 

contribute to sputtering, and P denotes the probability that a recoil at energy E0 and angle 0 is 

transmitted through the surface. The surface integral yields the one-dimensional damage function 

which is assumed to be constant over x with its value at the very surface, resulting in 

 

 

x, which may depend on E0, can be estimated in the following way: At maximum those recoils can 

contribute to sputtering which loose all their energy within x. Then, with E0 /x    |dE0/dx|, where 

the latter denotes the stopping power of the recoils 

 

 

It should be noted that eq. (13.5) can also be obtained from a more rigorous treatment of the recoil 

fluxes for a stationary incident beam, without the simple assumption on x. The sputtering yield 

results as 
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Geometry of a near-surface 

collision cascade (idealized 

by a cylindrical volume) 

formed by an ion of energy 

E and angle of incidence , 

with a subsurface cascade 

atom of energy E0 and at an 

angle 0 with respect to the 

surface normal. 
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For the surface penetration probability, a planar surface model is employed with a threshold being 

equal to the surface binding energy Us, which has to be overcome by the normal fraction of the recoil 

energy: 

 

 

The stopping of the recoils is represented by their nuclear stopping in an approximation using the 

power law potential, eq. (2.16), yielding for m0 

 

where 0 denotes a power law constant and a the screening distance. Then, integration of (13.6) results 

in 

 

 

The damage function is approximated by the nuclear energy deposition of the incident ion. However, 

it has to be recalled that the transport theory is valid for the cascade evolution in an infinite medium 

with an internally starting ion, with an artificial surface plane to calculate the sputtering yield, so that 

the sputtering yield will be overestimated the more as a significant fraction of the cascade forms 

beyond the "surface" in the infinite medium. This will mainly depend on the masses of the incident ion 

and the target material: For large incident ion mass, the real cascade will mainly develop in forward 

direction, so that the error remains small, whereas for light ions the probability of momentum reversal 

increases. Therefore, a correction factor  is applied. The theoretical calculation of  is complicated 

and only successful for high ion-to-target mass ratios. Therefore, a numerical fit obtained from 

comparisons of experimental results to eq. (13.10) is employed, which is shown in Fig. 13.3. 

 

 

 

The sputtering yield then results according to 
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Dependence of the correction 

factor , eq. (13.10), on the 

target-to-ion mass ratio. 
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where the last factor describes the simple geometrical dependence of the deposited energy in the 

surface layer as function of the angle of incidence. 

 

For the evaluation of (13.10), the sublimation enthalpy is normally inserted as surface binding energy 

for one-component materials, which amounts to about 2 ... 8 eV. For the very low energies of most of 

the recoils, 0   24 and a  0.022 nm are reasonable values with universal validity.  

 

Due to the approximations involved in its derivation, the final sputtering yield formula (13.10) 

neglects the fact that at very low ion energy the maximum energy transfer to target recoils can be 

lower than the surface binding energy so that sputtering is excluded. A particular situation arises for 

light ions, where also the single-collision regime (see Fig. 9.3a) is more appropriate which is difficult 

to be treated by transport theory. For light ions, the characteristic single-collision-regime sputtering 

event occurs after backscattering of the ion, as depicted in Fig. 13.4. For this situation with single 

backscattering of the ion, the maximum energy is received by the surface atom for 180
o
 backscattering 

of the ion and a head-on collision with the surface atom: 

 

 

  

 

 

 

 

 

 

 

 

from which a sputtering threshold energy of the incident ion can derived according to  

 

However, the ion could also be backscattered by two subsequent collisions at about 90
o
, which would 

result in a larger final energy at the surface compared to one 180
o
 collision when electronic energy loss 

is neglected, or by a series of small-angle scattering events with even higher final energy, which 

becomes increasingly improbable and which would finally be influenced by significant electronic 

energy loss. Thus, it is not readily feasible to define an exact threshold energy for sputtering.  

Semiempirical formulas have been proposed to include threshold effects, partly based on fits to 

experimental results, such as (for normal incidence) 

with the correction function 

 

 

and a modified expression for the threshold energy 
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Light-ion sputtering event in the  

single-collision regime. 
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The sputtering yield for nitrogen ions incident on iron, according to eqs. (13.10) and (13.15), is shown 

in Fig. 13.5. The threshold correction reduces the sputtering yield at low energies significantly. As 

linear cascade sputtering scales with the nuclear stopping, the maximum sputtering yields are between 

about 0.01 for light ions and 50 for the heaviest ions, corresponding to energies between about 100 eV 

and 100 keV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An early comparison to experimental data is shown in Fig.13.6 for different rare gases incident on 

copper. There is a very good agreement between experiment and the prediction of eq. (13.10), except 

for the highest energy densities around the nuclear stopping power maximum for the heaviest 

projectile, xenon. This inconsistency is attributed to a significant influence of thermal spikes on 

sputtering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13.6 

 

 

 

 

 

 

Fig. 13.5 

 

Sputtering yield versus ion energy for 

nitrogen ion at iron at normal incidence, 

from the Sigmund formula (solid line, eq. 

(13.10)), the Bohdansky formula (dashed 

line, eqs. (13.13-15)) and different TRIM 

simulations, from SRIM vs. 2000.39 

(dots), and TRIDYN vs. 4.0 (see ch. 15) 

(circles). 

Fig. 13.6 Experimental data and theoretical predictions of sputtering yields vs. ion energy, for 

the bombardment of copper with different rare gases at normal incidence. Different 

symbols correspond to different data sets. Solid lines are from eq. (13.10), dashed 

lines from a low-energy approximation to nuclear stopping. 
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In the planar surface model, a recoil arriving at the surface is emitted if its energy is sufficiently large 

and its directional angle sufficiently small (see Fig. 13.7). The planar surface potential reduces the 

energy of the sputtered atoms and deflects their trajectories. With the parallel velocity component 

conserved and the normal velocity component reduced, the energy E1 and the ejection angle 1 of a 

sputtered atom are given by the equation set 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eq. (13.5) then yields the energy and angular distribution of sputtered atoms (for normal ion 

incidence) 

 

 

The cosine dependence of the angular distribution is a consequence of the assumption of an isotropic 

cascade. The functional shape of the energy distribution ("Thompson" distribution) is shown in Fig. 

13.8 in logarithmic presentation. The distribution peaks at half the surface binding energy, but has a 

rather broad tail towards higher energies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Integration with the upper limit of the incident energy yields the mean energy of sputtered particles 

 

 

For an incident energy of 1 keV, which is typical for thin film deposition by sputtering, a typical 

surface binding energy of  about 4 eV results in a mean energy of sputtered atoms of about 30 eV. 
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Schematic of a sputtered (left) and a 

backreflected recoil, in the model of a 

planar surface threshold. 
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Energy distribution of 

sputtered particles, normalised 
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13.2 TRIM Computer Simulation 

 

Naturally, BCA computer simulations can also be applied to predict sputtering yields as well as 

angular and energy distributions, after including the planar surface threshold model as shown in Fig. 

13.17, and applying eqs. (13.7) and (13.16). Special results of sputtering yields calculated by TRIM 

are included in Fig. 13.5 and found in reasonable agreement with the analytical predictions. As stated 

in ch. 11, the results depend on the choice of hidden parameters. For sputtering simulations, the choice 

of the interatomic potential and the bulk binding energy are of particular importance, in addition to the 

surface binding energy. Further, the treatment of electronic stopping can be of significant influence. 

Therefore, different versions of TRIM do not necessarily deliver identical sputtering yields, as seen in 

Fig. 3.17. Nevertheless, the differences are normally small in view of other uncertainties. It can be 

concluded that, provided that all parameters are chosen within reasonable limits, sputtering yields of 

all elemental targets can be simulated with a precision of about 50%. 

 

With respect to analytical sputtering calculations, a real advantage of the computer simulations is their 

ability to cover the sputtering by light ions, where the transport theory for the infinite medium is in 

large error due to the neglect of the surface, and which is often associated with the single-collision 

regime. Fig. 13.9 demonstrates an excellent agreement with experimental data for the sputtering of 

nickel with different gaseous ions over a large range of energies and for widely different sputtering 

yields, in particular also for the lightest ions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14. Thermal Spikes 

 

 

The treatment of thermal spikes (see ch. 9) in literature is much less rigorous than for the linear 

cascade regime, as a complicated situation arises in the transition between dense linear cascades and 

an effective thermalisation of the atoms in a cascade. However, more recent molecular dynamics 

computer simulation, which are not the subject of the present presentation, have gained increased 

information on this regime.  

 

Fig. 13.9 

 

Sputtering yield of 

gaseous ions at 

normal incidence 

onto nickel, from 

experiment (open 

symbols) and TRIM 

computer simulations 

(crosses, full 

symbols).The lines 

are drawn to guide 

the eye. 
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It should be noted that here we still cover "collisional" spikes, i.e. at energies above about 1 eV which 

are of interest for the formation of defects and for sputtering. Thermal spikes in a more general sense 

will result from any cascade which finally will thermalise towards the temperature of the surrounding 

material. Atomic rearrangements with low activation energies may still occur at such low energies, but 

will not be the matter of the present discussion. 

 

 

 

 

 

 

 

 

 

 

 

For a simple picture of a thermal spike (Fig. 14.1), the evolution of a cylindrical cascade around a 

linear ion track is assumed, which is justified at large ion masses and high energy. Neglecting energy 

loss, the system is translationally invariant in the direction of the depth x. For simplicity, a zero 

temperature of the material is assumed as initial condition. At t = 0, the time of the ion incidence, 

energy is deposited within a negligible time interval along the ion track, with the energy deposition 

function being idealised by an areal  function in circular symmetry, leading to an initial temperature 

in the track according to 

 

 

with the normalisation 

     

In eq. (14.1),  and c denote the mass density and the specific heat of the material, respectively. 

Around the track, a thermal wave develops in radial direction according to the law of thermal diffusion 

 

 

with the thermal conductivity . The solution yields the temperature at radial distance r as function of 

time t:  

 

which fulfills eq. (14.1) as 

 

Fig.14.2 shows a solution for a special case. Close to the ion track, temperatures of a few 10
4
 K 

(corresponding to a few eV) are predicted, so that the material will be liquified and probably be 

evaporated. The thermal pulse dissipates quickly at larger distance from the track. The characteristic 

time scale, however, demonstrates an inherent contradiction, as it is in the order of one lattice 

vibration period only, so that the above continuum picture is hardly valid.  
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Simplified picture of a cylindrical 
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It makes little sense to apply the thermal spike picture to the formation of radiation damage, since 

radiation damage in a liquid is meaningless, and since excessive dynamic annealing will occur at the 

very high temperature after solidification or at radii where the substance remains in the solid phase. 

However, one may attempt to calculate sputtering in the thermal spike picture. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sputtering is modelled by the evaporation from the thermal spike at the surface. For a Maxwellian 

energy distribution of atoms with mass m, the energy of which exceeds the surface binding energy, the 

outward flux is given by 

 

Thereby, the sputtering yield results according to 

 

 

With the approximation c  3nk for the specific heat, the integration yields  

 

 

 

which shows the nonlinear dependence on the stopping power in the thermal spike regime.  

 

For the example of xenon in copper the maximum nuclear stopping power is chosen, which is about 

6.5 MeV/m at an energy of about 250 keV. (At this energy, electronic stopping contributes only 

about 10% to the total stopping.) With the room temperature value of the thermal conductivity, the 

evaluation of eq. (14.8) yields a sputtering yield of Y  1. However, the thermal conductivity in the 

liquid might be smaller by a factor of 2 or 3. Nevertheless, the result is still significantly below the 

difference of experimental data and linear cascade prediction in Fig. 13.6, indicating that the above 

formalism might be insufficient to treat the sputtering from a thermal spike. 
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Thermal pulse at different 

radial locations for 500 

keV xenon ions incident 

onto nickel 
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15. High-Fluence Phenomena     

 

 

The preceding chapters did only cover low-fluence phenomena, i.e. the dynamic alteration of the 

target substance due to ion implantation or the formation of defects has been neglected so far. 

Sputtering yields can be extrapolated to large fluences as long as the material remains unchanged 

during sputtering. This dose not hold for the sputtering of multicomponent substances, where the 

collision cascades or preferential sputtering may change the surface composition even in a 

homogeneous material, and/or modify the local composition of a layered substance.  

 

 

15.1 Dynamic Binary Collision Approximation Computer Simulation 

 

The BCA computer simulation of ion bombardment and collision cascade formation can be modified 

in a straightforward manner to treat dynamic compositional changes of the substance. Here, the 

TRIDYN code will be described which is based on TRIM.  

 

A multicomponent material with atomic components denoted by j (j = 1,...,M) is modelled, where one 

or more of these components may be attributed to species of the incident beam. An arbitrary local 

stoichiometry can be chosen, represented by discrete depth intervals xi (i = 1,...,N). Each depth 

interval is characterised by the fractional compositions qij with 

 

and a total atomic density ni given by 
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Scheme of the dynamic computer 

simulation in binary collision 

approximation (TRIDYN).                  

(a) A pseudoprojectile is implanted and 

generates sputtering and recoil atoms. 

(b) "Vacancies" and "interstitial atoms" 

are left behind. 

(c) The individual slabs relaxe.   
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where nj0  (j = 1,...,M) denotes the elemental atomic densities of the pure component j, i.e. the inverse 

of the atomic volume of species j. The elemental atomic densities are fixed input parameters, i.e. any 

atomic volume changes due to chemical effects are neglected.  

 

The principle of the TRIDYN simulation is schematically shown in Fig. 15.1. The depth of interest is 

initially subdivided into N slabs of equal thickness x0. The slowing down of the first pseudoprojectile 

and its associated collision cascades are simulated. Ion implantation, sputtering and recoil relocation 

result in the addition and/or the removal of "pseudoatoms" to/from certain depth intervals. Each of 

such events represents a change of the areal densities of real atoms in the affected slabs according to 

the pseudoprojectile normalisation, eq. (11.14). Denoting the change of the number of pseudoatoms of 

species j in each layer i by  Nij, the new areal densities of any species j in each layer i is given by 

     

 

Depth intervals i with Nij  0 for at least one j may then be compressed or diluted with respect to their 

nominal density given eq. (15.2), and are allowed to relax according to 

 

 

which restores the nominal density. The new relative local fractional compositions result as 

 

By this procedure, certain slabs may become very thin or excessively thick. These are added to a 

neighbouring slab or split into to slabs of half thickness, respectively. In TRIDYN, the conditions for 

slab combination and splitting are xi < 0.5 x0 and xi > 1.5 x0, respectively.  

 

After relaxation, the next pseudoprojectile is simulated, and the complete procedure is repeated for the 

chosen total number NH of pseudoprojectiles, corresponding to a fluence tot of incident ions (see eq. 

(11.14)). For a given fluence, the number of pseudoprojectiles has to be chosen sufficiently large in 

order to obtain a sufficient statistical quality of the result. At an excessively small total number of 

pseudoprojectiles, the number of added or removed atoms per pseudoprojectile in certain slabs may 

even exceed the total number of atoms in that slab, which has to be avoided. As a rule of experience, 

the number of atoms in any slab should not change by more than about 5% per pseudoprojectile 

throughout the whole run in order to avoid artefacts.    

 

 

15.2 Local Saturation 

 

Towards high fluence, the relative atomic concentration ci(x,t) of an implanted species with the range 

distribution fR(x) increases according to  

 

where n denotes the atomic density of the target substance and ji the incident ion flux. The simplest 

approach to high-fluence implantation profiles is to neglect any changes in n and fR, which arise from 

the presence of the implanted species, and thereby just to scale the range distribution, so that 
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where  denotes the implanted fluence. Eq. (15.7) neglects any relaxation of the target substance and 

is thus strictly valid only for small relative concentrations. The relative concentration can be turned 

into the fractional composition of the implanted species according to 

 

In reality, there will often be a limitation of the concentration of the implant, such as maximum 

concentrations of implanted gaseous ions which can be accommodated, or stoichiometric limits in ion 

beam synthesis. This can be accounted for in the simple model of "local saturation", which assumes 

that any atom which is implanted into a region where the maximum concentration has already been 

reached, is immediately released from the substance. In this model, the profile evolution with a 

maximum concentration ci,max is given by  

 

 

Fig. 15.2(a) shows an example of implantation profiles calculated in the local saturation 

approximation, on the basis of a range profile calculated by TRIM. 
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Profiles of local saturation for 100 

keV nitrogen implanted into 

silicon, with a maximum atomic 

fraction of 0.571 corresponding to 

Si3N4. The fluences are 2.510
17

 

cm
-2

 (solid line), 510
17

 cm
-2

 

(dotted line), 110
18

 cm
-2

 (dashed 

line), are 210
18

 cm
-2

 (dashed-

dotted line) and 410
18

 cm
-2

 (solid 

line). 

(a) Simple scaling of the range 

profile according to eq. (15.9), 

with the range profile taken from 

TRIM (SRIM 2000-39). 

(b) From TRIDYN calculation 

including range broadening and 

sputtering. The nitrogen peak at 

the surface is due to preferential 

sputtering (see sect. 15.4). 

(c)  From TRIDYN calculation 

with simple model of "diffusion". 
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In reality, high-fluence implantation profiles are influenced by a number of effects which cannot easily 

be covered by a simple model. The presence of the implanted species influences the stopping and 

scattering of the incident ions so that the range profiles may be changed during the implantation. This 

may lead to a distortion of the implantation profiles in addition to the distortion which is caused by the 

relaxation of the host matrix ("swelling" due to the implanted atoms). Both are covered by dynamic 

BCA computer simulations. The model of local saturation can easily be incorporated into the 

simulation, by limiting the maximum concentration of the implanted species. The result from a 

TRIDYN calculation is shown in Fig. 15.2(b). In comparison with the simple analytical approach, 

already the profile corresponding to the lowest fluence displayed is broadened due to swelling. 

Towards the highest fluences, the profiles are further broadened and shifted towards the surface, due 

to sputtering. 

 

In TRIDYN, it is also possible to employ a simplistic model of "diffusion", in which excess atoms are 

deposited in the non-saturated regions at the edges of the profiles rather than being discarded. 

(Actually, an atom coming to rest in a saturated region is moved to the closest depth interval which is 

not saturated.) The result is shown in Fig. 15.2(c), with considerable additional broadening towards the 

surface for the highest fluences. It depends critically on the system under investigation which of the 

above models can be applied. 

 

 

15.3 Sputter-Controlled Implantation Profiles 

 

In the example of Fig.15.2, the ion energy has been chosen sufficiently large so that the surface layer 

which is removed by sputtering is small compared to the mean projected ion range, and that the local 

saturation is not significantly influenced by sputtering. In contrast, at sufficiently small projected 

range and/or sufficiently high sputter yield, the high-fluence implantation profiles can be controlled 

entirely by ion deposition and sputtering. A qualitative picture is shown in Fig. 15.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15.3 

 

Schematic representation of 

the formation of sputter-

controlled implantation 

profiles. Range distribution 

and low-fluence profiles (top) 

with the surface moving with 

a velocity vs due to 

sputtering, transient profile 

(middle) when the sputtered 

depth becomes comparable to 

the mean projected range, 

and stationary final profile 

(bottom). 
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Due to sputtering, the deposition profile is shifted towards the surface. Simultaneously, additional ions 

are implanted at the deep edge of the profile, which causes a profile broadening. Finally, when a 

surface layer which is thick compared to the projected range is sputtered off, a stationary profile is 

established with a high concentration at the surface, with the ingoing ion flux being balanced by the 

sputtered flux. 

 

For a simplified treatment, a Gaussian range distribution is assumed according to 

 

 

where x is the depth in the system of the moving surface. According to the transformation into the 

fixed laboratory frame,  

 

where vs  denotes the surface velocity due to sputtering, the range distributions  

 

 

are superposed in the laboratory frame with increasing time. The resulting time-dependent 

concentration of the implant is with the ion flux ji, for x' > vst  

 

According to its definition, eq. (13.1), the sputtering yield it is related to the surface velocity by 

 

 

By integration of (15.13), transformation to x and normalising to the host atomic density, the relative 

time-dependent concentration of the implant becomes, with erf denoting the error function 

 

It has been implicitly assumed that the sputtering yield is independent of time, which is an 

approximation since it might be significantly influenced by the presence of the implanted species. 

Further, eq. (15.15) is strictly valid only for small concentrations of the implant, as eq. (15.14) 

becomes invalid for large surface concentration of the implant. This requires a sputtering yield which 

is significantly larger than one. From (15.15), the stationary implantation profile in the limit of long 

time becomes  

 

The results (15.14) and (15.15) are qualitatively shown in Fig. 15.3. From (15.16), the surface 

concentration results for a sufficiently narrow Gaussian,  << Rp, as 
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i.e., the relative surface concentration is given by the inverse of the sputtering yield. 

 

More exact sputter-controlled implantation profiles can be obtained from dynamic BCA simulations. 

Fig. 15.4 shows the retained amount and a sequence of implantation profiles for sulfur ions incident on 

molybdenum. The depth profile at the lowest fluence, which reflects the range profile, becomes 

significantly distorted at the higher fluences. Stationarity is obtained at a fluence around 1.510
17

 cm
-2

, 

after about 20 nm, which is approximately 2.5 times the mean projected range, have been sputtered 

off. Compared to the simple error-functional shape predicted by eq. (15.16), there is a concentration 

drop at the surface due to preferential sputtering (see sect. 15.4). Nevertheless, the stationary profiles 

exhibit a nearly flat top with an atomic fraction of about 0.4, corresponding to a relative concentration 

(see eq. (15.8)) of 0.67. The sputtering yield for 10 keV sulfur ions incident on molybdenum is 2 

according to the Sigmund formula, eq. (13.10). Thereby, the simple analytical result of eq. (15.17) is 

about 30% smaller. 

 

The result demonstrates the impossibility to reach the concentration of the stoichiometric compound, 

MoS2, under the present conditions. 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15.4 Preferential Sputtering 

 

According to eq. (13.10), the sputter yield is inversely proportional to the surface binding energy. It 

also increases with the energy transfer from the incident ion to the target atoms. Both may be different 

for the different atomic species in a multicomponent target material. In the limit of low fluence, the 

total sputtering yield can, in a first approximation, be superposed from the different components i 

according to their surface concentration. For this purpose, so-called "component" sputtering yields Yi
c
 

are defined such that the partial sputtering yields Yi  are given by 
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Sputter-controlled implantation 

profile for 10 keV sulfur in 

molybdenum from a TRIDYN 

(vs. 4.0) computer simulation. 

Retained amount vs. ion fluence 

(top) and corresponding 

implantation profiles (bottom), at 

fluences of 1.510
16

 cm
-2 

(solid 

line), 310
16

 cm
-2

 (dotted line), 

610
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 (dashed line), 1.210
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cm
-2

 (dashed-dotted line) and 

2.410
17

 cm
-2

 (solid line). At the 

final fluence, a surface layer of 

27.5 nm has been sputtered off.  
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with qi
s
 denoting the surface atomic fractions. The total sputtering yield is then 

 

 

The linear dependence of the partial yields of the surface concentrations neglects any composition-

dependent effects on the sputtering such as due to chemical compound or phase formation. For solid 

components, the component sputtering yields can be identified with the sputtering yields of the pure 

material of that component (qi
s
=1 in eq. (15.18)). 

 

For different component sputtering yields,  the equation 

 

holds for at least one pair of components (i,j). In this case, one or more components are sputtered 

preferentially. 

 

Consequently, the surface concentrations are altered at increasing fluence even in a homogeneous 

material. For simplicity, we assume a two-component material with the components A and B, with A 

being sputtered preferentially. The surface concentration of A, and thereby the partial sputtering yield 

of A, will then decrease with increasing fluence towards a stationary state, which is given by  

 

where Yi

  denote the stationary partial sputtering yields and qi the bulk atomic fractions. Eq. (15.20) 

simply states mass conservation, as in the stationary state the altered composition profiles remain 

constant but are moved into the bulk due to sputter erosion, so that atoms sputtered at the surface must 

be balanced by atoms fed from the bulk into the altered layer (see Fig. (15.5)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By relating eq. (15.18) for both components and combining with eq. (15.21), the following expression 

is obtained for of the stationary surface composition with the atomic fractions (qi
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i.e., the final surface composition is determined uniquely by the initial partial sputtering yields Yi
0
. 

 

An example is given in Fig. 15.6 for the preferential sputtering of Ta2O5 by helium ions. The energy 

transfer to oxygen atoms is larger than to tantalum atoms. In addition, for the rather low light ion 

energy, threshold effects become important in particular for tantalum. (Eq. (13.12) yields a helium 

threshold energy of about 100 eV for the sputtering of pure tantalum.) Both effects result in a strong 

enrichment of tantalum at the surface. For a wide range of angles of incidence, the experimental values 

are in good agreement with eq. (15.22), and also with the results of TRIDYN computer simulations. At 

the first glance, the pronounced dependence of the stationary surface concentration on the angle of 

incidence is surprising, since a cos
-1
 dependence (see eq. (13.10)) is expected for the partial 

sputtering yields of both oxygen and tantalum, so that eq. (15.22) would predict a stationary surface 

composition which is independent on the angle of incidence. Actually, the angular dependence is due 

to details of the collision sequences which cause sputtering. The heavy tantalum atoms are little 

influenced by the presence of oxygen. In contrast, oxygen atoms may be significantly scattered by 

tantalum, which results in a weaker dependence of the partial oxygen yield on the angle of incidence. 

 

 

A second example is displayed in Fig. 15.7 for the sputtering of tantalum carbide by helium. The inset 

shows the evolution of the partial sputtering yields, as obtained from TRIDYN computer simulation. 

Initially, carbon is sputtered strongly preferentially and denuded at the surface. Consequently, its 

partial yield decreases, whereas the partial yield of tantalum increases. Both converge to a ratio of 1:1 

according to eq. (15.21). The total stationary sputtering yield, as obtained from the simulation, shows  

good agreement with the experimental data. 

 

 

 

Fig. 15.6 

 

Stationary surface composition 

due to preferential sputtering 

during 1.5 keV helium 

bombardment of tantalum oxide 

versus the angle of incidence, 

from experiments using Auger 

electron spectroscopy (dots) and 

ion surface scattering (triangles), 

TRIDYN dynamic computer 

simulations (squares), and 

calculated using eq. (15.22) for 

each angle (crosses connected by 

line) with initial partial sputtering 

yields from the TRIDYN 

simulations. The angle of 

incidence is defined with respect 

to the surface normal.  
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15.5 Ion Mixing 

 

In an inhomogeneous multicomponent substance, the relocation of atoms due to ion knockon and in 

collision cascades results in "mixing" of the atoms. Prototypes of inhomogeneous materials are a thin 

marker of atoms A in an otherwise homogeneous material B, and an A/B bilayer as a simple example 

of a multilayer medium (Fig. 15.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are three main mechanism of ion mixing, as indicated in Fig. 15.9. Matrix atoms can be 

relocated by primary collisions into or beyond the marker; this leads to marker broadening and to a 

shift towards the surface. Marker atoms, which are relocated by primary collisions towards larger 

depth, result in a tail of the marker profile, and thereby in a broadening and a shift towards the bulk. 

Finally, collision cascades initiated by sufficiently large primary energy transfers are more or less 

isotropic and cause mainly a broadening of the marker. These events interact in a complicated way. A 

simple analytical prediction can only be obtained for the isotropic cascade mixing [22]. 

 

For a marker system, the relocation of the marker atoms is described by relocation cross section 

d(x,z), which describes the displacement of a marker atom due to ion bombardment, with an energy 

transfer T at a starting angle  from an original depth x  by a depth increment z (see Fig. 15.10). 

 

Fig. 15.7 

 

Total stationary sputtering 

yield of tantalum carbide 

during helium bombardment, 

as function of the ion energy, 

from TRIDYN computer 

simulation (full points) and 

experiments (open triangles). 

The line is from an empirical 

fit function. The inset shows 

the dependence of the partial 

sputtering yields on the ion 

fluence, at an energy of 1 keV. 

Fig. 15.8 

 

Schematic of ion mixing 

in a marker system (thin 

marker M in a matrix A, 

top) and in a bilayer 

system (layer A on top of 

a layer or bulk B, bottom). 

Due to ion bombardment, 

the marker and the 

interface become diffuse, 

respectively. 

M A 

A B 
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Fig. 15.9 

 

 

 

For many incident ions, multiple displacements are obtained. The mean displacement of a marker 

atom for a given ion fluence  is 

and the variance (to be shown in analogy to the variance of electronic energy loss - see sect. 6.3) 

 

Collision cascades are mainly developed by matrix atoms, as the number of marker atoms is small. 

Matrix atoms of the cascades may collide with marker atoms thus causing them to be relocated. The 

relocation cross section is then given by  

 

 

The first line of eq. (15.24), in the notation of chs. 10 and 13, denotes the flux of matrix cascade atoms 

through the marker plane at x. The second line contains the probability of collisions dm with marker 

atoms, which receive an energy transfer T at a direction '. The cosine term reflects the increased 

collision probability at an inclined direction of the matrix atom. fR denotes the range distribution of the 

marker recoil atom. Similar to the treatment of sputtering (see eq. (13.5)), the area integral of the 

cascade function F can be written as 

 

 

with FD now denoting the one-dimensional damage function and Sm the stopping cross section of the 

matrix atoms in the matrix.  

 

 

 

 

 

 

 

 

 

 

Mechanisms of ion mixing in a marker system: Matrix relocation (left), 

marker relocation (middle) and cascade mixing of the marker (right).  

Rp(T) 

 

x x+z 

Fig. 15.10 

 

Relocation of a marker atom 

starting at an angle  with an 

energy transfer T. Rp denotes its 

projected range. 
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For power law-scattering, again with m0, the evaluation of (15.23-25) yields 

 

 

where  denotes the energy transfer factor, Sn the nuclear stopping cross section of the incident ions at 

the mean energy at the depth of the marker, Um a threshold energy of marker atoms below which no 

relocation occurs, and Rc the associated mean projected range.  

 

The definition of the threshold energy is questionable to some extent. It can be assumed to be 

significantly smaller than the damage threshold energy Ud, as replacement sequences might influence 

the relocation more than the Frenkel pair formation. Further, in contrast to the formation of isolated 

Frenkel pairs, ion mixing is a high-fluence phenomenon, so that the substance can be assumed to be 

already heavily damaged. Stable relocation might then result from much smaller initial recoil energies 

than stable Frenkel pair formation in an undisturbed lattice. From experience, a choice of 8 eV has 

turned out to reproduce experimental data of collisional mixing rather well. 

 

 

Fig. 15.11 shows an example of marker mixing with 300 keV xenon ions. The analytical prediction 

(eq. (15.25)) is seen to underestimate the experimental data significantly, as it only covers isotropic 

cascade mixing. Dynamic BCA computer simulation does not suffer from this restriction. However, 

the mixing results also depend critically on the choice of the cutoff energy, so that the TRIDYN result 

is in rather good agreement with experiment. (The wide span of experimental data should also be 

noted, indicating experimental difficulties.) TRIDYN also offers the possibility to suppress matrix or 

marker recoils. Both results are in reasonable agreement with the analytical prediction, which is 

probably fortuitous as the analytical approach does not cover the recoils of an individual species, but 

the combination of both. However, the computer simulation demonstrates that the effects of matrix 

and marker recoils interact strongly (a quadratic summation of both remains significantly below the 

results when both species are taken into account). This is due to correlation of the marker broadening 
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Fig. 15.11 

 

Collisional mixing (half 

width at half maximum of 

the marker profile) by 300 

keV Xe ions for an initially  

thin platinum marker in 

silicon at an initial depth of 

75 nm, from experiments 

(dashed line, crossed dots), 

the analytical formula of 

cascade mixing - eq. (15.25) 

(solid line), and TRIDYN 

computer simulation 

(circles) with a cutoff 

energy Um = 8 eV. Results 

from TRIDYN are also 

shown for the treatment of 

matrix recoils (triangles) 

and marker recoils (crosses) 

only.   
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with the marker shift, which exhibits a different sign for matrix and marker knockon as discussed 

above. 

 

 

In general, ion mixing and sputtering, including preferential sputtering, interact in a complicated way. 

For such problems, simple analytical descriptions are not available so that the dynamic computer 

simulation remains as the only viable instrument. Fig. 15.12 shows an example of sputter removal of a 

thin film, as it is frequently used for near-surface depth profiling by, e.g., secondary ion mass 

spectrometry or Auger electron spectroscopy. The initially sharp interface is significantly broadened 

when it is reached after sputtering. As the range of 500 eV xenon ions in germanium is only about 2 

nm, cascade mixing only occurs when the remaining Ge thickness is in the order of the ion range or 

less. However, recoil implantation and long-range collision sequences also play a role, which is 

confirmed by the high asymmetry of the interface mixing. In Fig. 15.12, the crossover of the Ge and Si 

signals, which would normally be taken for the interface position, deviates significantly from the 

fluence at which a equal layer of pure germanium would have been sputtered off. Thus, mixing and 

recoil implantation might cause artefacts for the interpretation of depth profiling experiments. 

 

  

 

 

 

 

 

 

 

Fig. 15.12 

 

Mixing of a bilayer system 

during sputter erosion by 500 

eV xenon bombardment, as 

indicated by the surface 

composition (top) and the 

partial sputtering yields 

(bottom) during the 

irradiation, from a TRIDYN 

computer simulation. The 

dashed line indicates the 

fluence at which the original 

Ge thickness of 25 nm would 

be sputtered off with the 

initial sputtering yield of 

germanium. 


