
Technische Universität Dresden

Faculty of Computer Science

Institute of Software- and Multimedia Technology

Chair of Computer Graphics and Visualization

Prof. Dr. Stefan Gumhold

Student thesis

Simulation and visualisation of the electro-magnetic

field around a stimulated electron

Annett Ungethüm

(Mat.-No.: 3116073)

Tutor: Prof. Dr. Stefan Gumhold

Dr. Michael Bussmann

Dresden, October 30, 2012





Abstract

A mathematical method introduced by T. Shintake has been adapted and enhanced to compute and visualize

electro-magnetic fields around moving charges interactively and in real-time. It is based on two conditions:

Firstly, the waves travel with the speed of light. Secondly, their initial radial emission is affected by the

charges velocity. Additionally some field quantities, e.g. the wavelength and vectorial dimensions, are

computed and visualised. Furthermore alternative ways for a field representation have been implemented.
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List of symbols

Symbol

a Index, specifies a certain step of the

computation

a Multiplicative constant, varies the

amplitude of the sine trajectory

B, ~B Magnetic field, magnitude and

vectorial dimension

Colour value in RGB space: blue

The observer’s position

c Speed of light

d Distance
~d Vector from a point to a light source

e Elementary charge

Used as index: refers to the actual

status of the electron

~e Vector from a point to an observer

E, ~E Electrical field, magnitude and

vectorial dimension

An event

The electron’s position at a certain

event

f Frequency

Auxiliary variable for converting

from HSV to RGB space

Flag declaring a position as part of a

wave front

G Colour value in RGB space: green

h Auxiliary variable for converting

form HSV to RGB space

h Planck constant
~h Halfway vector

H Colour value in HSV space: hue

i Index specifying a certain position on

a field line/a certain step of the

computation

j Index specifying a certain field line

K Parameter describing the undulator
~k Wave vector

Symbol

me Rest mass of an electron

M Centre of a wave front

~n A normal

P A position on a field line

A certain particle

q Auxiliary variable for converting

form HSV to RGB space

q Constant controlling the particle

fading

Q Charge

r Radius

R Colour value in RGB space: red

s Distance in space

S Position in space

Colour value in HSV space:

saturation

t Time

Auxiliary variable for converting

form HSV to RGB space

v Velocity

V Colour value in HSV space: value

W Position on a wave front

α Angle

Alpha value for colours

ε Permittivity

Break condition for numerical

algorithms

ϑ Parameter for sampling a sphere

λ Wave length

ϕ Parameter for sampling a sphere

ω Varies the wave length of the

undulator trajectory

~g Vector

ĝ = ‖~g‖ Normalised vector

| g | The length of a vector
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1 Introduction

Electrodynamics is not rumoured to be very intuitive. Charges which cannot be seen emit radiation which

mostly cannot be seen. Furthermore relativistic effects occur when charges move very fast. Therefore models

are needed in order to make this topic comprehensible. There are many mathematical models of which some

are only applicable for certain cases. But there are only a few graphical models. Traditional representations

of electromagnetic fields are static 2D pictures of static fields. They show the electric field as lines. Starting

at the charge positions they diverge radially outwards while the magnetic field is pictured by a collection of

circles orthogonal to the field lines as shown in fig. 1.1a and 1.1b. As long as the charges move significantly

slower than the speed of light this is a sufficient approximation. Changing this condition leads to two major

problems: First, the field is not time-invariant anymore. This can hardly be pictured by static images.

Second, a third dimension of space is necessary to satisfy the human visual perception. The combination

of these two aspects results in a 3D real-time simulation. This is a challenging task which has rarely been

undertaken yet. But the range of possibilities for a visualisation is wide. Since electro-magnetic waves cannot

be seen by the human eye, reality sets no limits.

In [22] Shintake presents a numerical method for creating real-time simulations of electro-magnetic fields.

As the according implementation, “Radiation 2D” , is still a 2D visualisation, the basic idea was reused in

a practical course of the TU Dresden and the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) to develop

a 3D version, “Radiation 3D” [15], which is part of a project visualising light-matter-collision experiments

performed at the research centre HZDR. This is the starting point for this work.

Previous works

There are several techniques for imaging vector fields in general. Stream surfaces[16], -lines[25], -polygons[20]

and -tubes[4] are just a selection of techniques which use geometrical elements to visualise vectors directly.

Other approaches like Cabral’s and Leedom’s Line Integral Convolution[3] or de Leeuw’s and van Wijk’s

Spot Noise[5] modify textures to map a vector field.

An implementation which uses Spot Noise and Stream Tubes is Vapor[2]. Despite that Vapor’s field

of application is not simulating electro-magnetic fields but ocean, atmosphere, and solar research, it suffers

from some restrictions. Both techniques cannot be animated simultaneously and the Spot Noise is reduced

to a slice. Besides the FAQs on the homepage support a conclusion that there are difficulties concerning the

performance on older systems.

Radiation2D[15] simulates an electro-magnetic field but hardly uses any other visualisation method than

simple line strips and circles in 2D space.

Another program for the simulation of electro-magnetic fields is FIELDS[23]. It introduces several

potentials and generates a variety of graphical outputs including vector arrows, colour encoded potentials

and field strengths and isolines. Even if the functionality is extensive, the user interface is a command line

which is far from intuitive, the graphical output is mostly only in 2D and not animated. Moreover, there is

no consistent evaluation method for the different field problems, of which only the static dimension can be

solved. Depending on the exact problem, the Poisson, Laplace or the vector potential equation is solved.

D. Fleisch presents some selected field representations for educational purposes on his website[9]. They

are neither animated nor do they treat a moving charge but they are available as 3D models in VRML1.

It seems there is no other simulation of fields around moving charges which generates a graphical output

in 3D and in real time. The first version of Radiation3D[15] already contains some of these points but is still

missing some information, e. g. a representation of the field strength and is imprecise in some calculations,

e. g. the trajectories.

This work improves and extends Radiation3D significantly by adding new functionality and more physical

correctness by explaining the used main concept and adding new information to the visualisation. Additional

representations which are different from field lines and wave fronts are introduced.

1 Virtual Reality Modeling Language, a predecessor to X3D
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(a) A classical representation of an electro-
magnetic field around a point charge

(b) A point charge. Representation by
T. Shintake[22].

(c) A negative point charge. Representation by
D. Fleisch[9].

Fig. 1.1: Different representations of a static field
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2 The Shintake concept and its further development

Working with models

For making physical phenomena comprehensible and explainable a variety of models is used. They are no

exact images of reality but rather outline the main idea of what we understand about reality. Just like

a solid sphere is a very idealised model of the earth, field lines are a coarse grained model for describing

electro-magnetic fields. Of course the field also exists where there are no field lines. Wave fronts are also just

a model. Waves are continuous but defining certain positions on them, like wave fronts, eases the explanation

of different effects like oscillating fields. This work uses the idea of field lines, waves and wave fronts for

modeling a comprehensible simulation and visualisation.

2.1 The basic idea

A real time simulation of non static electro-magnetic fields requires the recalculation of the whole field for

every frame, ideally more than twenty times per second. Therefore solving Maxwell’s equations explicitly

is not optimal. They either require solving integrals around closed loops or differential equations for every

desired position in space which leads to a massive resource load, if it is done numerically and in a high

frequency.

Another approach is introduced in [22]. It treats charges which are separated from each other and

therefore do not interact. Furthermore there are two assumptions which are necessary for this concept. The

first one is that the information emitted by an electron moves with the speed of light in every frame of

reference. Therefore all vectors describing the emitting direction of information have the same length which

corresponds to the second postulate of relativity. The second one is that the direction of a vector describing

an emitting direction is changed using the aberration of light effect. It is important that only the direction

is computed this way since the length is defined by the speed of light. For this purpose the moving vector

of the electron ~ve in respect to the frame of reference of the observer is needed due to the first postulate of

relativity.

The basic idea can be pictured as tracing the information propagated by certain events. Since this

information moves outwards with the speed of light, all information caused by the same event build a

perfect sphere. Hence, the fronts of the emitted waves also build a sphere expanding with the speed of light

c and starting at the position of the charge at the time it was emitted. In the implementation [22] this was

treated as a 2D problem.

Fig. 2.3 on page 7 shows a possible scenario where the charge follows a sine curve. For the following

explanations the position vectors ~OPi are renamed as Pi. The detail shows several selected field lines and

discrete points Pi on it. The spheres Wi represent the information related to the same event. W3 and W6

are also wavefronts since they belong to events happening at the local extrema of the curve. Chapter 2.2

will explain how to find these extrema.

For computing field lines, these discrete positions Pi on the spheres must be found. To get some initial

values, the actual information is emitted radially in a user-defined resolution if the charge does not move,

which builds a unit circle in 2D. Otherwise this direction is changed by adding the actual moving vector of

the charge ~ve. For also obtaining the distance to where the information is emitted, the resulting vector, the

so-called wave vector ~k, is normalised and multiplied with c and the elapsed time ∆t since the according

event was recognised. This follows trivially from v = △s/△t. Since the speed v equals c, the covered distance

is derived by ∆s = c ·∆t.

Fig. 2.1 graphically shows a transformation of the vector direction. It illustrates the transformation of

the direction being nothing more than a vector addition between the moving vector ~v and the transformed

vector ~k′ weighted with a factor.
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~v ·∆t′

~k

~k′

k′‖

k′⊥

Fig. 2.1: A transformed vector

The Lorentz transformations for the vector’s parallel and perpendicular part in respect to the moving

vector are

k⊥ = k′⊥

k‖ = γ(k′‖ + v · t′)

with

γ =
1

√

1− v2
/c2

Obviously the parallel part needs to be weighted with γ to make the transformation Lorentz compliant. As

long as the magnitude of the velocity stays the same, γ is a constant. Hence this issue is reduced to a matter

of scaling.

At every newly recognised event, the emitted field is computed. It travels forward into the direction of

the wave vector, so that a single fieldline can be evaluated iteratively by

Pi = Pi−1 + c ·∆t · ~ki−1 (2.1)

Where i is an iterator for the positions on the fieldline, Pi the positions themselves and ~ki the normalised

wave vectors. P0 is the actual position of the charge and

~k0 = ‖(cosϕ, sinϕ)T + ~ve‖

ϕ is the angle at which the field line is emitted during its initialisation.

Assuming that this has to be done for all field lines, another index j is introduced to count them.

Pi,j = Pi−1,j + c ·∆t · ~ki−1,j

Fig. 2.2 illustrates an example of the field of a resting electron with eight field lines, each of them

containing their origin and three more positions.

Fig. 2.4 shows the time dependent evolution of a field line. The electron’s velocity changes distinctly

every time to illustrate a curved line with only a few steps. For the explanation every step is devided into

two parts. The first one is emitting the part of the field into the direction ~ki. The second one is moving

the electron forward into its moving direction ~ve while shifting ~ki one step forward and genrating a new ~k0.

While there is only a single field line treated, fig. 2.3 shows the field of a charge that has already moved

along a sine trajectory, with several field lines and wave fronts.

Fig 2.5 shows a resulting fieldline and indicates the shifting of the wave vectors ~ki.
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P1,0 P2,0 P3,0

P1,1

P2,1

P3,1

P1,2

P2,2

P3,2

P1,3

P2,3

P3,3

P1,4P2,4P3,4

P1,5

P2,5

P3,5

P1,6

P2,6

P3,6

P1,7

P2,7

P3,7

Fig. 2.2: A simple illustrative example: a resting electron represented by eight field lines. At the electron’s
position, the index i is 0 for every field line.

Trajectory

Field lines

Wave fronts

(a) The field of a charge which is following a sine curve, showing field lines, wave
fronts and the trajectory.

W1

W2

W3

W4

W5

W6

Trajectory

Wave fronts

P0...Pi...P6

(b) A detail of fig a) showing some selected positions to where the field is
emitted and the spheres Wi connecting the information Pi which are
related to the same event.

Fig. 2.3: An example of a field around a charge which is following a sine curve.
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t = 0

t = 1

t = 2

~k0

~k0

~k0

~k0

~k0~k0

~k1

~k1

~k1

~k1

~k1

~k2

~k2

~k2

~k3

P1
P1

P1
P1

P1

P1

P2
P2

P2P2

P3

P3
~ve

~ve
~ve

~ve~ve

~veInitial state:

Part 1: Emit field line points Pi Part 2: Move electron, shift ~ki and caclulate new ~k0

Electron at position P0 Field line

Position of the electron/Pi during the preceding step

Fig. 2.4: The development of a single field line

P0

P1

P9

P2

P3

P5

P6

P7

i = 0..10

P4 = P3 + c · ~k3

P8 = P7 + c · ~k7

P10 = P9 + c · ~k9

Fig. 2.5: A single field line computed using the Shintake method. The wave vector ~k is being shifted forward
in every step.
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2.2 The 3D expansion

Generating the wave vectors

The described concept requires some extensions to work in 3D. The basic idea remains the same. However,

as the circle providing the initial wave vectors is insufficient for the problem because it is a 2D object, the

initial emitting directions ~k0 in 3D space are derived from a unit sphere, which can be defined by polar

coordinates.

~k0 =

∥

∥

∥

∥

∥

∥

∥







sinϕ cosϑ

sinϕ sinϑ

cosϕ






+ ~ve

∥

∥

∥

∥

∥

∥

∥

ϕ[0, π]

ϑ[0, 2π]
(2.2)

Where ϕ and ϑ implement the resolution in horizontal and vertical direction.

Recognising wave fronts

Recognising local extrema to find the emitted wave fronts might be done analytically if the whole trajectory

of the charge is known. If it is unknown, e. g. created by user interaction, this is not possible. And even

numerical methods like Newton, Gauss or Levenberg-Marquardt are likely to fail, because not be enough

information is being provided at the time a wavefront is emitted. For a real-time visualization it is essential

to recognise these extrema shortly after they have been passed. The mentioned methods require some

knowledge about the curve at both sides of the extremum. But this information is not existent since only

the part that was already passed is known. Besides, these algorithms would cause additional resources.

For the 3D implementation a fast and simple but adequate solution is being used. A wave front is being

emitted when the moving direction of the charge changes the octant, which equals a change of the slope of

the curve. The following example illustrates this method in 2D, using quadrants instead of octants.

f(x) = (x − 2)2 + 1 has a local minimum at (2, 1)T. Assuming that the charge moves along this curve

and is recognised at x1 = 1.69, x2 = 1.96 and x3 = 2.25, the resulting vectors are

−→v1 =

(

x2

y2

)

−
(

x1

y1

)

=

(

1.96

1.0016

)

−
(

1.69

1.0961

)

=

(

0.27

−0.0945

)

−→v2 =

(

x3

y3

)

−
(

x2

y2

)

=

(

2.25

1.0625

)

−
(

1.96

1.0016

)

=

(

0.29

0.0609

)

Thus, ~v1 is in quadrant IV and ~v2 in quadrant I, like shown in fig. 2.6. This implies that a wavefront

was emitted near x2 = 1.96, which is indeed close to the analytically found solution x0 = 2.

x

y

~v1

~v2

III

III IV

Fig. 2.6: Moving vectors in different quadrants

This comparism is done for every iterative step and can easily be adapted in 3D. There is always the sign

of the actual (~va) and the predeceding moving direction (~va−1) used. Hence, the flag of an emitted wave

front is set when the following term is true.



10 2 The Shintake concept and its further development

sgn(~va,x) 6= sgn(~va−1,x) ∨ sgn(~va,y) 6= sgn(~va−1,y) ∨ sgn(~va,z) 6= sgn(~va−1,z)

with

sgn(x) =







1, if x = 0

x
|x| , if x 6= 0

This flag f is added to the position P0 of any fieldline j and iterated in the same way as the wave vector
~k. Additionally the actual position of the charge is cached when f is true, because it is situated in the

middle M of the sphere representing the corresponding wave front. The case in which the charge follows an

axis of the coordinate system and then changes into any axis’ positive direction is not treated due to its rare

occurence. In these cases more wavefronts than necessary are emitted. The change into a negative direction

is treated by the definition.

The vertices Wi,ϕ,ϑ for the wave front drawn are then computed in the following way.

Wi,ϕ,ϑ = |−−−−−→Pf,i,jMi| ·







sinϕ cosϑ

sinϕ sinϑ

cosϕ







ϕ[0, π]

ϑ[0, 2π]
for f = true

Where j is the index of the fieldline in which the flag f is stored.

2.3 Post-Shintake: Non-iterative field calculation

The Shintake approach is a fast way for computing the visualisation but it produces some restrictions. If

the number of field lines is changed, every new line has to be built from the very beginning. There is no

possibility of computing the whole field at a certain time, only the parts which already exist can be shown.

There might be situations when a user is interested in a special region of the field which therefore should

be drawn in a high resolution but not the remaining field. This is hardly practicable if the region of interest

changes during one simulation.

Assuming the latest movements of the charge are known, these limitations are not mandatory. The

directions ~k into which the information is spread, e. g. the wave vectors, always stay the same for the same

event. In the iterative method this direction is multiplied by the time that has passed since the last step and

the speed of light. Afterwards it is added to the corresponding position on the field line. This way, the next

position on the field line is calculated. At the end of the iterative step, the direction used for deriving the

new position is associated with it. If the directions and amounts of elapsed time as well as all the positions

of the charge were cached, the position Pa,t after the iterative step t is given by

Pa,t =

a
∑

i=0

∆tt−a+i · c · ~ki,t−a+i + Pi,t−a+i ,

where a is the index for the position on a given field line. Thus, Pa is a point P on a given field line

during the iterative step a. This simply means that (2.1) on page 6 is repeated and sums up for all the

passed detected times and positions since the time a certain event has happened:

Pa,t = (∆tt−a+0 · c · ~k0,t−a+0 + P0,t−a+0)

+ (∆tt−a+1 · c · ~k1,t−a+1 + (∆tt−a+0 · c · ~k0,t−a+0 + P0,t−a+0))

+ (∆tt−a+2 · c · ~k2,t−a+2 + (∆tt−a+1 · c · ~k1,t−a+1 + (∆tt−a+0 · c · ~k0,t−a+0 + P0,t−a+0)))

+ ...

Because of the iteration, for ~k follows

~ki,t−a+i = ~ki−1,t−a
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Therefore the term above reduces to

Pa,t = c · ~k0,t−a+0 · (∆tt−a+0 +∆tt−a+1 +∆tt−a+2 + ...) + P0,t−a+0

with

∆tt−a+0 +∆tt−a+1 +∆tt−a+2 + ... =
a
∑

i=0

∆tt−a+i

which is the time ∆tt−a passed since the moment the corresponding part of the field has been emitted.

Hence, every position is given by

Pa,t = c · ~k0,t−a ·∆tt−a + P0,t−a (2.3)

As P0,t−a is the position of the electron after t− a steps and as there are several field lines, the equation

transforms to

Pa,t,j = c · ~k0,t−a,j ·∆tt−a + Et−a (2.4)

where j is the index counting the field lines and Et−a is the position of the electron at step t− a.

~k0 can be computed by applying (2.2).

P9,15

P10,15

P3,15

P7,15

E5

E6

E8

E12

~k0,5

~k0,6

~k0,8

~k0,12

P0,15 = E15

a = 0, 3, 7, 9, 10

t = 15

Fig. 2.7: A single field line computed using the Post-Shintake method. In this case the total amount of
cached steps is 15. Only selected positions are illustrated.

The method can also be explained graphically. Laying several successive steps of a Shintake calculation

on top of each other, it becomes obvious that the wave vector ~k0 is just a path line and the field lines are

streak lines. Fig. 2.8 illustrates this using the steps from fig. 2.4.

The following algorithm returns as many fieldlines as desired.
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P0,t=0P1,t=0P2,t=1P3,t=2

P0,t=1

P1,t=1

P2,t=2

P0,t=2

P0,t=3
P1,t=2

~k0,t=0
~k1,t=1

~k2,t=2
~k3,t=3

~k0,t=1

~k1,t=2

~k2,t=3

~k0,t=2

~k1,t=3

Fig. 2.8: All wave vectors ~ki and positions Pi from fig. 2.4 on page 8

Algorithm 1 Calculate fieldlines

fieldlineIterator=0
fieldlines.clear
for θmin to θmax do

~k0.z = cos(θ)
for ϕmin to ϕmax do

~k0.x = sin(θ) · cos(ϕ)
~k0.y = sin(θ) · sin(ϕ)
a = 0
while fieldlines[fieldlineIterator].size < t do

fieldlines[fieldlineIterator].pushback(c ·∆tt · ‖(~k0 + ~directiont−a+1)‖ + Pt−a+1)
a = a+ 1

end while

fieldlineIterator=fieldlineIterator+ 1
end for

end for

return fieldlines

Fieldlines is a vector containing another vector for each fieldline.

This iterative version needs more memory for storing all positions and directions for every field line while

the non-iterative version only stores the positions on the trajectory. The directions ~ve and times ti can either

be stored, too or calculated using the array size of the positions and the vectors between them. However, the

amount of calculated values is the same in both methods. Nevertheless the Post-Shintake algorithm offers

the opportunity to change the resolution and to select the drawn section in real-time (see fig. 2.9). Repeating

this algorithm with different constraints even allows to show different sections in a different resolution, e. g.

in respect to the regions of interest of the field.
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(a)

(b)

Fig. 2.9: The post shintake method enables the user to choose a certain sector or even a certain plane to be
drawn.



14 2 The Shintake concept and its further development
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3 Derived field quantities

3.1 Wavelength and field strength

Revisiting the example of the charge moving along the sine trajectory (fig. 2.3), it becomes obvious that the

detected wavelength depends on the position of the observer in relation to the trajectory. For instance, if the

observer is within an area the electron is approaching, the wavefronts will occur in a higher frequency than

for an observer on the opposite site. The time period between two wavefronts and therefore their distance

to each other can easily be calculated. It equals the difference between the time both wavefronts need to

reach the observer plus the passed time between their emission.

Assuming that the wavefronts are emitted at positions P1 and P2 and times t1 and t2 and B is the

position of the fixed observer, the time difference ∆t is calculated from

|−−→P2B|
c

+ (t2 − t1)−
|−−→P1B|

c
= ∆t (3.1)

From v = s/t follows

∆s = c ·∆t (3.2)

Where ∆s is the distance between the wavefronts detected at B. Because ∆s is a half period, from (3.1)

and (3.2) follows

(

|−−→P2B|
c

+ (t2 − t1)−
|−−→P1B|

c

)

· c =
λ

2

⇒ |−−→P2B|+ c(t2 − t1)− |−−→P1B| = λ

2

Fig. 3.1 and fig. 3.2 illustrate the ambiguity of other geometrical methods for deriving the wave length

as there are different possibilities where to measure the distance between wave fronts. While fig. 3.1 shows

two different ways for measuring the distance on the line from the position of an event to the observer,

fig. 3.2 illustrates the distances between the intersection of several wave fronts and a field line. In the first

case the distances d1 and d2 are obviously not identical and in the latter, the position of the observer is even

completely disregarded.

Wi Wave fronts
Ei Events: emitting a wave front

B Observer

B

W1

W2

W3

E1 at P1

E2 at P2

E3 at P3

d1

d2

Fig. 3.1: This figure shows why the recognised wave length is not simply the distance between two wave
fronts.
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d1

d2

d3

d0

Fig. 3.2: By only measuring the distances between the intersections of wave fronts and field lines, the
observer’s position is disregared.

It should be mentioned that this is a theoretical problem. In reality the observer is always situated in

the far zone where a defined viewing direction exists. Additionally, in real experiments a whole spectrum of

frequencies is observed. In the simulation this spectrum can be derived by recording the observed frequencies

during a defined time period.

The field strength E in a distance r around a resting point charge is given by Coulomb’s law:

E =
Q

4πε0r²
=

e

4πε0r²

where ε0is the vacuum permittivity. As only a single electron is regarded, the charge Q equals the

elementary charge e.

Since the field lines are generated using (2.2) and the resolution for ϕ and ϑ are equal in the

implementation, they are equidistant as long as the charge is not moving and therefore their distance d

from each other can trivially be calculated.

A way for computing the electric field strength’s magnitude of a moving charge explicitly is looking at

the distances between the electric field lines. Their density in relation to the total amount of field lines

describes E. In the implementation the total amount of field lines is defined by the user and therefore it is

a known variable. This provides the needed values for solving the equation

d2
d1

=
E2

E1

where E1 is the field strength around the resting charge in a defined distance r to the charge Q and d1

is the distance between the field lines for this case. d2 is any measured distance between two field lines.

d2 is always measured between points of the same iterative step like shown in fig. 3.3. Either the arc

length or the secant can be used as they are proportional to each other.

This procedure provides a safe way for calculating the electric field strength.

3.2 Vectorial dimensions

The field is not only characterised by a magnitude but also by the direction of the electric ( ~E) and magnetic

field ( ~B). ~B, ~E and the wave vector ~k build a right-handed trihedron. ~B and ~E are perpendicular to each

other and since ~k points into the same direction as the resulting poynting vector which represents the energy

flow[17], it is computed by
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b1
d1

b2

d2

b)a)

r

Fig. 3.3: Fig. a) shows a resting electron, fig. b) an electron which has already moved along a dipol trajectory.
Both cases must be represented by the same amount of fieldlines. di represent the linear connection
between two vertices resulting from the same iterative step, bi represent the corresponding arc
length.

‖ ~E × ~B ‖= k̂

Assuming ~E is demanded at a certain point on a field line, k̂ and ~B are necessary. The wave vector

is computed using the Post-Shintake-Method (chapter 2.3). The magnitude E is also known and its

computation explained in the previous subchapter. The direction of ~B is still unknown but building the

perpendicular on k̂ and the corresponding moving vector of the electron ~ve results in a vector pointing into

the direction of ~B. Thus the electric field and the direction of the magnetic field follow from

B̂ = ‖ (k̂ × ~ve) ‖
~E = E · ‖(k̂ × B̂)‖

A necessary condition for the applicability of ~k as the emitting direction is that ~k must have the same

length as for moving vectors with the speed of light c, which is one unit of length in the implementation.

(a) A wave front emitted by an electron on a circle trajectory.
The blue arrows refer to the directions of the B-field while
the red arrows refer to the E-field.

(b) If only the electrical or magnetic field is drawn on the
wavefronts, the wavelength is mapped via colour. See 4.1 for a
description of the colour mapping.

Fig. 3.4: The directions of the fields mapped on the wave fronts
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3.3 Trajectories

The trajectories for this implementation are defined explicitly, not indirectly via the forces affecting the

electron. While this is trivial for a linear and a dipol trajectory, the undulator and circle trajectories pose

a challenge. Therefore, they are explained in more detail.

Undulator

When a moving electron crosses an alternating magnetic field, it starts oscillating. Depending on the actually

emitted synchrotron radiation this is either called an undulator or a wiggler. To differentiate between them,

mainly the dimensionless parameter K is used in literature.

K =
eBλ

2πmec
,

where e is the particle charge, B the magnetic field strength, λ the undulator’s period, me the electron

rest mass and c the speed of light. The description “wiggler” corresponds to K > 1 and “undulator” to

K ≤ 1. The latter deflects the electron less than the first. If K<1 the energy of an electron in the undulator

is not significantly higher than its rest energy. This causes the electron to move on a sine-function defined

by

f(x) = a · sin(ωx)

For reasons of efficiency the function is defined in the x-y-plane. If K>1 the energy of the electron in

the undulator is much higher than the rest energy of an electron. Hence, it does not keep the harmonic

trajectory but follows a trajectory containing various harmonics.

k may be a sufficient value for describing an undulator but instead, for the sake of comprehensibility to

non-specialists, the period, amplitude and speed of the trajectory are adjustable in the implementation. The

constant a describes the amplitude, the angular frequency ω follows from the undulator’s period λ with

ω =
2π

λ

Hence, the challenge consists of finding x for a given speed so that the distance passed remains constant

for v ·∆t. The analytical solution would require a derivate of the sine function

ˆ xi+1

xi

√

1 + (f′(x))²dx = s = v ·∆t ,

where v is the speed of the electron, ∆t the time between the computational steps, xi the x-component

of the electron’s actual position and xi+1 the x-component of the position which is to be computed. Solving

the integral results in the very unhandy term

v ·∆t =





√

a²ω² cos(2ωx) + a²ω² + 2 E(ωx) a2ω2

a2ω2+1

b
√

a2ω2 cos(2ωx)+a2ω2+2

a2ω2+1





xi+1

xi

,

where E describes an ellyptical function.

Obviously this will not lead to an applicable equation. Therefore the new electron position is found

numerically.

The bisection method is a simple but adequately fast and robust method for this purpose. Fig. 3.5 shows

an exaggeratedly coarse grained approximation of the curve. The boundaries are easily found by regarding

the gradients of the function. Their absolute value is always 0 in the extremas. At these positions the new

∆x is calculated by ∆x = v ·∆t since the electron moves straight forward into the x-direction. This is the

upper limit for the first step of the bisection. In the roots the magnitude of the gradient m is at a maximum

of

∆y

∆x
= m = f′(0) = aω · cos(ω · 0) = aω
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Thus the lower limit follows from

√

∆x² +∆y² = v ·∆t
√

∆x² +∆x²a²ω² = v ·∆t

∆x =

√

(v ·∆t)²

1 + a²ω²
=

v ·∆t√
1 + a²ω²

Fig. 3.6 illustrates the first two steps. The actual bisection is done as follows

Algorithm 2 Calculate next position on a sin-function

xleft = xi + (v·∆t)/
√
1+a2·ω2

xright = xi + v ·∆t
while |v ·∆t− s| > ε do

xm = (xleft+xright)/2
ym = f(xm)

s =

√

(xm − xi)
2
+ (ym − yi)

2

if s < v ·∆t then

xleft = xm

else

xright = xm

end if

end while

return xm

xi xi+1∆x

∆yv ·∆t

Fig. 3.5: An exaggeratedly coarse grained approximation of a sine curve

xi

xi,right,1 = xi,right,2xi,left,1

xi,median,1 = xi,left,2

xi,median,2 = xi+1

Fig. 3.6: Approximating the sine trajectory

Nevertheless it is an interesting question what happens if this adjustment is not applied, such that only

the forward movement of the charge is set to a value close to c. In this case in the simulation the resulting

speed of the electron may become larger than the speed of light. Hence, it travels faster than its emitted

field causing loops in the fieldlines as seen in fig 3.7. The same effect occurs when an electron moving along

a dipol trajectory is faster than light.

Obviously here is a conflict with Maxwell’s equations. They are only applicable if the vector field

representing ~E is well-defined at any point. But for instance, at position S the field points into different

directions without containing a charge, e.g. a source or a sink for field lines. While this is no issue of interest

in reality, it is very well possible in a simulation and needs to be avoided.
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Trajectory

S

Fig. 3.7: An electron moving along an undulator or dipol trajetory emits looped field lines if it is accelerated
faster than the speed of light.

Circle

The circuit trajectory is approximated by very short secants. Again the covered distance is v ·∆t. Hence,

the according central angle αa+1is calculated by

v ·∆t = 2r sin

(

αa+1 − αa

2

)

⇒ αa+1 = αa + 2 arcsin

(

v ·∆t

2r

)

Where r is the radius of a specified circle. It is adjustable in the implementation at runtime. The

according position of the electron is now

−→
0P =







r cosα

r sinα

0







For reasons of simplicity the circle is defined in the x-y-plane. If instead only the x-component is computed

via v ·∆t, the resulting speed for the simulation is faster than light. This way the electron would leave the

field it emits completely behind resulting in an area within the circle where there is no field at all.

ya+1

ya

xxaxa+1

y

v ·∆t

αa

αa+1

Fig. 3.8: Approximating the circle trajectory
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4 Graphics

4.1 Colour and alpha mapping

Saturation, hue, value and opacity are excellent tools for visualising the computed data from the predecessing

chapters not only for the sake of providing an enjoyable appearence but also for illustrating physical quantities

in a comprehensible and vivid way. The following explanations describe the approach of using colour and

opacity in this visualisation.

Field lines

The raw field lines either end at the frame of the window or when the predefined maximum of computation

steps is reached. The first alternative leads to serious problems in a 3D-implementation as the z-axis is not

bound by a frame. A solution could be built up by a bounding box. However, in both versions the fieldlines

end abruptly. This could imply that the field also ends at this point. In contrast, by altering the opacity

along the field line length the impression is conveyed, that the field strength decreases continuously. The

following formula decreases the alpha values linearly:

α1,i = 1− i

imax

Where i is an index indicating the position on the field line.

Furthermore the alpha values provide an opportunity to show that the field is not static. For this purpose

small imaginary particles traversing the field lines are used. In [25] an exponential law for a disappearing

particle is introduced:

α2,i = α0q
imax−i

Where q controls how fast the particle mark fades away. For more than one particle on a field line the

formula expands to

α2,i = α0q
(imax−i) mod d

Where d is the distance between the imaginary particles.

Multiplying these alpha values regards both effects and results in

αi = α1,i · α2,i

Drawing field lines in 3D poses additional challenges. As they are not volumetric and therefore can not

generate any shades, the depth perception is affected. Furthermore a distinction between the field lines,

especially if there are many of them, is difficult. The latter may be solved by using different colours for the

different field lines. The other points require a different solution.

One is presented in [4]. The authors propose to render not only a line but tubes. This way a volumetric

figure which can receive shadows and have a shade is formed. Although generating the required vertices for

a polygonal tube mesh on the CPU is possible in real time for a small amount of lines, a graphics processor

able to run geometry shaders is required to implement a performant version of this suggestion2. However,

as this is not yet canon for personal computers, another solution has been implemented. It uses a halo effect

around the field lines to generate a spatial impression (see fig. 4.2) similar to the approach used in [7]. Fig.

4.1 shows a comparison between enabled and disabled halo using an electron on a dipol trajectory.

2 See chapter 5.4 for a very short sketch of shaders and their usage in the implementation
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(a) Without halo. A depth perception is hardly possible. (b) With halo

Fig. 4.1: A halo effect simplifies the depth perception.

Fig. 4.2: A close up of the field lines with halo

Wave fronts

Only part of the electromagnetic spectrum is visible to the human eye. On a colour-hue-scale these frequencies

can directly be mapped to the corresponding observed colour. For the invisible parts a different representation

must be found. A passable solution for higher frequencies is decreasing the saturation. This causes the colour

to bleach and in extreme cases to whiten. On the other hand the value is decreased for lower frequencies,

causing the colour to darken and finally turn to black. Table 4.1 shows the interpolation points for the colour

mapping which uses the HSV colour representation.

Since the wavelength changes in respect to the position of the observer, there are two different modes

implemented. In the single observer mode the observer is situated at the position of the camera. Thus, the

user controls the position of the observer at runtime by changing his own position. In the multiple observer

mode there are several imaginary observers predefined, e. g. one at every vertex of the wavefront.
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λ in nm Hue (H) Saturation (S) Value (V) Description of the electromagnetic wave

2500 0 1 0 infrared radiation
770 1 1 1 red light
640 20 1 1 orange light
600 45 1 1 yellow light
570 65 1 1 green light
490 170 1 1 blue light
430 260 1 1 violet light
390 360 1 1 ultraviolet radiation
10 360 0.4 1 X-radiation, ultraviolet radiation
5 360 0.2 1 X-radiation
0 360 0 1 -

Tab. 4.1: Interpolation points for colour mapping on the wave fronts

Wavelengths longer than 2500 nm will appear black. They are not treated separately as they hardly arise

in the simulation.

Now transfer functions are required to interpolate the intermediate values. The value for λ]770; 2500] is

interpolated linearly with

V = − 1

1730
λ+

250

173

The saturation for λ]0; 390[ is interpolated by two linear functions:

S =







3
1900λ+ 73

190 for λ]10; 390]

1
2λ− 2.3 for λ]0; 10]

A regression analysis gives an exponential function for H with λ[390; 770]:

H = 15067 · 0.990506992λ

Fig. 4.3 on page 4.3 shows these functions graphically.

Then the HSV-values are converted into the corresponding RGB-values for drawing them. This is done

using the method introduced in [11] resulting in RGB-values between 0 and 1.

h =

⌊

H

60◦

⌋

f = (
H

60◦
− h)

p = V · (1− S)

q = V · (1− S · f)
t = V · (1− S · (1− f))

(R,G,B)



















































(V, t, p) for h = 0 and h = 6

(q, V, p) for h = 1

(p, V, t) for h = 2

(p, q, V ) for h = 3

(t, p, V ) for h = 4

(V, p, q) for h = 5

Additionally the opacity of the wavefront decreases the larger it grows using the alpha-value αl which

was introduced in the last subchapter.
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Saturation

λ in nm0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 390
(a) Saturation: Ultraviolet and X-radiation

λ in nm

Hue

0 390 510450 570 630 690 750 810 2500

60

120

180

240

300

360

(b) Hue: Visible light

Value

λ in nm0

0.2

0.4

0.6

0.8

1.0

770 2500
(c) Value: Infrared radiation

Fig. 4.3: Colour mapping. The marks correspond to the values in the table.
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4.2 The environment

Not every trajectory causes the electron to stay in a defined bounding box. Especially an electron on an

undulator trajectory will run out of the screen if the camera, e.g. the observer is not following it. This

is why the camera is attached to the electron. However, to create the imagination of a forward velocity, a

moving grid is drawn which simulates a background moving contrary to the electron.

Additionally the trajectory itself is drawn using particles which are emitted at the electron’s position.

Fig. 4.4 shows an electron on an undulator trajectory with enabled grid and trajectory view.

Fig. 4.4: The grid moves along the negative x-direction. The trajectory is drawn using yellow particles which
fade to red and finally disappear.

4.3 Field particles

Some effects, especially those resulting from the circle trajectory, can hardly be recognised by field lines

and wave fronts. Therefore an approach is implemented which treats the radiation emitted by a charge as

particles moving along the wave vector ~k.

Thus the computation of the wave vector and the discrete positions on the field lines respectively wave

fronts is done the way described in chapter 2. But now the resulting positions are not connected via line

strips. Instead billboards are placed at the position of the vertices. Billboards are small pictures representing

particles which are oriented to always appear perpendicular to the viewing direction.

This simulates the distribution of density in the field showing some effects like the spiralform field for

the circle trajectory.

Fig. 4.6 shows synchrotron radiation represented by particles from different points of view.

Pi

~ki

Trajectory

Fig. 4.5: The particles Pi, forming the field around an electron on a circle trajectory, are arranged spirally.
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y

z
(a)

y

x
z

(b)

y

x
(c)

Fig. 4.6: Radiation caused by a circle trajectory from different angles. The trajectory is drawn in orange.
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4.4 The wave plane

Working in 3D space offers a new way for visualising electro magnetic waves. The computed positions have

been connected to build wave fronts and field lines. But this is far from how waves are commonly imagined,

e.g. the surface of waves in liquids looks different from what is visualised so far.

Although this may be due to the fact that there is no geometrical shape for electro-magnetic waves visible

to the human eye, it is possible to reconstruct a shape which corresponds to this image of a wave. For this

purpose all field lines in a chosen plane are selected and connected to each other, such that the positions

Pi,j and Pi,j+1 on two adjacent field lines and their successors Pi+1,j and Pi+1,j+1 build a quad. Repeating

this for every field line and position on this plane results in the wave plane. When the electron moves, every

quad remains connected to the corresponding part of the field line. This way the desired effect occurs.

Fig. 4.7 shows a wave plane in its initial state and while the electron moves. Both states are shown in a

smooth and in an approximated version. In the implementation the wave plane is approximated in a higher

resolution (fig. 4.8).

b)

a)

Fig. 4.7: a) The desired result b) A very coarse grained approximation

(a) Quad normals

(b) Interpolated normals

Fig. 4.8: A comparison between a normally illuminated wave plane and an illumination using interpolated
normals. In (a) the segments between the field lines can be identified easily. The illumination is
explained in chapter 4.5.
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4.5 Illumination

The Blinn-Phong model

The Blinn-Phong model is used for illumination. This is the default shading model in OpenGL’s fixed

function pipeline3. But since it processes shading only per vertex, a fragment program for a per pixel

lighting still has to be written by the developer. For this reason the blinn-phong model will be shortly

reviewed at this place.

The resulting light intensity is the sum of ambient, diffuse and specular light intensities like shown in fig.

4.10. Ambient light is reflected equally all over the object and thus colours it in a single shade.

The diffuse reflection is controlled by the normal of the surface of the object ~n and the incoming light

direction ~d (see fig. 4.9). The smaller the angle between those two vectors, the higher the reflection becomes.

This is realised with the dot product, which reaches a maximum at parallelism and zero at perpendicularity.

Even greater angles describe surfaces, which are not hit by the light and therefore are cropped to zero.

The specular reflection sets highlights whose position depends on the normal of the surface ~n, the light

direction ~d and the viewing direction ~e. Their size is set by the exponent σ. Using the normal and the light

direction, a halfway vector is determined. The dot product between this vector and the normal, cropped to

values greater than zero, to the σ define the part of reflected specular light.

Hence, the final reflected light intensity is computed by

I = Iamb + Idiff + Ispec

= ramb ⊗ Lamb + rdiff ⊗ Ldiff (n̂ · d̂)+ + rspec ⊗ Lspec (n̂ · ĥ)σ+

with

ĥ =
ê + d̂

|ê + d̂|

Where ri are the object’s attributes and Li the light’s attributes. They all consist of a red, green and

blue part, such that r = (red, green, blue)T.

An example for a Blinn-Phong shader written in GLSL can be found in the appendix. Fig. 4.11 shows

the illuminated wave fronts.

~n

~e

~e

~d

~h

Fig. 4.9: The vectors used for calculating the reflection

3 Although the fixed function pipeline concept has been totally reworked since OpenGL 3.0, shaders are still an irreplaceable
tool and have even been extended.
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(a) Only ambient lighting (b) Ambient and diffuse lighting (c) Ambient, diffuse and specular
lighting

Fig. 4.10: A sphere illuminated step by step

(a) Wave fronts in the multiple observer mode,
additionally the clipping distance is set shortly in
front of the electron. The trajectory can be seen
where the spheres are cut.

(b) Wave fronts in single observer mode

Fig. 4.11: Illuminated wave fronts

The normals

In most cases per vertex shading looks acceptable. However, the normals of the object are essential as

specular and diffuse reflection depend on them. Computing them is trivial for a sphere. In that case the

normal of a vertex is the vector between this vertex and the middle of the sphere.

On the other hand, a segment of a field line has an infinite amout of possible normals, namely every

vector which is part of the plane perpendicular to the line, the normal space En. This issue has already

been treated in [25]. The authors span another plane Ed,l through the light direction and the line segment.

The intersection line between this plane and the normal space is the desired normal.

Therefore the direction of the normal is given by

~n = ~l × (~d×~l)
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Where ~l is the line segment described as a vector between Pi and Pi+1. This is shown in fig. 4.12. Fig.

4.13 shows the illuminated field lines.

Ed,l

En

~n

~l

~d

Fig. 4.12: The normal of a line is derived by building the intersection between the normal space En and the
plane Ed,l spanned by ~l and ~d.

Fig. 4.13: Illuminated field lines



31

5 Implementation

5.1 The used framework: Ogre

The first version of Radiation3D was the result of a practical course at the TU Dresden and the HZDR4. In

this course a rendering engine called Ogre (’Object-Oriented Graphics Rendering Engine’) was used. This has

several reasons. Firstly, it wraps the OpenGL functionality and therefore eases its usage by supplying a more

intuitive interface than the underlying libraries do. And secondly, it supplies some useful pre-implemented

features like particle systems and scene managers. Apart from that, the framework already proved itself in

previous practical courses like the visualisation of Elbe and Draco5. Thus, using the same framework eases

the combination of those projects significantly.

The above mentioned course did not only result in a first version of Radiation3D but in an integration of

the results of the the previous course in a common environment using the same interfaces. In the following

this environment is called LMC (“light matter collision”) since this is the working title of the program. The

subprojects, of which Radiation3D is one, are called states. The states concept is adopted from one of the

various Ogre tutorials6.

5.2 Program structure

Fig. 5.1 provides an overview of the most important classes and their connection to Ogre. The green

packages represent the content of the framework, the orange classes are classes written for and used by

all LMC subprojects and the yellow classes represent the code specifically written for Radiation3D.7 This

shows that the direct extension of the framework via inheritance is done by an interface which is used by

Radiation3D as well as by the other states, too, such that only the classes in yellow need to be exchanged.

Fig. 5.2 shows a detail of this diagram which is slightly modified. The classes in blue belong to the Collision

state where ElectronVis is not directly associated with the AppState child but with CollisionBunch

which also holds pointers to other objects necessary for this state.

Amongst others, these diagrams are missing the classes AppStateManager and LMCApp. They are

responsible for managing the different states which are organized on a stack. As they are only used for this

purpose and not for the visualisation or the model computation itself, they are not discussed here in detail.

The overall structure separates the model (implemented by the Electron class) from the view and the

controller (implemented by the ElectronVis and BaseApplication/Oger class). Thus, the Electron

class does not use the engine. It is only responsible for calculating the model and stores the results in data

structures which are especially defined for this case and only need the common C++ libraries like math.h

and vector.

For the visualisation a type called ManualObject is used. This is a construct of the engine which

is optimised for being updated very often. As there are many, partially also complex, objects of this

kind, their construction is separated from the representation. When Oger initialises ElectronVis,

neither ElectronVis nor Oger care for the initialisation of the ManualObjects. An instance of

FieldGenerator initialises them instead by defining their render operation and material as well as their

number of vertices. However, the representation is still done by ElectronVis. This basically implements

the idea of the popular builder pattern[12].

Additionally Oger takes the role of a listener to mouse and keyboard events. As a big part of

the necessary functionality is pre-implemented by Ogre and OIS (Object Oriented Input System), Oger

extends, via inheritance from BaseApplication, which itself inherits from AppState, the KeyListner,

TrayListener and MouseListener classes.

4 Helmholtz-Zentrum Dresden-Rossendorf
5 Elbe: Electron Linac for beams with high Brilliance and low Emittance. Draco: Dresden laser acceleration source. Both

radiation sources are installed and run at the HZDR
6 The mentioned tutorial can be found at http://www.ogre3d.org/tikiwiki/Game+State+Manager.
7 Originally “Oger” was the name of a tutorial class which was used when this project was still a practical course. But instead

of abolishing it and building a new class from scratch, it was extended and ended up in being one of the core classes. It has
just neven been renamed and as a tribute to the engine and because it is more pleasing being asked if the ogre is fine than how
work is going, it has kept the name.
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AppState

<<virtual>>+enter()
<<virtual>>+exit()
<<virtual>>+pause(): bool
<<virtual>>+resume()
<<virtual>>+update(double timeSinceLastFrame)
+create(AppStateListener* parent, String name): void

OIS

KeyListener

<<virtual>>+keyPressed()
<<virtual>>+keyReleased()

MouseListener

<<virtual>>+mouseMoved()
<<virtual>>+mousePressed()
<<virtual>>+mouseReleased()

OgreBites

SdkTrayListener

ElectronVis

-Ogre: :ManualObject* fieldLineManualObject
-Ogre: :ManualObject* planeManualObject
-Ogre: :ManualObject* sphereManualObject
-Ogre: :ManualObject* GridColsManualObject
-Ogre: :ManualObject* GridRowsManualObject
-Ogre: :ManualObject* StressMark
-Ogre: :ManualObject* Arrows
-Ogre: :ParticleSystem* FieldEmitterSystem
-Ogre: :ParticleSystem* ElectronParticles
-Ogre: :SceneManager* sceneMgr
+Electron* electron
+FieldGenerator* fieldgenerator

+update_x_()

There are several 

update methods for 

the different objects

update_x_ is a 

placeholder for them

Electron

+std: :vector<pointvector> fieldline
+std: :vector<float> speeds
+std: :vector<float> times
+std: :vector<tpoint> positions
+std: :vector<float> wavelengths

+generateField(int n)
+nextSteps(int count, float dt, tpoint position)
-calcWavefronts(tpoint position)
-calcWaveLength()

Ogre

ManualObject

+begin()
+end()
+position(Ogre: :Real x, Ogre: :Real y, Ogre: :Real z)
+colour(Ogre: :Real r, Ogre: :Real g, Ogre: :Real b)
+normal(Ogre: :Real x, Ogre: :Real y, Ogre: :Real z)
+setCastShadows(bool enabled)

CheckBox

Label Slider

ParamsPanelSdkCameraMan

ParticleSystem

SceneManager

+createManualObject()
+createChildSceneNode()
+createLight()

Camera

SceneNode

+attachObject()

FieldGenerator

+Electron* electron

+init_x_()

There are several 

init methods for 

the different objects

init_x_ is a 

placeholder for them

OgreFramework

+getSingletonPtr()

Singleton

BaseApplication

+enter()
+exit()
+resume()
+makeGUI()
#keyPressed()
#keyReleased()
#mouseMoved()
#mousePressed()
#mouseReleased()
<<virtual>>+createScene()

Oger

+ElectronVis* electronVis

+update()
+createScene()
+update(double timeSinceLastFrame)

Fig. 5.1: A class diagram showing the most important classes, members and functions. This is not a complete
listing but outlines the basic points. The green packages belong to the Ogre framework. The
orange classes are written for and used by all states. The yellow classes are specifically written for
Radiation3D and the Collision state.
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CollisionBunch

+ElectronVis* electronVis

+update()
+createScene()

CollisionState

+CollisionBunch* bunch

+enter()
+exit()
+resume()
+makeGUI()
+keyPressed()
+keyReleased()
+mouseMoved()
+mousePressed()
+mouseReleased()
+createScene()
+update(double timeSinceLastFrame)

AppState

<<virtual>>+enter()
<<virtual>>+exit()
<<virtual>>+pause(): bool
<<virtual>>+resume()
<<virtual>>+update(double timeSinceLastFrame)
+create(AppStateListener* parent, String name): void

OIS

KeyListener

<<virtual>>+keyPressed()
<<virtual>>+keyReleased()

MouseListener

<<virtual>>+mouseMoved()
<<virtual>>+mousePressed()
<<virtual>>+mouseReleased()

OgreBites

SdkTrayListener

ElectronVis

-Ogre: :ManualObject* fieldLineManualObject
-Ogre: :ManualObject* planeManualObject
-Ogre: :ManualObject* sphereManualObject
-Ogre: :ManualObject* GridColsManualObject
-Ogre: :ManualObject* GridRowsManualObject
-Ogre: :ManualObject* StressMark
-Ogre: :ManualObject* Arrows
-Ogre: :ParticleSystem* FieldEmitterSystem
-Ogre: :ParticleSystem* ElectronParticles
-Ogre: :SceneManager* sceneMgr
+Electron* electron
+FieldGenerator* fieldgenerator

+update_x_()

There are several 

update methods for 

the different objects

update_x_ is a 

placeholder for them

Electron

+std: :vector<pointvector> fieldline
+std: :vector<float> speeds
+std: :vector<float> times
+std: :vector<tpoint> positions
+std: :vector<float> wavelengths

+generateField(int n)
+nextSteps(int count, float dt, tpoint position)
-calcWavefronts(tpoint position)
-calcWaveLength()

Ogre

ManualObject

+begin()
+end()
+position(Ogre: :Real x, Ogre: :Real y, Ogre: :Real z)
+colour(Ogre: :Real r, Ogre: :Real g, Ogre: :Real b)
+normal(Ogre: :Real x, Ogre: :Real y, Ogre: :Real z)
+setCastShadows(bool enabled)

CheckBox

Label Slider

ParamsPanelSdkCameraMan

ParticleSystem

SceneManager

+createManualObject()
+createChildSceneNode()
+createLight()

Camera

SceneNode

+attachObject()

FieldGenerator

+Electron* electron

+init_x_()

There are several 

init methods for 

the different objects

init_x_ is a 

placeholder for them

OgreFramework

+getSingletonPtr()

Singleton

Fig. 5.2: A section of fig. 5.1 with the classes changed for the Collision state (blue).

5.3 Control flow

Fig. 5.3 and fig. 5.4 show a simplified sequence diagram. They start at the moment the corresponding state

has been invoked and show the sequence of the creation of the objects. After all objects have been initialised

and added to the scene graph, the update methods of the state are repeated in a loop.

These update methods call the recalculation of the model and the corresponding geometry and vertex

colours. Then these values are assigned to the corresponding ManualObjects. Every section of these

ManualObjects keeps a pointer to a material definition. The way the object is rendered is defined in

this material, e. g. if the lighting is on, if and which shaders are used and how the objects are blended.

Materials can be defined dynamically or in an extern file like in lst. 2 and lst. 1.

What cannot be seen in the diagrams is that an additional query for the time since the last frame is

necessary to ensure that the actual field calculation is done only one time per frame. A higher frequency

would not falsify the results but slow the whole program down noticably.

Listing 1: A material with two passes

1 mater i a l Wavefronts {
2 techn ique {
3 pass {
4 l i g h t i n g o f f
5 colour_wri te on
6 scene_blend alpha_blend
7 }
8 pass {
9 l i g h t i n g on

10 colour_wri te on
11 shading phong
12 separate_scene_blend s rc_co lour one_minus_src_colour src_alpha zero
13 }
14 }
15 }
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electronVis : ElectronVis

fieldGenerator : FieldGenerator

electron : Electron

m_pSceneMgr : SceneManager

Oger

createSceneManager()

<<create>>

ElectronVis(size, sceneManager)

<<create>>

Electron(int n)

<<create>>

generateField(int n)

FieldGenerator(sceneManager, Electron, gridSize)

<<create>>

 *[10] : Ogre::ManualObject* := createManualObject()

sets the GUI, light,

target for the 

cameraManager 

and everything else

that has not been 

done yet

Ogre::ParticleSystem* := createParticleSystem()

initObjects()

createScene()
addObjects()

update()

nextsteps(count,time,position)

There are more than just 

one draw method. 

Here update_Draw() 

represents all of them.

nextstep()update_Draw()

getValues()

placeholder for all queries

update_Draw()

Fig. 5.3: A sequence diagram showing the most important interactions when Radiation3D is started.

Listing 2: An example for a material script using a vertex and a fragment shader

1 vertex_program phongvp_glsl g l s l

2 {

3 source phongvp . g l s l

4 }

5 fragment_program phongfp_gls l g l s l

6 {

7 source phongfp . g l s l

8 }

10 mater i a l s hade r t e s t {

11 techn ique {

12 pass {

13 vertex_program_ref phongvp_glsl

14 {

15 param_named_auto EyePos i t ion camera_position_object_space

16 param_named_auto L ightPos i t i on l i ght_pos i t i on_obj ect_space 0

17 }

18 fragment_program_ref phongfp_gls l

19 {

20 param_named_auto amb ambient_light_colour 0
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21 param_named_auto spec l i ght_specu lar_co lour 0

22 param_named_auto d i f f l i gh t_d i f f u s e_co l ou r 0

23 param_named bl innphong i n t 0

24 param_named_auto sh in su r f a c e_sh i n i n e s s

25 }

26 }

27 }

28 }

bunch : CollisionBunch

electronVis : ElectronVis

fieldGenerator : FieldGenerator

electron : Electron

m_pSceneMgr : SceneManager

CollisionState

createSceneManager()

<<create>>

CollisionBunch(sceneManager)

<<create>>

ElectronVis(size, sceneManager)

<<create>>

Electron(int n)

<<create>>

generateField(int n)

FieldGenerator(sceneManager, Electron, gridSize)

<<create>>

 *[10] : Ogre::ManualObject* := createManualObject()

sets the GUI, light,

target for the 

cameraManager 

and everything else

that has not been 

done yet

Ogre::ParticleSystem* := createParticleSystem()

initObjects()

createScene()
addObjects()

result := update()

nextSteps(int count, float dt, tpoint position)

nextStep()

There are more than just 

one draw method. 

Here update_Draw() 

represents all of them.

update_Draw()
getValues()

placeholder for all queries

update_Draw()

Fig. 5.4: A modified version of fig. 5.3 showing the startup routines for the collision state.

5.4 Specifics in the implementation

Using a framework usually inflicts some constraints since it does not always implement all the desired

functionality. But using the lower level libraries the framework is wrapping and mixing this code up with

code using the framework is no good programming style because it increases the efforts which need to be done

to keep consistency enormously. Although Ogre is an open source project that makes it possible to know

what the framework code does, this implementation hardly uses this way of adding missing functionality. In

most cases work arounds which use the provided functionality are found instead.

The most problematic example for missing functionality in Ogre is the lack of possibilities to render

quads. While OpenGL itself knows quads and quad strips until OpenGL 3.1, Ogre implements neither.

Therefore quads are composed of two triangles. For being able to reuse this solution, it is ecapsulated in a

function taking the four vertices of the quad and a pointer to the ManualObject it should be assigned to

as arguments.
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Another difficulty leads from the nature of OpenGl to render per vertex and not natively per fragment

which leads to angular shapes especially for the wavefronts. To solve this issue there are two approaches.

One is choosing a resolution which is high enough to keep the differences to a minimum. For a sphere a

resolution of 11.25° for ϕ and ϑ serves this purpose. This corresponds to a resolution of 32 steps in horizontal

and vertical direction. The other approach is using a fragment shader.

Shaders replace parts of OpenGL’s fixed function pipeline. The sequence of their execution is shown in

fig. 5.5. The shader defining the final pixel colour is the fragment shader. It gets the interpolated output of

the previous shaders and optionally some user defined data as input. This is where the Blinn-Phong model

described in chapter 4.5 is implemented using GLSL (OpenGL shading language). For integrating shaders

into the program, they have to be declared in the material script which contains the definitions for the used

materials. After this has been done they can be referenced in any material and the necessary variables

can be passed like shown in lst. 2.

Furthermore, the framework does not originally render illuminated objects and keep their transparency.

This may be solved by either using an own shader again or by rendering the object twice. For rendering

a scene more than once, two or more passes have to be added to the used material script. The first pass

renders the object without any lighting enabled. The second pass renders it with lighting. How the combined

output of these two passes looks in the end is now controlled by the defined blending operation. For the

implementation a seperate blending for colour and α values is used. For the α values, the second pass is

ignored. The colour values are combined based on their brightness. Lst. 1 shows an example of a material

using two passes to render with colour and transparency. The final blending is defined in the last line of the

second pass. The general format is

separate_scene_blend <colour_src_factor> <colour_dest_factor> <alpha_src_factor>

<alpha_dest_factor>

and the final value for colour and α value is then derived by

value = sourceFactor · source+ destFactor · dest

Vertex shader

Tesselation
shaders

Tessellation
control
shader

Tessellation
evaluation
shader

Geometry shader

Fragment Shader

Fig. 5.5: While the “classical” shaders, specifically vertex and fragment shader, are available since OpenGL
2.0, geometry shaders have been introduced in OpenGL 3.2 and tesselation shaders even in OpenGL
4.0.
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5.5 Conflicts between theory and software layout

Although the model is separated from the viewer wherever possible, there are some situations in which parts

of the model depend on members of the viewer, e.g. the recognised wave length depends on the position of

the observer (the camera). To keep the model independent from the viewer this issue is managed by the

ElectronVis class. If required it computes this missing model data, resulting in the situation that a part

of the model is weaved into the viewer class. A clean software design would introduce a mediator between

ElectronVis and Electron. This prevents the viewer from having to perform calculations the model is

responsible for. And the model still does not need to have any knowledge about the viewer. However, as

the dependencies are still manageable, this has not been applied, yet.

While it is possible to generate an amout of vertices which is only limited by the resources of the

computer, it is not trivially possible to change the amount of actually drawn vertices for every frame. A

ManualObject is initialised with a certain amount of vertices which cannot be changed without clearing

and reinitialising it. This cannot be done every frame because it produces many memory writing accesses

which are too slow for a real-time application. Thus, the number of vertices used for representing a field line

is not changed dynamically. Even though this produces some corners in the regions where they are far away

from each other, it is the fastest solution. In a subsequent version this could be optimised using geometry

shaders.

An aspect of the visualisation which needs some closer examination is the spatial scaling. An electron

and its minimal trajectories cannot be seen by the human eye. However, it is the purpose of a visualisation

to make it visible. Consequently, the dimensions are extremely exaggerated. The computation is done using

the usual SI units. However, for the representation in Radiation3D 1.0 nm corresponds to two picture points.

In Collision the conditions are different. There are surrounding objects which should appear much bigger

than the electron. This is solved using the three different zoom steps of which only the closest one shows

the single electron. But having reached this closeness, the electron appears larger than the screen. This is

why it is scaled down using a simple vertex shader, such that one point represents 0.025 nm.
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6 Results and discussion

6.1 Results

Many aspects of electrodynamics have been simplified for this work. The trajectories are not computed by

the forces affecting the electron. Wavefronts, which are necessary to visualise the vectorial dimensions of

the field, are only emitted when the direction of the velocity changes. However, many effects can now be

shown in a new, vivid way. Some representations, e.g. the wave plane, are observable for the first time since

they are not possible in a 2D space. Also the computation of the wavelength depending on the position of

an observer who can freely move in space is new.

The computations are reduced to what is necessary for drawing the field which makes the visualisation

able to run in real-time, even if it runs on an ordinary office computer.

In the following, the fields for the implemented trajectories are viewed and compared to other approaches

for calculating the fields.

Resting electron

The field is emitted radially like in the other visualisations mentioned in chapter 1. The lack of equipotential

lines shows a contrast to the classical representation like the one in fig. 1.1a.

Fig. 6.1: The field lines of a resting electron. Each field line is drawn in a different colour for an easier
distinction between them.

Linear trajectory

The field lines of a linearly moving charge accumulate in the direction perpendicular to the moving direction

(see fig. 6.2). This effect has already been explained in [17] and can clearly be seen in the simulation. Due to

the shintake algorithm which considers the finite speed of light, the field lines that point towards the moving

direction are shorter than the ones on the opposite side. The distances between the computed positions is

smaller there. There are no wave fronts and no equipotential lines or spheres. Hence, although there is a

magnetic field, it is not shown. Solving this issue is a task for future works.
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Fig. 6.2: An electron on a linear trajectory. The field lines are not cut because the field strength was too
low there but because the fixed number of vertices is already reached.

Dipol trajectory

An oscillating electron emits a typical Hertzian dipole field. For small frequencies the wave fronts become

almost concentric. The electric and magnetic fields change their direction depending on the moving direction

of the electron, more precisely if the electron moves into positive or negative y-direction.

(a) The sector drawn is reduced to the x-y-plane. (b) The E- and B-field in the x-z-plane (looking into negative
y-direction). The red arrows show the direction of the
electric field while the blue ones show the direction of the
magnetic field.

Fig. 6.3: The field around an electron which is moving on a dipol trajectory

The density of the field lines provides a way for drawing conclusions about the electric field strength.

Hence, for a closer examination the distances of two random field lines have been measured at every iterative

step. [17] introduces a formula for calculating the electrical field

E = k (n× p)× n
eikr

r
+ (3n(n · p)− p)

(

1

r3
− ik

r2

)

eikr
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Thus, for small r, e.g. in the near zone, the formula can be simplified to

E = (3n(n · p)− p)
1

r3

and for larger r, e.g. in the far zone, it can be simplified to

E = (k2(n× p)
eikr

r
)× n

Therefore, the electrical field strength decreases with 1/r3 in the near zone and with 1/r in the far zone. Thus,

the distances between the field lines increase cubically in the near zone and linearly in the far zone.

Fig. 6.4a shows the reciprocal of the distances between the first 20 positions on the field lines, which are

all situated in the near and intermediate zone. The curves have been found doing a regression analysis and

show clearly that the cubic relation does exist in the simulation for the near zone. They differ in the weight

the first values have. Their formulas are

fred(i) =
800

(i+ 3.4)3
+ 1

fblue(i) =
600

(i+ 2.8)3
+ 0.9

There are only few values for the near zone. Hence, the curve fits the first few sample points best before

it falls off less rapidly than the values.

For the far zone, only these distances are measured, where a wave front is recognised. Fig. 6.4b shows

them.8 The scale has been changed because the values are approaching zero and therefore decrease less

rapidly. Obviously the cubical curves do not match anymore. Instead of that the values alternate around a

rational function of the form

f(i) =
a

i+ b
+ c

If all values are given the same weight, the function

f(i) =
13.05

i+ 0.84

can be approximated. Fig. 6.4b shows the graph and the sample points.

It is also possible to find a function which is suitable for all measured values. It should have the form

f(i) =
a

(i+ b)3
+

d

i+ c
+ e

A regression returns

f(i) =
122

(x + 1.52)3
+

14.39

x+ 2.56

Fig. 6.5 shows this result graphically in different levels of detail. The graphics show the high correspondence

of the simulated data to the expected results. Thus, the Shintake-algorithm works very precisely.

8 For the regressions a mathematica script is used, which can be found in the appendix.
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Fig. 6.4: Distances between two fieldlines, different approximation for near and far zone
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Fig. 6.5: Distances between two fieldlines, one approximation for all sample points
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Circle trajectory

An observer situated in the plane of the circle sees an oscillating field but if the viewing direction is

perpendicular to this plane, a spiral is visible. This effect can be seen best by viewing the “particles”.

It depicts the synchrotron radiation. In practice a charge which is affected by a bending magnet does a

quarter circle movement. The electro-magnetic fields for this scenario have already been analysed before,

e.g. in [6] p.10. It shows a simulation of the field very similar to the one produced with Radiation3D.

Fig. 6.6: Synchrotron radiation caused by an electron on a circular trajectory

There is a script written by Richard Pausch, who is working on this topic at the HZDR, which

precalculates the radiation occuring in experiments with synchrotron radiation.9 Fig. 6.7 shows the result

of one of those calculations for a velocity of v = 0.903c and a trajectory radius of 400nm. The observer is

situated in the trajectory plane. The graph shows the highest expected circular frequencies with a peak at

1.17981 · 1016Hz which corresponds to a wavelength of 159.657nm.

dI2 Front
dΩdω Js

ω
Hz

1 · 10−37

2 · 10−37

3 · 10−37

4 · 10−37

2 · 1016 4 · 1016 5 · 10163 · 10161 · 1016

Fig. 6.7: Simulation of the highest frequency for a circular trajectory. v = 0.9c, r = 400nm

If this simulation is repeated in Radiation3D all the values should be between these extrema. For this

case the camera observer mode is chosen in order to observe the occuring frequencies from the trajectory

plane and to calculate the extrema of the wavelengths with respect to the time and not with respect to the

position of the observer. The actually measured shortest wavelength varies between 170 and 180nm which

is close to the expected value of approx. 160nm (fig. 6.8).

9 One version of the script calculates the wavelengths. It can be found in the appendix.
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Besides the low resolution of the grid there are other error sources in Radiation3D. A circle has no local

extremum. Therefore the model in which the electron emits waves at a local extremum of the trajectory

cannot be applied. However, for getting any results the wave fronts are emitted like described in chapter 2.2.

This generates a new wave front after every fourth of a cycle what captures only very few of the actually

emitted spectrum but the repetition of shorter and longer wavelengths when the electron is approaching

respectively departing can be observed.

Fig. 6.8: Circular trajetory in camera observer mode. The observer is situated in the trajectory plane.
v = 0.9c, r = 400nm

Undulator trajectory

A charge on an undulator trajectory generates very short wave lengths towards the moving direction and

very long wavelengths into the opposite direction. The simulation shows that frequencies are reached which

conform to X-radiation.

(a) The wave front representation with multi
observer colour mapping

(b) The wave plane representation

Fig. 6.9: The field around an electron which is moving on a sine trajectory



6.1 Results 45

The script used for the circular trajectory does also calculate the wavelengths for undulators. This

provides the opportunity to validate the results of this simulation. The used parameters are v = 0.99c

for the electron and λ = 800nm for the undulator. There is a peak at a wavelength of 7.96nm. Starting

the simulation with the same values should generate wavelengths of the same order. Fig. 6.10 shows a

screenshot from Radiation3D while using the same values. There is not always a vertex which is exactly

on the x-axis. In those cases the next best one is used. This way some minor variations are generated

causing the wavelength to jump in an interval between 7 and 10nm. Nevertheless the difference between the

calculation and the simulation is very small, e.g. around 1nm, and the results are of the same order.

The expected wavelength can also be calculated by using a simplified form of eq. 2.12 from [6].

λ =
λu

γ2(1 + v/c)
, (6.1)

where λu is the period of the undulator and γ = 1/
√

1−(v/c)2.

for v ≈ 1 it reduces to

λ =
λu

2γ2
(6.2)

Thus, for an electron speed of 0.99c the expected wavelength emitted into the main moving direction of

the electron is

λ =
800nm

2 · (1/√1−0.992)
2 = 7.96nm

Fig. 6.10: Simulating X-Rays. “expected X-Rays” is computed by applying equation 6.1.

The wavelength in the opposite direction should be as long as the undulator period. In this example (fig.

6.10) this is 800nm. Fig. 6.10 shows the wave fronts and the trajectory as well as the longest wavelength

which is measured at the back side. It shows that the longest simulated wave length is approximately 800nm.

Fig. 6.11 shows a close-up view of the wavefronts. The distances between the wave fronts vary for

angles unequal to 0° and 180°. This effect has already been investigated in [6]. Fig. 6.12 shows that several

frequencies are observed for the same angle. The higher this angle is, the narrower the spectrum does

become. This can also be observed in fig. 6.11 and fig. 6.10.
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Fig. 6.11: Close-up view of the wavefronts during the undulator trajectory. There are different wavelengths
for the same angle. They are visualised by different distances between the wave fronts.
Additionally, the wavefronts are traced by yellow lines in this picture in order to simplify their
identification.

Fig. 6.12: A close-up of fig. 4.4 from [6]: “(a)-(e) show angular resolved spectral energy distributions for a
range of Thomson backscattering scenarios featuring various laser strengths a0 i.e. laser intensities
and temporal laser profiles. There are three different models for laser and electrons: an ideal
scenario contains a zero emittance electron bunch and a spatially flat laser profile with a rectangular
temporal pulse shape [..] The scale is normalized to the maximum value for each plot.” ([6] p. 86)

6.2 Discussion

Different models and different aspects

"The theory of interaction of light with matter is called quantum electrodynamics. The subject

is made to appear more difficult than it actually is by the very many equivalent methods by

which it may be formulated."

Richard P. Feynman[8]

There are many methods for computing electro-magnetic fields. The challenge is not only to find and

implement one which is fast enough to run in real-time but also to find representations that visualise the

results in an adequate and vivid manner. After all, field lines, wave fronts, vector fields and all the other

structures and algorithms are just models faciliating the comprehension of what really happens. A model
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will never be able to show all aspects of reality because it is just a representation of the actual occurence.

And even with this knowledge there are several models.

One of the main differences between the implemented and most other models is, that there is no fixed

grid at whose nodes the field quantities are computed. The grid which is not necessarily equidistant is built

by the algorithm instead.

A challenge of this work was to present accurate information without flooding the viewer. This is one

of the reasons why many different possibilities for visualising the field have been introduced, which can be

activated at once, e.g. the fieldlines and the wave plane can be shown simultaneously and at every time the

whole view can be clipped, so that the front parts do not hide the backmost parts. Anyway, not always all

computed information can be shown. For instance, if the directions of the electrical and magnetic field are

shown at the same time, they need to be distinguishable from each other. This is done using the colours red

and blue. But this takes away the possibility to map the field strength via colour on the arrows.

Another issue was the question of how to show information. An electro-magnetic field cannot be seen in

reality unless it is in the small spectrum of visible light, and even this spectrum depends on the velocity of

the observer in respect to the observed object. Nevertheless it was a wish to show multiple observations at

the same time, and for this reason the imaginary observers on the wave fronts have been introduced (chapter

4.1).

Physics and computer science

"The extension to 3D is straight forward."

Tsumoru Shintake[22]

In the version of [22] from 2002 this sentence is still existent. Nevertheless this extension was not

implemented until winter 2010/11 although the first version of Radiation2D has already been written in

1984 [21]. One of the problems that already occured in the practical course is the fact that it needs not

only physicists for reaching this goal but also computer scientists who are well versed in modern graphics

programming. This includes object-oriented programming, the knowledge of the graphics hardware abilities

and their interfaces as well as the theoretical foundations of computer graphics and some experience in

optimisation. While, according to the author, the first version was written in HP-Basic[21], a contemporary

representation in 3D demands more complex techiques. Thus, the communication between physicists and

computer scientists is essential which requires patience and work from both sides.

The target audience

"This looks like a jellyfish!"

various people

For the major part of its existence Radiation3D has only been tested as a “toy” for physicists who are

familiar with the subject. But there are some occasions, like the day of the open lab at the HZDR, when

it is shown to people who are not comptetent in this subject area where one of the purposes of this project

is to make the processes of electrodynamics more perspicious. Thus, the question how people perceive the

representations is essential. Experience has shown that the concept of field lines is well adopted and usually

already known. The concept of particles representing a field is not common but well adopted, too. The

remaining representations needed some explanations. Especially the wave plane has rather been interpreted

as a “jellyfish” than an electromagnetic wave by several visitors. Including some more explanation into the

program itself could be a task for future works.
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7 Outlook

Although Radiation3D has improved, there is still a manifold of possibilities for extending it. In addition,

growing hardware resources steadily offer a wider range of potential and tools.

The trajectories are still limited. A possible scenario is not only adding fixed trajectories but making

them freely defineable either by fixed positions between which a curve is interpolated, or by the forces that

affect the charge. Another project would be the implementation for stereoscopic displays and different input

devices, e.g. the Kinect10 or multi-touch displays. Moreover an expansion to several charges affecting each

other is a logical step forward. This could accompany the transfer of many computations from CPU to

GPU. Since most factors are vectors anyway, this would increase the performance noticeably if modern

graphic cards are used. As already mentioned in chapter 6.2, an integration of some explanatory material is

considered, too.

Besides, there is no physically established visualisation of a whole accelerated electron bunch with millions

or at least thousands of electrons yet. Although this project is already in progress.

All things considered, the intention of this effort and cooperating works is making electrodynamics more

than formulas and providing a way for a more intuitive understanding.

10 The Kinect is an input device which allows inputs via gestures. It was developed by Microsoft and PrimeSense and is
actually intended for gaming with the Xbox 360. But there are several research projects which use it for different purposes.
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Appendix

A User guide

Getting started

As this program is written using the Ogre framework, it runs under DirectX as well as under OpenGL. It

has been tested under DirectX 9 and OpenGL 3.3. However, using the latter is recommended as this runs

distinctly faster on the systems used for testing and some GLSL shaders are used which only work with

OpenGL. The program is started by running LMC.exe. A window opens which enables the user to choose

the desired render system in a drop down menu and to adjust the configuration (fig. A.1). It should be

mentioned that the default values will open the program in full screen. Pressing OK starts the main menu.

(fig. A.2)

This work covers only a part of the presented subprograms, here called states, namely Radiation3D and

parts of Collision. The remaining ones are refined by other works.11

In every state there is a help opened by pressing F1 and the GUI can be hidden by pressing F3. ESC lets

the user leave the state or the whole program. By choosing “Enter Radiation3D” the subprogram is started

which makes the main part of this work. As no settings have been chosen yet, the electron rests (fig. A.3).

Radiation3D

The navigation

The user may rotate around the electron by holding the left mouse button while moving the mouse. It is

also possible to zoom in and out by using the mouse wheel or holding the right mouse button while moving

the mouse.

The main menu

In every state there is the possibility of moving to another state. For this purpose there are buttons in the

upper right corner. If for any reason only the panel at the bottom of the window should be shown, the ’Hide

GUI’-Button hides all other widgets.

The panel at the bottom of the window is only updated for the undulator trajectory while the wavefronts

are calculated.

For changing anything related to the trajectory of the electron, the method for the computation of the

field or its dimensions like size and density, there is a menu activated by clicking ’Charge Config’. For the

visual settings, there is another menu activated by clicking ’Graphics Config’.

The same buttons for activating a menu can be used to deactivate them.

The charge menu

For letting the electron move, the charge menu must be activated. Here the desired trajectory with its

amplitude and, if necessary, its wavelength, the speed of the electron and the length of the field lines can be

chosen. This menu has two submenus, ’Shintake Config’ and ’Post-Shintake Config’, of which only one can

be active at a time. If there is one of them active and the other one is activated, the first one will be closed

automatically (fig. A.9).

11 When this work was written Alexander Matthes and Tino Winkler were currently working on the refinement of the Draco
and Elbe part as well as on a physically correct visualisation of the whole electron bunch.
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Widget Values[unit], default
value

Remarks

Charge Config Menu

Trajectory Dipole oscillation
(default), Circle,
Undulator, Linear

More trajectories like a wiggler and a helix are
projected

Length of field line 50-300 (the number
of computational
steps), 80

Long field lines cause a lot of resource load. Thus,
changing this preset is only recommended for faster
systems.

Electron speed 0-1[c], 0 This value must be changed for letting the electron
do anything

Amplitude 10-500[nm], 100 For the circle trajectory this is the radius of the
circle.

Undulator
wavelength

100-1000[nm], 800 This only has effect when the undulator trajectory is
chosen.

Shintake Config - Opens a submenu for adjusting the settings
corresponding to the Shintake calculation

Post-Shintake Config - Opens a submenu for adjusting the settings
corresponding to the Post-Shintake calculation

Shintake Config Submenu

Calculate Shintake
field lines

true/false, true Enable/disable the calculation using the Shintake
algorithm

Number of fieldlines 8-16, 8 The square of this value makes the number of the
calculated fieldlines

Post-Shintake Config Submenu

Calculate
Post-Shintake field
lines

true/false, false Enable/disable the calculation using the
Post-Shintake algorithm

Min Theta 0-1 [π · rad], 0 The initial field lines are calculated using the
spherical coordinates of a unit sphere with
parameters θand ϕ. These settings allow to narrow
the calculated section and to adjust the density of
the lines (the resolution for θand ϕ).

Max Theta 0-1 [π · rad], 1
Min Phi 0-1 [π · rad], 0
Max Phi 0-1 [π · rad], 1
Line density 1-0.05 [π · rad], 0.2

Tab. A.1: The charge menu
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The graphics menu

This menu enables the user to change everything that is not related to the calculation itself but the looks of

the visualisation. (fig. A.4 and fig. A.5)

Widget Values, default value Remarks

Show

Field lines true/false, true Disabling the fieldlines detatches all field lines, no
matter if they have been calculated using the
Shintake or Post-Shintake method. Enabling the field
lines this way always enables fieldlines using the
Shintake method.

Particles true/false, false This enables a representation made out of particles
following their wave vector and works even if the field
lines are disabled.

Trajectory true/false, true Enabling the trajectory representation eases its
tracing.

Wavefronts true/false, false Enabling the wavefronts offers more opportunities for
visualising the field.

Waveplane true/false, false This enables a plane connecting the fieldlines that
are initially part of the x-z-plane.

Grid true/false, true Especially when the undulator trajectory is enabled
the grid illustrates the movement of the electron in
space. Unlike the electron it moves on the screen
when necessary.

Visualisation Settings

Cut view true/false, false This sets the near clipping distance to a value
slightly smaller than the distance between observer
and electron.

Fieldline colour
mode

multi-
coloured/single-
coloured/ gray,
multi-coloured

If single-coloured is enabled and the Post-Shintake as
well as the Shintake method are used for the
calculation, the fieldlines corresponding to the two
methods are drawn in different colours.

Wavefront colour
mode

multi-
observer/camera-
observer,
multi-observer

Multi-observer colours the wavefronts corresponding
to the frequencies several imaginary observers
situated on the wavefronts would recognizse.
Camera-observer colours them corresponding to the
frequency an oberver, who is situated at the position
of the camera, would recognise.

Wavefront mapping off/E-Field/B-Field,
off

Maps the texture on the wavefronts corresponding to
the vectorial dimensions of the magnetic or electric
field.

Illumination off/on, off Enables the user to switch the illumination on or off.

Tab. A.2: The graphics menu
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Collision

The navigation

As this state is edited by several developers, the navigation works differently. While the rotation of the

camera is done pressing the right mouse button and moving the mouse, the translation is done with the

WASD keys on the keyboard. Besides there are different viewing modes the user can choose from. This is

explained in the next subchapter.

Key Effect

W Move forward
A Move left
S Move back
D Move right
Shift+W/A/S/D Doubles the speed of the camera’s movement

Tab. A.3: Keys to be used for the navigation in Collision

The menu

There is only one menu in this state so far. The buttons for changing the state are in the upper right corner

again. In the lower right corner there is a slider which enables the user to adjust the speed of the animation.

All other widgets, of which there are only buttons in this state, are on the right side of the window.

Button Effect

Play/Pause Plays/pauses the animation.
Stop Stops the animation. To restart the animation it is necessary to stop the animation

first.
Auto SlowMo on/off If auto slowmo is enabled the animation speed decreases automatically shortly before

the collision takes place .
Free view Enables the user to fly around using the WASD keys.
Fixed Height on/off Limits the free view by defining a fixed height in which the camera is situated
Follow electron Attaches the camera to the electron. (fig. A.7, A.8)
Show/Hide cover The cover of the experimental rig is shown by default. For seeing the test

arrangement without zooming in, it needs to be hidden. (fig. A.6)
Show/Hide path The paths that the laser and the electron bunch follow is shown by default. This can

be disabled.

Tab. A.4: The menu of Collision
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Trouble shooting

Although this program has been tested on different systems with different configurations, there still is a small

but existing chance that errors may occur preventing the program from running. Here are some solutions

presented for the problems most likely to apprear.

Error message Possible Reason Solution

Could not load dynamic library
.\RenderSystem[..]

A dll for at least one
render system is missing,
most likely because
DirectX10 or DirectX11 is
not installed.

There are two ways for solving this
problem. The easiest way is
disbabling the render system by
opening plugins.cfg and adding a ’#’
in front of the name of the
corresponding plugin. The other
solution is installing the render
system and copying the dll into the
release folder.

• Cannot find required template
’X’[..]

• [..]error whilst opening archive:
Unable to read zip file in ’X’[..]

• Cannot locate resource ’X’[..]

One or more resources
could not be found.

Most likely the ’media’ folder is not
where resources.cfg tells it is. This
problem should be solved by
checking the paths in resources.cfg
and either moving the ’media’ folder
or changing the paths.

LMC.exe has stopped working Practically everything can
cause this error but
usually there are only
some resources not found.

If this has happened when the
program was running, it can simply
be restarted. If this error occurs
during the start of the program, it is
recommended to check the paths in
resources.cfg as missing resources can
cause this error, too.

Tab. A.5: Known error messages
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Fig. A.1: Choosing the render system and its configuration

Fig. A.2: The start screen
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Fig. A.3: This is how Radiation3D welcomes the user

Fig. A.4: The graphics menu

Fig. A.5: Wavefronts in camera-observer mode with lightning enabled



58 Appendix

Fig. A.6: The experimental rig without the cover

Fig. A.7: The wavefronts during the collision

Fig. A.8: If enabled the camera follows the electron. The visibility of the whole bunch or just a single electron
depends on the distance to the bunch.
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Fig. A.9: The charge menu and the Post-Shintake submenu



60 Appendix

B Blinn-Phong shader in GLSL

Listing 3: The vertex program

uniform vec3 L ightPos i t i on ;

2 uniform vec3 EyePos i t ion ;

varying vec3 ViewDirect ion ;

varying vec3 L ightDi rect i on ;

varying vec3 Normal ;

varying vec3 co l o r ;

void main ( void ) {

vec4 ObjectPos i t i on = gl_ModelViewMatrix ∗ gl_Vertex ;

ViewDirect ion = EyePos i t ion − ObjectPos i t i on . xyz ;

L i ghtDi rect i on = LightPos i t i on − ObjectPos i t i on . xyz ;

12 Normal = gl_Normal ;

c o l o r = gl_Color ;

g l_Pos i t i on = f trans f orm ( ) ;

}

Listing 4: The fragment program

uniform vec4 amb ;

uniform vec4 spec ;

uni form vec4 d i f f ;

uni form in t bl innphong ;

5 uniform f l o a t sh in ;

varying vec3 ViewDirect ion ;

varying vec3 L ightDi rect i on ;

varying vec3 co l o r ;

varying vec3 Normal ;

void main ( void ) {

vec3 LightDir = normal ize ( L ightDi rect i on ) ;

vec3 Norm = normal ize (Normal ) ;

f l o a t NDotL = dot (Norm , LightDir ) ;

15 vec3 Re f l e c t i on = normal ize ( ( ( 2 . 0 ∗ Norm) ∗ NDotL) − LightDir ) ;

vec3 ViewDirect ion = normal ize ( ViewDirect ion ) ;

f l o a t RDotV = max( 0 . 0 , dot ( Re f l e c t i on , ViewDirect ion ) ) ;

vec4 TotalAmbient = amb ∗ co l o r ;

vec4 Tota lD i f f u s e = d i f f ∗ NDotL ∗ co l o r ;

20 vec4 Tota lSpecu lar ;

vec3 Hal f vector = ( ViewDirect ion + LightDir ) / normal ize ( ViewDirect ion +

LightDir ) ;

f l o a t NDotH = max( 0 . 0 , dot (Norm , normal ize ( Ha l f vector ) ) ) ;

i f ( bl innphong == 1) {

Tota lSpecu lar = spec ∗ co l o r ∗ (pow(NDotH , sh in ) ) ;

25 }

e l s e {

Tota lSpecu lar = spec ∗ co l o r ∗ (pow(RDotV, sh in ) ) ;

}

gl_FragColor = ( TotalAmbient + Tota lD i f f u s e + Tota lSpecu l ar ) ;

30 }
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C Mathematica scripts and sample points

Listing 5: Undulator script by Richard Pausch

Undulator

λ0 = 800∗10^−9 ; (∗ Undulator l ength [m] ∗)

c l i g h t = 2.9979∗10^8 ; (∗ speed o f l i g h t [m/ s ] ∗)

mass = 9.11∗10^ −31; (∗ e l e c t r o n mass [ kg ] ∗)

5 echarge = 1.6022∗10^ −19; (∗ e l e c t r o n charge [C] ∗)

ψ [ a_ ] := 2∗π∗a/λ0 (∗ f i s t d e r i v a t i v e o f t r a j e c t o r y [ ] ∗)

Kvalue1 [ a_, γ_] := γ∗ψ [ a ] (∗ K value us ing ψ [ ] ∗)

Kvalue2 [B_] := echarge ∗B∗λ0 /(2∗π∗mass∗ c l i g h t ^2) (∗ K value us ing magnetic f i e l d [ ] ∗)

GammaCalc [β_] := Sqrt [ 1/ (1 − β^2) ] (∗ ca l u l a t ed gamma from β=v/c [ ] ∗)

10 LambdaCalc [ omega_ ] := c l i g h t ∗2∗π/( omega)

(∗ c a l u l a t e s wavelength from c i r c u l a r f requency ω [m] ∗)

ω [ θ_, γ_] := 2∗γ^2/(1 + γ^2∗θ^2) ∗(2∗π∗ c l i g h t /λ0 )

(∗ main rad i a t i on peak o f undulator [ 1/ s ] ∗)

Kvalue1 [10^−15 , GammaCalc [ 0 . 9 9 ] ] < 0.001

15 (∗ checks i f assumtion f o r a Undulator are c o r r e c t ∗)

Solve [ Kvalue1 [10^−15 , GammaCalc [ 0 . 9 9 ] ] == Kvalue2 [myB] , myB]

(∗ B f i e l d caused by a=10^−15m and β=0.99 [T] ∗)

LambdaCalc [ω [ 0 . 0 , GammaCalc [ 0 . 9 9 ] ] ] (∗ wavelength o f main rad i a t i on peak [m] ∗)

20 B_field

c l i g h t = 2.99792458∗^8 ; (∗ speed o f l i g h t [m/s ] ∗)

echarge = 1.6022∗10^ −19; (∗ e l e c t r o n charge [C] ∗)

mass = 9.11∗10^ −31; (∗ e l e c t r o n mass [ kg ] ∗)

ǫ0 = 8.85418781762∗^−12; (∗ [ As/Vm] ∗)

25 ω [ f_ ] := 2∗π∗ f (∗ c i r c u l a r f requency [1/ s ] ∗)

f [T_] := 1/T (∗ f requency [1/ s ] ∗)

LambdaCalc [ omega_ ] := c l i g h t ∗2∗π/( omega)

GammaCalc [β_] := Sqrt [ 1/ (1 − β^2) ] (∗ ca l u l a t ed gamma from β=v/c [ ] ∗)

BetaCalc [gamma_] := 1 .0 − 1 .0/gamma^2

30 c i rcumference [ r_ ] := 2∗π∗ r (∗ c i rcumferency o f c i r c l e [m] ∗)

T[ r_ , β_] := c i rcumference [ r ] / (β∗ c l i g h t ) (∗ per i od o f c i r c u l a r movement [ s ] ∗)

CyclotronOmega [B_] := echarge ∗B/mass (∗ cyc l o t ron f requency [1/ s ] ∗)

CyclotronRadius [β_, B_] := c l i g h t ∗β/CyclotronOmega [B] (∗ cyc l o t ron rad ius [m] ∗)

Radius = 0.4∗10^ −6; (∗ [m] ∗)

35 betaStart = 0 . 9 0 3 ; (∗ [ ] ∗)

B f i e l d = x / . Solve [ Radius == CyclotronRadius [ betaStart , x ] , x ] [ [ 1 ] ]

(∗ B f i l e d needed [T] ∗)

LambdaCalc [ CyclotronOmega [ B f i e l d ] ] (∗ cyc l o t ron r e p e t i t i o n as wavelength [m] ∗)

40 ξ [ω_, θ_, ρ_, γ_] := ω ∗ ρ / (3∗ c l i g h t ) ∗ (1/γ^2 + θ^2) ^(3/2)

dWdΩdω [ω_, θ_, ρ_, γ_] := 1 .0/(4∗π∗ǫ0) ∗ echarge ^2/(3∗π^2∗ c l i g h t ) ∗(ω∗ρ/ c l i g h t )^2 ∗

(1/γ^2+θ^2)^2 ∗ ( ( BesselK [ 2/3 , ξ [ω , θ , ρ , γ ] ] ) ^2 + θ^2/(1/γ^2 + θ^2) ∗ ( BesselK [ 1/3 , ξ [ω ,

θ , ρ , γ ] ] ) ^2)

Plot [dWdΩdω [ omega , 0 , Radius , GammaCalc [ betaStart ] ] , {omega , 0 , 5∗^16} , PlotRange −> All ,

AxesLabel −> {ω/Hz , dI ^2/(dΩdω∗ Js ) "Front " } , P lotPo ints −> 400 ]

Plot [dWdΩdω [ omega , π , Radius , GammaCalc [ betaStart ] ] , {omega , 0 , 2∗^14} , PlotRange −> All ,

AxesLabel −> {ω/Hz , dI ^2/(dΩdω∗ Js ) "Back"} , P lotPo ints −> 400 ]

LambdaCalc [ myomega/ . FindMaximum[{dWdΩdω [myomega , 0 , Radius , GammaCalc [ betaStart ] ] } ,

{myomega , 0 .5∗10^16 , 2 ∗ 1 0 ^ 1 6 } ] [ [ 2 ] ] ]

LambdaCalc [ myomega/ . FindMaximum[{dWdΩdω [myomega , π , Radius , GammaCalc [ betaStart ] ] } ,

{myomega , 0 .2∗10^14 , 1 ∗ 1 0 ^ 1 4 } ] [ [ 2 ] ] ]

Listing 6: Dipol - distance between field lines in near zone and far zone

<< Nonl inearRegress ion ‘ (∗ Load r e g r e s s i o n package ∗)

(∗ L i s t o f d i s t ance s between two f i e l d l i n e s , format : { i , 1/ d i s t ance }∗)

3 f a r = {{37 , 0 .34378946058402265} , {59 , 0 .21984259709733026} , {81 , 0 .1542036453433352} ,

{103 , 0 .12851384151904388} , {124 , 0 .1027340193637189} , {146 , 0 .08870286518237797} ,
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{168 , 0 .0744504957807415} , {190 , 0 .06955553526079604} , {211 , 0 .060463951996459236} ,

{233 , 0 .05549610997242343} , {255 , 0 .04911768430158533} , {277 , 0 .04763285207322465} ,

{298 , 0.04287563634411626}} (∗ intermed iate and f a r zone ∗)

near = {1/0.085586 , 1/0.169505 , 1/0.252335 , 1/0.335249 , 1/0.419599 , 1/0.506465 ,

1/0.596227 , 1/0.688219 , 1/0.780582 , 1/0.870394 , 1/0.954162 , 1/1.028565 , 1/1.091220 ,

1/1.141196 , 1/1.179101 , 1/1.206788 , 1/1.226852 , 1/1.242147 , 1/1.255415 , 1/1 . 269094} ;

(∗ near zone ∗)

a l l p o i n t s = {{1 , 1/0.085586} , {2 , 1/0.169505} , {3 , 1/0.252335} , {4 , 1/0.335249} , {5 ,

1/0.419599} , {6 , 1/0.506465} , {7 , 1/0.596227} , {8 , 1/0.688219} , {9 , 1/0.780582} , {10 ,

1/0.870394} , {11 , 1/0.954162} , {12 , 1/1.028565} , {13 , 1/1 .091220} , {14 , 1/1.141196} ,

{15 , 1/1.179101} , {16 , 1/1.206788} , {17 , 1/1.226852} , {18 , 1/1.242147} , {19 ,

1/1.255415} , {20 , 1/1.269094} , {37 , 0 .34378946058402265} , {59 , 0 .21984259709733026} ,

{81 , 0 .1542036453433352} , {103 , 0 .12851384151904388} , {124 , 0 .1027340193637189} , {146 ,

0 .08870286518237797} , {168 , 0 .0744504957807415} , {190 , 0 .06955553526079604} , {211 ,

0 .060463951996459236} , {233 , 0 .05549610997242343} , {255 , 0 .04911768430158533} , {277 ,

0 .04763285207322465} , {298 , 0.04287563634411626}} (∗ near && f a r ∗)

(∗ Perform non l inear r e g r e s s i o n f o r the near zone ∗)

8 g3 = Nonl inearRegress [ near , a
(e+b)3

+ c , {a , b , c } , e , Weights −> {10 , 4 , 4 , 4 , 4 , 4 , 4 , 2 , 2 ,

2 , 2 , 2 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1} ]

(∗ Perform non l inear r e g r e s s i o n f o r the f a r zone ∗)

g4 = Nonl inearRegress [ f a r , a
(e+b)

+ c , {a , b , c } , e ]

(∗ Perform non l inear r e g r e s s i o n f o r a l l va lues ∗)

g5 = Nonl inearRegress [ a l l p o i n t s , a
(e+b)3

+
d

(e+f)
+ c , {a , b , c , d , f } , e ]

13 (∗ Plot data and r e s u l t s ∗)

Show [ L i s tP l o t [ near , Joined −> False , P l o tS ty l e −> Orange ] , Plot [ 800
(x+3.4)3

+ 1 , {x , 0 , 20} ,

P l o tS ty l e −> Red ] , Plot [ 600
(x+2.8)3

+ 0.9 , {x , 0 , 20} , P l o tS ty l e −> Blue ] , AxesLabel −> {" i " ,

"1/ d i s t ance " } ]

Show [ Plot [ 13.05
x+0.84

, {x , 0 , 300} ] , L i s tP l o t [ a l l p o i n t s , Joined −> False , P l o tS ty l e −> Orange ] ,

AxesLabel −> {" i " , "1/ d i s t ance " } ]

Show [ Plot [ 122
(x+1.52)3

+
14.39

x+2.56
, {x , 0 , 20} ] , L i s tP l o t [ a l l p o i n t s , Joined −> False , P l o tS ty l e −>

Orange ] , AxesLabel −> {" i " , "1/ d i s t ance " } ]

Show [ Plot [ 122
(x+1.52)3

+
14.39

x+2.56
, {x , 0 , 300} ] , L i s tP l o t [ a l l p o i n t s , Joined −> False , P l o tS ty l e −>

Orange ] , AxesLabel −> {" i " , "1/ d i s t ance " } ]

Fig. C.1: This screenshot was made for visualising the sample points. The white field lines are used for
measuring the distances. The red spots on these field lines beginning from i=20 are the positions
between which the distance is measured.
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For the benchmark an electron speed of 0.73c has been chosen. All other values are the default values.

Therefore, the line length is 80 and the chosen tajectory is the dipol trajectory what produces about four

simultaneously visible wave fronts. The last column shows the framerate when the update routines for the

drawn objects are not called and only the physical computation is executed.

drawn objects fps triangles batches fps without drawing

shintake field lines 88 48,042 653 189
post-shintake field lines 101 20,290 273 200
wave fronts (plain) 62 24,556 428 196
wave fronts (vector field) 33 14,332 428 193
particles 53 29,262 419 72
wave plane 44 8,494 434 188

Tab. D.1: Benchmark of Radiation3D on: Windows7 64-bit, 4 GB RAM, AMD Phenom II 1035T 2.6 GHz,
ATI Radeon HD 4200 (onboard with HyperMemory)

The memory usage stays between 90 KB and 100 KB and the CPU usage between 16% and 17%. Since all

threads are executed at the same core this core is operated at full capacity. These values are only marginally

affected by the chosen drawn objects, e. g. less than 5 KB difference in the memory use und commit.
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