FORSCHUNGSZENTRUM ROSSENDORF

Mitglied der Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz

WISSENSCHAFTLICH-TECHNISCHE BERICHTE

Archiv-Ex.:

Ulrich Grundmann, Sören Kliem, Siegfried Mittag, Ulrich Rohde, André Seidel, Dobromir Panayotov und Bonka Ilieva

Adaption, Validierung und Anwendung fortgeschrittener Störfallanalysecodes mit 3D Neutronenkinetik -WTZ mit Bulgarien

Herausgeber: Forschungszentrum Rossendorf e.V. Postfach 51 01 19 D-01314 Dresden Telefon +49 351 26 00 Telefax +49 351 2 69 04 61 http://www.fz-rossendorf.de/

Als Manuskript gedruckt Alle Rechte beim Herausgeber FORSCHUNGSZENTRUM ROSSENDORF 24 R WISSENSCHAFTLICH-TECHNISCHE BERICHTE FZR-328 August 2001

Ulrich Grundmann, Sören Kliem, Siegfried Mittag, Ulrich Rohde, André Seidel, Dobromir Panayotov und Bonka Ilieva

Adaption, Validierung und Anwendung fortgeschrittener Störfallanalysecodes mit 3D Neutronenkinetik -WTZ mit Bulgarien

Abschlußbericht **Final Report**

Reaktorsicherheitsforschung-Vorhaben-Nr./ Reactor Safety Research-project No.:

150 1085

- Vorhabenstitel: Adaption, Validierung und Anwendung fortgeschrittener Störfallanalysecodes mit 3D Neutronenkinetik - WTZ mit **Bulgarien**
- Project Title: Adaptation, validation and application of advanced codes with 3-dimensional neutron kinetics for accident analysis calculations - STC with Bulgaria
- Autoren / Author(s): U. Grundmann, S. Kliem, S. Mittag, U. Rohde, A. Seidel
 - D. Panavotov, B. Ilieva

Dienststelle der Autoren / Performing Organisation:	Forschungszentrum Rossendorf e.V. Institut für Sicherheitsforschung
	Bulgarian Academy of Sciences Institute for Nuclear Research and Nuclear Energy Sofia
Berichtsdatum / Publication Date:	August 2001
Berichts-Nr. / Report-No.:	FZR-328

Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des Bundesministeriums für Wirtschaft und Technologie unter dem Förderkennzeichen 150 1085 gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autoren.

Kurzfassung

Im Rahmen eines vom BMBF/BMWi geförderten WTZ-Vorhabens wurde dem Institute for Nuclear Research and Nuclear Energy (INRNE) in Sofia der Programmcode DYN3D sowie der gekoppelte Programmkomplex ATHLET-DYN3D verfügbar gemacht. Dabei stellt dieser Programmkomplex eine Anbindung des im FZR entwickelten 3D Kernmodells DYN3D an den thermohydraulischen Systemcode ATHLET der GRS dar.

Zur Validierung dieser Programmcodes wurde eine Messdatensammlung zu einem Inbetriebnahmeexperiment am Block 6 des KKW Kozloduj (WWER-1000/320) erstellt. Die Ergebnisse der durchgeführten Validierungsrechnungen wurden mit den Messwerten aus der Datensammlung verglichen.

In den Programmcode DYN3D wurde von den bulgarischen Experten ein vereinfachtes Modell zur Simulation von Querströmungen zwischen den Brennelementen integriert. Dieses Querströmungsmodell ermöglicht es, Prozesse mit asymmetrischen Randbedingungen realistischer zu betrachten. Eine erste Bewertung des implementierten Strömungsmodells erfolgt durch Vergleichsrechnungen zwischen dem modifizierten DYN3D Code und dem Unterkanalanalyse-Code COBRA-4I sowie auf der Grundlage von verfügbaren Messdaten aus dem KKW Kozloduj.

Abstract

In the frame of a project on scientific-technical co-operation funded by BMBF/BMWi, the program code DYN3D and the coupled code ATHLET-DYN3D have been transferred to the Institute for Nuclear Research and Nuclear Energy (INRNE) Sofia. The coupled code represents an implementation of the 3D core model DYN3D developed by FZR into the GRS thermal-hydraulics code system ATHLET.

For the purpose of validation of these codes, a measurement data base about a start-up experiment obtained at the unit 6 of Kozloduy NPP (VVER-1000/V-320) has been generated. The results of performed validation calculations were compared with measurement values from the data base.

A simplified model for estimation of cross flow mixing between fuel assemblies has been implemented into the program code DYN3D by Bulgarian experts. Using this cross flow model, transient processes with asymmetrical boundary conditions can be analysed more realistic. The validation of the implemented model were performed with help of comparison calculations between modified DYD3D code and thermalhydraulics code COBRA-4I, and also on the base of the collected measurement data from Kozloduy NPP.

Inhalt

1.	Einle	eitung	g	.2
2.	Aufg	aben	stellung	.2
3.	Wiss	senso	chaftliche Ergebnisse	. 3
	3.1.	Test	rechnungen mit dem Programmcode DYN3D	.3
		Abbr	randrechnung	.3
		Besti	immung der Albedokoeffizienten als neutronenphysikalische Randbe-	Л
		Ausf	ahren einer Begelgruppe	.4
		Ausv	wurf eines Clusters	.4
		Pum	penstörung	.5
	3.2.	Testi	rechnungen mit dem Programmkomplex ATHLET-DYN3D	.6
		3.2.1	I. Codetransfer	.6
		3.2.2	2. Nutzertraining mit Durchführung von Störfallrechnungen	.6
			Abschaltung einer Hauptkühlmittelpumpe für WWER-1000	6
			Frischdampfleck für WWER-440	8
			Frischdampfleck für WWER-1000	8
	3.3.	Mess nung	sdatensammlung zu einer Betriebstransiente und Validierungsrech- jen mit dem gekoppelten Programmkomplex ATHLET-DYN3D1	1
		3.3.1	. Beschreibung des Prozesses und der Messdatensammlung 1	1
		3.3.2	 Validierung des Programmcodes DYN3D sowie des gekoppelten Programmkomplex ATHLET-DYN3D1 	7
			Beiträge zur Validierung von DYN3D1	7
			Beiträge zur Validierung von ATHLET-DYN3D2	20
	3.4.	Adap schä	otion des thermohydraulischen Kernmodells von DYN3D für die Ab- itzung von Querströmungen zwischen Brennstoffkassetten	24
		3.4.1	. Einfaches Querströmungsmodell in DYN3D2	24
		3.4.2	2. Vergleichsrechnungen	27
4.	Zusa	imme	enfassung	12
5.	Liter	atur		13
Ar	nhanç	y 1	Auszug aus der Messdatensammlung Zeitverläufe ausgewählter Parameter A1.	-1
Ar	nhang	g 2	Ergebnisse der Validierungsrechnungen (I) (DYN3D) A2-	-1
Ar	nhang	g 3	Ergebnisse der Validierungsrechnungen (II) (ATHLET-DYN3D) A3-	-1

1. Einleitung

Gegenwärtig konzentrieren sich Störfallablaufanalysen in zunehmenden Maße auf die komplexe Modellierung von Szenarien, bei denen sowohl das thermohyraulische Anlagenverhalten, als auch die räumliche Neutronenkinetik des Reaktorkerns relevant sind. Um die Analyse solcher Szenarien zu ermöglichen, werden thermohydraulische Systemcodes mit 3D Neutronenkinetikmodellen gekoppelt. Im Rahmen eines vom BMBF geförderten Vorhabens erfolgte die Kopplung des im FZR entwickelten 3D Kernmodells DYN3D an den thermohydraulischen Systemcode ATHLET der GRS /Gru95, Gru99/. Aufgrund der Berücksichtigung spezifischer Besonderheiten des Reaktortyps und des erreichten Validierungsstandes der Einzelprogramme eignet sich dieser Codekomplex auch für die Störfallanalyse von WWER-Reaktoren /Gru98/. Das wissenschaftlich-technische Problem besteht aber in der Validierung des gekoppelten Codekomplexes, die nicht mehr an Versuchsstandexperimenten erfolgen kann. Neben Programmvergleichen anhand von Benchmarks kommt der Nachrechnung geeigneter Transienten und betriebsnaher Störungen in KKW eine wesentliche Bedeutung zu. Zu diesem Zweck wurden Messdaten aus dem KKW Kozloduj aufbereitet, dokumentiert und für die Codevalidierung nutzbar gemacht. Ein weiterer Forschungsschwerpunkt auf dem Gebiet der Codeentwicklung ist die Vervollkommnung der in den Programmcodes implementierten Strömungsmodelle, die bei der Analyse von Störfällen und betriebsnahen Transienten die Anlagenparameter entscheidend beeinflussen können. So wurde im Rahmen dieses Vor-

habens der Programmcode DYN3D um ein vereinfachtes Modell zur Bewertung der Querströmung im Reaktorkern erweitert. Während in Reaktoren vom Typ WWER-440 ummantelte Brennelemente eingesetzt werden, verwendet man in WWER-1000-Reaktoren, wie auch in westlichen Druckwasserreaktoren, mantellose Brennelemente, so dass Querströmungen bei transienten Prozessen mit asymmetrischen thermohydraulischen Randbedingungen auch hier zu berücksichtigen sind.

2. Aufgabenstellung

Das Ziel des Vorhabens besteht in der Bereitstellung verifizierter Rechenprogramme für die Störfallsimulation, um den bulgarischen Experten vom INRNE eine verbesserte Sicherheitsbewertung von Reaktoren des Typs WWER zu ermöglichen. Das Vorhaben zielt auf eine Erweiterung der programmtechnischen Basis durch die Bereitstellung des gekoppelten Programmkomplexes ATHLET-DYN3D, eine Unterstützung bei der qualifizierten Anwendung der Programme für Störfallanalysen und Beiträge zur Validierung des Codes für die o.g. Reaktortypen. Ein weiteres Ziel besteht in der Adaption des thermohydraulischen Kernmodells für eine vereinfachte Simulation von Querströmungen.

Die Schwerpunkte des Vorhabens bestehen in:

- der Übergabe des 3D Kernmodells DYN3D für WWER-Reaktoren mit hexagonalen Brennelementen an INRNE und des gekoppelten Programmkomplexes ATHLET-DYN3D in Abstimmung mit der GRS; Einarbeitung von Experten des INRNE in die Anwendung von DYN3D als Stand-alone-Code und gekoppelt mit ATHLET anhand von Testrechnungen,
- der Unterstützung bei der Erstellung einer Datenbasis für Verifikationsrechnungen durch die bulgarische Seite anhand von Betriebsdaten aus dem KKW Kozloduj,

- der Qualifizierung der bulgarischen Programmanwender anhand von Verifikationsrechnungen mit dem Codekomplex ATHLET-DYN3D zu ausgewählten Transienten,
- der Unterstützung bei der Durchführung von Analysen für ausgewählte Störfallszenarien für WWER mit Hilfe von ATHLET-DYN3D,
- der Adaption des thermohydraulischen Kernmodells von DYN3D für eine vereinfachte Abschätzung von Querströmungen zwischen Brennstoffkassetten sowie
- der Bewertung der Güte des Modells anhand von Vergleichsrechnungen mit fortgeschrittenen Stabbündelcodes und von experimentellen Daten mit besonderer Berücksichtigung der Kerngeometrie von WWER-Reaktoren.

3. Wissenschaftliche Ergebnisse

3.1. Testrechnungen mit dem Programmcode DYN3D

In Vorbereitung des Einsatzes von DYN3D im INRNE wurde ein Nutzertraining zum Code DYN3D durchgeführt. Diese Einweisung der bulgarischen Experten in die Anwendung des Programmcodes erfolgte anhand von Testbeispielen für die Abbrandberechnung, die Bestimmung von Albedokoeffizienten durch stationäre Rechnung sowie die Rechnungen zu folgenden transienten Prozessen:

- das Ausfahren einer Regelgruppe,
- der Auswurf eines Clusters und
- eine Pumpenstörung.

Bei diesen Rechnungen wurde ein 60°-Symmetriesektor des Reaktorkerns eines WWER-1000 betrachtet, der eine Standardbeladung mit frischem Brennstoff aufwies (siehe Abbildung 3.1.1).

Abb. 3.1.1: Kernkonfiguration für Testrechnungen

Abbrandrechnung

Ausgehend von einer frischen Kernbeladung, erfolgte eine Abbrandrechnung über 320 Betriebstage. Dabei wurde angenommen, dass die Anlage im gesamten Zeitraum auf Vollast betrieben wird. Stationäre Reaktorzustände wurden für den 40. bzw. 320. Betriebstag als Ausgangszustände für die Untersuchung des Anlagenverhaltes während der o.g. Transienten etwa am Beginn bzw. Ende eines Brennstoffzyklus bereitgestellt. Die entsprechenden kritischen Borsäurekonzentrationen wurden mit 6.403 g/kg nach 40 effektiven Tagen bzw. mit 0.27 g/kg nach 320 effektiven Tagen im Rahmen der Abbrandrechnung bestimmt.

Bestimmung der Albedokoeffizienten als neutronenphysikalische Randbedingungen für den Reaktorkern

Die Berücksichtigung der äußeren Randbedingungen für den Reaktorkern kann in DYN3D über radiale und axiale Reflektorschichten, aber auch über Albedokoeffizienten erfolgen. Aus einer Rechnung mit Reflektoren wurden äquivalente Albedokoeffizienten ermittelt, die in den nachfolgenden Berechnungen von transienten Prozessen angewendet werden (d.h. Rechnungen konnten ohne Reflektorelemente durchgeführt werden). Dadurch wird in der transienten Rechnung Rechenzeit gespart.

Ausfahren einer Regelgruppe

Die 70 cm eingefahrene Regelgruppe K10 (siehe Abbildung 3.1.1) wurde bei Vollastbetrieb mit einer Geschwindigkeit von 2 cm/s ausgefahren.

Abb. 3.1.2: Reaktivitätsänderung während des Ausfahrens einer Regelgruppe

Abb. 3.1.3: Leistungsänderung während des Ausfahrens einer Regelgruppe

Der geringe Reaktivitätseffekt des Ausfahrens ist auf die geringe Eintauchtiefe und die langsame Ausfahrgeschwindigkeit zurückzuführen.

Auswurf eines Clusters

Der Auswurf eines Clusters der 70 cm eingefahrenen Regelgruppe innerhalb von 0.1 s wurde ebenfalls bei Vollastbetrieb initiiert.

Abb. 3.1.4: Reaktivitätsänderung während des Auswerfens eines Clusters

Abb. 3.1.5: Leistungsänderung während des Auswerfens eines Clusters

Die Regelstabwirksamkeit ist am Ende des Brennstoffzyklus höher, da in diesem Zustand sowohl eine geringere Borsäurekonzentration als auch eine Verlagerung des Maximums der Leistungsverteilung in Richtung obere Kernhälfte zu verzeichnen sind

Pumpenstörung

Das Auslaufen einer von vier Hauptkühlmittelpumpen wurde unter der Annahme betrachtet, dass die Reaktorschutzsysteme nicht ansprechen. Der Kühlmittelmassenstrom im Kern wurde entsprechend der Tabelle 3.1.1 vorgegeben.

Zeit, s	0	1	2	3	4	5	6	7
Rel. Massenstrom	1.0	0.97	0.94	0.91	0.88	0.85	0.82	0.79
Zeit, s	8	9	10	11	12	13	14	20
Rel. Massenstrom	0.77	0.75	0.73	0.72	0.71	0.70	0.70	0.70

Tab. 3.1.1: Veränderung des Kühlmittelmassenstroms im Reaktorkern während der Transiente

Die Reaktivitäts- und Leistungsentwicklung sowie die Änderung der Kühlmitteltemperatur am Kernaustritt während der Transiente sind in den Abbildungen 3.1.6 - 3.1.8 dargestellt.

Abb. 3.1.6: Reaktivitätsänderung während der Pumpenstörung

Abb. 3.1.8: Änderung der Kernaustrittstemperatur während der Pumpenstörung

Abb. 3.1.7: Leistungsänderung während der Pumpenstörung

Die Reaktivitätswirkung der Pumpenabschaltung ist bei Zyklusende größer, da der Rückkopplungskoeffizient der Moderatortemperatur stärker negativ ist.

Aufgrund der rechentechnischen Ausstattung im IPPE wurde eine für den Einsatz am PC modifizierte Programmversion von DYN3D übergeben. Außerdem erfolgte eine Einweisung zur Installation des Programmcodes.

3.2. Testrechnungen mit dem Programmkomplex ATHLET-DYN3D

3.2.1. Codetransfer

Da die Struktur des Programmes ATHLET die Ankopplung eines 3D Kernmodells auf verschiedene Weise ermöglicht, steht der Programmkomplex ATHLET-DYN3D mit zwei unterschiedlichen Kopplungsvarianten zur Verfügung.

Bei der sogenannten "internen Kopplung" wurde der neutronenkinetische Teil von DYN3D analog zum vorhandenen Punktkinetikmodell als Teilmodell "Neutronenkinetik" in ATHLET eingebunden. Die Modellierung des Kreislaufsystems einschließlich der thermohydraulischen Berechnung der Kühlkanäle des Reaktorkerns und der Temperaturen des Brennstoffs erfolgt im Code ATHLET.

Dagegen basiert die "externe Kopplung" auf der Ankopplung des kompletten Kernmodells DYN3D, bestehend aus Neutronenkinetik, Thermohydraulik und Brennstabmodell, als nutzerdefinierte GCSM¹-Routinen. Da der gesamte Kernbereich aus dem ATHLET-Anlagenmodell herausgeschnitten wird, müssen die thermohydraulischen Parameter am Coreein- bzw. Coreaustritt zwischen den Einzelprogrammen übergeben werden /Gru95/.

Zur Implementierung des Programmkomplexes ATHLET-DYN3D auf den Rechnern im INRNE wurde im Rahmen dieses Vorhabens folgende Software übergeben:

- für die interne Programmkopplung:
 - modifizierte DYN3D-Programmroutinen und
 - UNIX-Scripts zur Generierung einer ausführbaren Programmdatei sowie
- für die externe Ankopplung:
 - modifizierte ATHLET- und DYN3D-Programmroutinen,
 - GCSM-Routinen und
 - weitere Hilfsprogramme.

Der Code ATHLET wurde im INRNE bereits genutzt.

3.2.2. Nutzertraining mit Durchführung von Störfallrechnungen

Zur Einarbeitung in das vom FZR erstellte gekoppelte Codesystems ATHLET-DYN3D wurde für die bulgarischen Experten ein Nutzertraining durchgeführt. Dafür standen Eingangsdatensätze für die Beispielszenarien:

- Abschaltung einer von vier HKP für einen WWER-1000 und
- Frischdampfleck (FDL) durch Abriss einer Frischdampfleitung an einem Dampferzeuger eines WWER-440 sowie eines WWER-1000

zur Verfügung.

Abschaltung einer Hauptkühlmittelpumpe für WWER-1000

Der vorgegebene Ausgangszustand der WWER-1000-Anlage für die Abschaltung einer HKP war dadurch gekennzeichnet, dass sich der Reaktor am 40. Volllasttag auf einem Leistungsniveau von 95 % befand, wobei die Regelgruppe K10 ca. 71 cm eingefahren war. Ausgehend von einer Beladung mit frischem Brennstoff wurde mit Hilfe von DYN3D die Abbrandverteilung für den entsprechenden Volllasttag ermittelt. In den Rechnungen wurde der Reaktorkern als 30°-Symmetriesektor betrachtet, der eine Standardbeladung aufwies (siehe Abbildung 3.2.1). Für die thermohydraulischen Berechnungen der Anlage mit ATHLET wurde die Schleife mit der abgeschalteten HKP

¹ GCSM – General Control and Simulation Modul

als Einzelschleife und die übrigen Schleifen gemeinsam in einer Dreifachschleife modelliert. Das Auslaufverhalten der Pumpe ab dem Zeitpunkt t = 0s wurde durch eine für den Druckabfall über der HKP vorgegebene Zeitfunktion gesteuert.

Abb. 3.2.1: Kernkonfiguration für Beispielrechnung - Pumpenabschaltung

Bei der Untersuchung dieser Pumpenabschaltung wurde sowohl die externe als auch die interne Programmkopplung verwendet. Diese Verfahrensweise ermöglichte die Demonstration der unterschiedlichen Kopplungsstrategien im direkten Vergleich. Die Zeitverläufe der grundlegenden Parameter während der Transiente sind in den Abbildungen 3.2.2 - 3.2.7 dargestellt. Entsprechend der Anregekriterien für den Warnschutz I /Bey98/ wird bei der Abschaltung [1v4] HKP die Reaktorleistung auf 67 % der Nominalleistung mittels Einfahren der Regelgruppe K10 abgesenkt. Dieser Prozess wurde durch die Modellierung des Leistungsreglers umgesetzt.

Abb. 3.2.2: Änderung der Regelstabposition der Gruppe K10 infolge Abschaltung [1v4] HKP

Abb. 3.2.4: Reaktivitätsänderung während der Transiente

Abb. 3.2.3: Leistungsänderung während der Transiente

Abb. 3.2.5: Änderung des Dampfmassenstroms während der Transiente

Abb. 3.2.6: Änderung der Kühlmitteltemperatur im kalten Strang während der Transiente

Abb. 3.2.7: Änderung der Kühlmittelttemperatur im heißen Strang während der Transiente

Frischdampfleck für WWER-440

Die Analyse des Frischdampflecks (FDL) in einer WWER-440-Anlage wurde mittels der externen Kopplungsvariante des Programmkomplexes durchgeführt. Im Gegensatz zu den ersten beiden Anwendungsbeispielen erfolgten hier die neutronenphysikalischen und thermohydraulischen Berechnungen des Reaktorkerns durch DYN3D für jedes Brennelement (BE) separat (Vollcore-Rechnung), da die Verteilung der Kühlmitteleintrittstemperatur über den Kernquerschnitt zu berücksichtigen ist. Diese Verteilung wurde mit Hilfe des in DYN3D integrierten Vermischungsmodells berechnet. Bei den thermohydraulischen Berechnungen der Anlage mit ATHLET wurden eine Einzelsowie eine Fünffachschleife betrachtet.

Am Beginn des zu betrachtenden Szenarios befand sich die Anlage im Zustand "Heiße Nullast", wobei die Regelgruppen K1, K2, K3 in der oberen Endlage und die Regelgruppen K4, K5, K6 vollständig eingefahren waren. Die angenommene Reaktorleistung betrug 10 MW (Nachzerfallswärme). Das Leck in der Frischdampfleitung vor der Absperrarmatur wurde in der modellierten Einzelschleife initiiert. Im Szenario wurden das Schließen aller Absperrarmaturen, das Abschalten aller Hauptkühlmittelpumpen sowie das Auslösen der Reaktorschnellabschaltung SCRAM berücksichtigt. Beim Einfallen der Regelgruppen wurde angenommen, dass ein einzelnes Regelelement der Gruppe K3, welches sich im Kernsektor der Einzelschleifenanbindung befindet, in der oberen Endlage blockiert. Das Versagen der Boreinspeisung wurde unterstellt.

Die Ergebnisse der Untersuchung sind in den Abbildungen 3.2.8 – 3.2.18 dargestellt.

Frischdampfleck für WWER-1000

Als vertieftes Training der Codeanwendung wurde ein analoges FDL-Szenarium für eine WWER-1000-Anlage berechnet (vgl. auch vorigen Abschnitt). Im ATHLET wurden die vier Schleifen durch eine Einzel- und eine Dreifachschleife modelliert. Die Anlage befand sich im Zustand "Heiße Nulllast", wobei die Regelgruppen K1 - K6 in der oberen Endlage und die anderen Regelgruppen K7 - K10 vollständig eingefahren waren. Die Auslösesequenzen während des FDL-Szenarium wurden analog zu denen des FDL in der WWER-440-Anlage gewählt, um eine Vergleichbarkeit der Ergebnisse zu gewährleisten. Unter diesem Gesichtspunkt wurde auch der Hilfsspeisewassermassenstrom mit 180 kg/s angepasst (der reale Betriebswert liegt bei 75.71 Kg/s). Im Gegensatz zur Rechnung für den WWER-440 wurde allerdings eine homogene Vermischung des Kühlmittels am Kerneintritt angenommen. Die Ergebnisse sind im Vergleich zur FDL-Analyse für WWER-440-Anlage in den Abbildungen 3.2.8 - 3.2.18 dargestellt.

Abb. 3.2.9: Höhenstand im DE mit Leck

Abb. 3.2.10: Massenstrombilanz für DE mit Leck (WWER-440)

Abb. 3.2.12: Wärmeübertragung in den DE

Abb. 3.2.11: Massenstrombilanz für DE mit Leck (WWER-1000)

Abb. 3.2.13: Wärmeübertragung in den intakten DE

Abb. 3.2.14: Verlauf der Kühlmitteltemperaturen (WWER-440)

Abb. 3.2.16: Leistungsänderung während des FDL-Szenarios (WWER-440)

Abb. 3.2.18: Reaktivitätsänderung während des FDL-Szenarios

Abb. 3.2.15: Verlauf der Kühlmitteltemperaturen (WWER-1000)

Abb. 3.2.17: Leistungsänderung während des FDL-Szenarios (WWER-1000)

Die vergleichende Analyse von FDL-Szenarien für WWER-440 und WWER-1000 demonstriert die unterschiedlichen Eigenschaften beider Reaktortypen im Hinblick auf die Auslegungssicherheit. Aufgrund der 6-Schleifen-Anlage des WWER-440 führt ein Frischdampfleck in einer Schleife zu verhältnismäßig geringeren Auswirkungen als der analoge Störfall bei einem WWER-1000. So ist in der WWER-1000-Anlage trotz der angenommenen homogenen Vermischung ein größerer Leistungsanstieg zu verzeichnen.

3.3. Messdatensammlung zu einer Betriebstransiente und Validierungsrechnungen mit dem gekoppelten Programmkomplex ATHLET-DYN3D

Von bulgarischer Seite wurden Recherchen zu Messdaten über Betriebstransienten aus dem KKW Kozloduj durchgeführt, deren Dokumentation ausreichende Informationen für eine Nachrechnung dieser Prozessverläufe liefert.

Im Ergebnis dieser Recherchen wurde das im September 1992 durchgeführte Inbetriebnahmeexperiment "Abschaltung zweier benachbarter von vier in Betrieb befindlichen Hauptkühlmittelpumpen (HKP) bei einem Leistungsniveau von 90.6 % der Nennleistung" ausgewählt.

3.3.1. Beschreibung des Prozesses und der Messdatensammlung

Im Rahmen eines Inbetriebnahmeexperimentes am Block 6 des KKW Kozloduj (WWER-1000) wurden bei einer Leistung von 90.6 % Nominallast zwei benachbarte der vier HKP (HKP-1 und HKP-2, siehe Abbildung 3.3.2) abgeschalten.

Die gleichzeitige Abschaltung der beiden HKP bedingt eine Leistungsabsenkung durch den Leistungsbegrenzungsregler (ROM) (siehe Abbildung 3.3.1).

Der ansprechende "Beschleuniate Warnschutz" bewirkt das Einfallen der Regelgruppe K1, wodurch nach 4.5 s ein Leistungsniveau von 43 % der Nominallast erreicht wird. Der nun aktivierte "Warnschutz II" untersagt das Ausfahren der Regelgruppen. Dabei schaltet der Reaktorleistungsregler (ARM) in die Betriebsart "N"2 um und wird aufgrund des Signals "Verbot einer Leistungserhöhung bzw. -absenkung" deaktiviert. Der die Steuerung übernehmende

Abb. 3.3.1: Leistungsverlauf während der Transiente

ROM setzt die Leistungsabsenkung für 1.5 s aus, wobei sich eine Leistung von 44 % einstellt. Aufgrund des Signals "Warnschutz I" beginnt dann das Einfahren der Regelgruppe K10. Dieser Einfahrprozess wird nach 1 s für ca. 2.5 s unterbrochen und danach weiter fortgesetzt. Während der Verweilzeit wird der "Warnschutz II" erneut aktiviert. Der ROM stoppt 25 s nach der Pumpenabschaltung die Leistungsabsenkung und wird 1 s später deaktiviert. Die damit verbundene Aufhebung des "Warnschutzes I" bedeutet, dass auch das Einfahren der Regelgruppe K10 beendet ist. Anschließend übernimmt der Reaktorleistungsregler (ARM) die Stabilisierung des Leistungsniveaus bei 35 % der Nennleistung (in der Betriebsart "N").

Das Turbinenregelsystem schaltet nach 5.5 s in die Betriebsart "RD-1"³ um und gewährleistet innerhalb von 30 s die kontinuierliche Absenkung der Turbinenleistung von 900 MW auf 500 MW (d.h. die mittlere Geschwindigkeit dieser Leistungsabsenkung beträgt 13 MW/s). Das Turbinenregelsystem schaltet in die Betriebsart "RD-1" zurück.

² Regelung der Reaktorleistung nach der Neutronenflussdichte

³ Regelung des Druckes im Frischdampfsammler

Alle Druckhalterheizer werden zugeschalten.

Abb. 3.3.2: Konfiguration der Spaltzone bei der Erstbeladung und Schleifenanordnung des Block 6 im KKW Kozloduj

In der Tabelle 3.3.1 ist die zeitliche Abfolge der Ereignisse und Schalthandlungen dargestellt.

Zeit, s	Ereignisse und Schalthandlungen
0.0	Abschaltung der Hauptkühlmittelpumpen HKP-1 und HKP-2
0.5	Aktivierung des ROM zur Leistungsabsenkung
1.5	Ansprechen des "Beschleunigten Warnschutzes"; Einfallen der Abschaltgruppe K1
4.5	Ansprechen des "Warnschutzes II" (Ausfahrverbot für Regelgruppen)
	Umschaltung des ARM in Betriebsart "N" und seine Deaktivierung aufgrund des Signals "Verbot einer Leistungserhöhung bzw. –absenkung"
	Unterbrechung der Leistungsabsenkung durch ROM für t = 1.5 s
5.0	Ansprechen des "Warnschutzes I" (Einfahren der Regelgruppe K10)
5.5	Umschaltung des Turbinenregelsystems in Betriebsart "RD-1" und Beginn der Leistungsabsenkung der Turbine
6.0	Fortsetzung der Leistungsabsenkung durch ROM
	Zuschaltung der Druckhalterheizer № 1 (bei PKL-Druck von 15.54 MPa)
	Zuschaltung der Druckhalterheizer № 2 (bei PKL-Druck von 15.50 MPa)
	Zuschaltung der Druckhalterheizer № 3 (bei PKL-Druck von 15.50 MPa)
	Zuschaltung der Druckhalterheizer № 4 (bei PKL-Druck von 15.50 MPa)
7.0	Deaktivierung des "Warnschutzes I" (Beendigung des Einfahrens der Regelgruppe K10)
	Ansprechen des "Warnschutzes II" (Ausfahrverbot für Regelgruppen)
9.5	Ansprechen des "Warnschutzes I" (Einfahren der Regelgruppe K10)
20.0	Umschaltung des Reglers für Turbospeisewasserpumpe von Betriebsart "MD" in "PP"
26.0	Aufhebung des "Warnschutzes I" (Beendigung des Einfahrens der Regelgruppe K10)
	Beendigung der Leistungsabsenkung durch ROM und Deaktivierung des ROM
139.0	Aufhebung des "Warnschutzes II"
240.0	Abschaltung der Druckhalterheizer № 4 (bei PKL-Druck von 15.49 MPa)
242.0	Abschaltung der Druckhalterheizer № 3 (bei PKL-Druck von 15.49 MPa)
300.0	Ende der Transiente

Tab. 3.3.1:	Zeitverlauf zu	Ereignissen	und Schalthandlı	ungen während	der Transiente
-------------	----------------	-------------	------------------	---------------	----------------

Der Anlagenzustand am Beginn bzw. am Ende der betrachteten Transiente wird durch die in der Tabelle 3.3.2 enthaltenen Parameter charakterisiert. Für die Validierung des gekoppelten Programmkomplexes ATHLET-DYN3D standen die Zeitverläufe der in Tabelle 3.3.3 aufgeführten Messdaten zur Verfügung. Die Zeitverläufe ausgewählter Parameter sind im Anhang 1 dieses Berichtes dargestellt.

Tab. 3.3.2:	Anlagenparameter zu Beginn bzw. am Ende der Transiente
-------------	--

Parameter	Parameterwert									
	zu Beginn der Transiente (t = 0.0 s)					am Ende der Transiente (t = 300.0 s)				
Reaktorphysikalische Parameter								······································		
Reaktorleistung, MW (% Nominalleistung)			2718 (90.6)					1024 (34.1)		
Position der Regelgruppen, cm										
- Regelgruppe K1			353					33		
- Regelgruppen K2 - K9 Regelgruppe K10			303					303		
Cluster Nr. 56			275					237		
Cluster Nr. 61			276					232		
Borsäurekonzentration, g/kg			2.79					2.79		
Betriebszeit, eff. Tage					17	72				
Thermohydraulische Parameter	Schleife 1	Schleife 2	Schleife 3	Schleife 4	Mittelwert	Schleife 1	Schleife 2	Schleife 3	Schleife 4	Mittelwert
Kühlmitteltemperatur Reaktoreintritt, °C	287.3	287.1	287.3	286.7	287.1	283.6	284.5	284.2	284.0	284.1
Kühlmitteltemperatur Reaktoraustritt, °C	315.5	315.5	315.9	315.5	315.6	277.9	276.5	301.9	301.8	289.5
Druck im PKL (oberhalb Spaltzone), MPa			15.735			15.568				
Druckabfall über Spaltzone, kPa			402.2			94.2				
Druckabfall über HKP, kPa	586.6	605.3	586.6	590.6	•	60.8	69.6	362.0	367.9	-
Kühlmitteldurchsatz PKL, kg/s	4522	4419	4367	4558	17864**	-303	-372	5261	5511	10094**
Höhenstand im Druckhalter, cm			841/838			705 / 710				
Höhenstand im Dampferzeuger, cm	241	242	240	238	-	241	237	237	235	-
Speisewassertemperatur, °C	215.9	210.8	214.1	211.3	213.0	168.7	203.1	165.8	168.9	167.4
Druck in Dampferzeuger (sekundärseitig), MPa	6.01	6.02	6.05	6.02	-	5.81	5.81	5.94	5.93	-
Speisewasserdurchsatz, kg/s	345.6	352.2	360.6	368.3	1426.7**	0.3	0.0	212.5	228.6	441.4**
Max. Kühlmitteltemperatur Reaktoraustritt, °C *		314.5						309.5		
Min. Kühlmitteltemperatur Reaktoraustritt, °C *	303.0							293.0		
Mittlere Kühlmitteltemperatur Reaktoraustritt, °C*	309.4							302.4		
Turbinenleistung, MW	898						269			
Frischdampfdruck, kPa			5866					5857		
Leistung der Dampferzeuger, MW	657	656	668	686	2667**	0	0	453	473	926**

Anmerkung: * Messwerte der Brennelemente mit Temperaturmessstelle am Austritt

** Summe über alle Einzelschleifen

Tab. 3.3.3: Liste der während der Transiente erfassten Messdaten

Nr.	Parameter	Maßeinheit	Kennzeichen	Nr.	Parameter	Maßeinheit	Kennzeichen
1	Reaktorleistung	MW	NIK	28	Höhenstand im DE-1	cm	YB10L04
2	Regelstabposition Cluster №1 (Regelgruppe K1)	cm	-	29	Höhenstand im DE-2	cm	YB20L04
3	Regelstabposition Cluster №56 (Regelgruppe K10)	cm	-	30	Höhenstand im DE-3	cm	YB30L04
4	Regelstabposition Cluster №61 (Regelgruppe K10)	cm	-	31	Höhenstand im DE-4	cm	YB40L04
5	Druck im oberen Plenum	MPa	YC20P22	32	Höhenstand im DE-1	cm	YB10L09
6	Druckdifferenz über Reaktorkern	kPa	YC14P03	33	Höhenstand im DE-2	cm	YB20L09
7	Mittlere Kühlmitteltemperatur im PKL (CL&HL)	°C	YA10T24	34	Höhenstand im DE-3	cm	YB30L09
8	Kühlmitteltemperatur im kalten Strang Schleife 1	°C	YA12T24	35	Höhenstand im DE-4	cm	YB40L09
9	Kühlmitteltemperatur im kalten Strang Schleife 2	°C	YA22T24	36	Höhenstand im DE-1 (eingeschränkter Messbereich)	cm	YB10L11
10	Kühlmitteltemperatur im kalten Strang Schleife 3	0°	YA32T24	37	Höhenstand im DE-2 (eingeschränkter Messbereich)	cm	YB20L11
11	Kühlmitteltemperatur im kalten Strang Schleife 4	°C	YA42T24	38	Höhenstand im DE-3 (eingeschränkter Messbereich)	cm	YB30L11
12	Kühlmitteltemperatur im heißen Strang Schleife 1	°C	YA11T24	39	Höhenstand im DE-4 (eingeschränkter Messbereich)	cm	YB40L11
13	Kühlmitteltemperatur im heißen Strang Schleife 2	°C	YA21T24	40	Höhenstand im DE-1	cm	YB10L19
14	Kühlmitteltemperatur im heißen Strang Schleife 3	°C	YA31T24	41	Höhenstand im DE-2	cm	YB20L19
15	Kühlmitteltemperatur im heißen Strang Schleife 4	°C	YA41T24	42	Höhenstand im DE-3	cm	YB30L19
16	Druckdifferenz über HKP-1	kPa	YA10P18	43	Höhenstand im DE-4	cm	YB40L19
17	Druckdifferenz über HKP-2	kPa	YA20P18	44	Temperatur im Druckhalter (Flüssigkeit)	°C	YP10T01
18	Druckdifferenz über HKP-3	kPa	YA30P18	45	Temperatur im Druckhalter	°C	YP10T02
19	Druckdifferenz über HKP-4	kPa	YA40P18	46	Temperatur im Druckhalter (Dampf)	°C	YP10T08
20	Druckdifferenz über Schleife 1	kPa	YA10P15	47	Temperatur im Druckhalter (Sprüher)	°C	YP10T09
21	Druckdifferenz über Schleife 2	kPa	YA20P15	48	Temperatur im Druckhalter (Ausgleichsleitung)	°C	YP10T10
22	Druckdifferenz über Schleife 3	kPa	YA30P15	49	Druck im Druckhalter	MPa	YP10P01
23	Druckdifferenz über Schleife 4	kPa	YA40P15	50	Höhenstand im Druckhalter	cm	YP10 L03
24	Druck im DE-1	MPa	YB10P10	51	Höhenstand im Druckhalter	cm	YP10L07
25	Druck im DE-2	MPa	YB20P10	52	Stellung des Druckhaltersicherheitsventils	%	YP13S02
26	Druck im DE-3	MPa	YB30P10	53	Temperatur PKL-Zuspeisung	°C	TK80T01
27	Druck im DE-4	MPa	YB40P10	54	Kühlmittelmassenstrom TQ40 (PKL-Ausschleusung)	kg/s	TK40F01

Tab. 3.3.3:	Liste der während der T	ransiente erfassten	Messdaten (Fortsetzung)
-------------	-------------------------	---------------------	-------------------------

I

Nr.	Parameter	Maßeinheit	Kennzeichen	Nr.	Parameter	Maßeinheit	Kennzeichen
55	Kühlmittelmassenstrom TQ80 (PKL-Zuspeisung)	kg/s	TK80F01	81	Speisewassertemperatur (zum DE-1)	°C	RL71T01
56	Ventilstellung (Wasseraufbereitungssystem TK)	%	TK31S02	82	Speisewassertemperatur (zum DE-2)	°C	RL72T01
57	Ventilstellung (Wasseraufbereitungssystem TK)	%	TK32S02	83	Speisewassertemperatur (zum DE-3)	°C	RL73T01
58	Druck im Frischdampfsammler	MPa	RC11P01	84	Speisewassertemperatur (zum DE-4)	°C	RL74T01
59	Druck im Frischdampfsammler	MPa	RC12P03	85	Speisewassermassenstrom zum DE-1	kg/s	RL71F01
60	Stellung des Regelventils	%	SF61S01	86	Speisewassermassenstrom zum DE-2	kg/s	RL72F01
61	Turbinendrehzahl	min ⁻¹	SB11G06	87	Speisewassermassenstrom zum DE-3	kg/s	RL73F01
62	Drehzahl der Turbospeisewasserpumpe 1	min ⁻¹	SE51G11	88	Speisewassermassenstrom zum DE-4	kg/s	RL74F01
63	Drehzahl der Turbospeisewasserpumpe 2	min ⁻¹	SE52G11	89	Stellung des Speisewasserregelventils (DE-1)	%	RL71S02
64	Leistung des Turbinengenerators	MW	GT01N01	90	Stellung des Speisewasserregelventils (DE-2)	%	RL72S02
65	Leistung des Turbinengenerators	MW	GT10N02	91	Stellung des Speisewasserregelventils (DE-3)	%	RL73S02
66	Ölmassenstrom zur Turbine	kg/s	GT01F01	92	Stellung des Speisewasserregelventils (DE-4)	%	RL74S02
67	Stellung der Turbinenschnellschlussventile	cm	pol.rk1	93	Stellung des Speisewasserregelventils (DE-1)	%	RL71S04
68	Stellung der Turbinenschnellschlussventile	cm	pol.rk2	94	Stellung des Speisewasserregelventils (DE-2)	%	RL72S04
69	Höhenstand im Speisewasserbehälter	cm	RL21L01	95	Stellung des Speisewasserregelventils (DE-3)	%	RL73S04
70	Höhenstand im Speisewasserbehälter	cm	RL22L01	96	Stellung des Speisewasserregelventils (DE-4)	%	RL74S04
71	Druckdifferenz Speisewasserbehälter	kPa	RL21P01	97	Druck im Kondensatsammler	kPa	RQ11P01
72	Druckdifferenz Speisewasserbehälter	kPa	RL22P01	98	Druck im Kondensatsammier	kPa	RQ51P02
73	Speisewasserdruck (FWTP-1)	kPa	RL41P02	99	Druck im Kondensatsammler	kPa	RQ52P02
74	Speisewasserdruck (FWTP-2)	kPa	RL42P02	100	Stellung des Kondensatregelventils	%	RQ11S01
75	Speisewassermassenstrom FWTP-1	kg/s	RL41F01	101	Stellung des Kondensatregelventils	%	RQ12S01
76	Speisewassermassenstrom FWTP-2	kg/s	RL42F01	102	Ventilstellung der Druckregelung im Speisewasser-	%	RQ21S08
77	Zusatzspeisewassermassenstrom AFWP-1	kg/s	RL51F01	<u> </u>	behälter		
78	Zusatzspeisewassermassenstrom AFWP-1	kg/s	RL52F01	103	Ventilstellung der Druckregelung im Speisewasser-	%	RQ22S08
79	Speisewassermassenstrom nach DH-Vorwärmern	kg/s	RL61F01		Dehalter		
80	Speisewassermassenstrom nach DH-Vorwärmern	kg/s	RL62F02				

Die Detailinformationen zu den Anlagenparametern, zum Prozessverlauf sowie zu ausgewählten Messdaten liegen in Form eines internen Berichtes vom INRNE-BAS /IIi00/ vor. Neben diesen Informationen enthält die zur Betriebstransiente erstellte Dokumentation auch Ausführungen zu folgenden Komponenten bzw. Systemen und ihren Reglern:

- Hauptkühlmittelpumpen
- Druckhalter
- Reaktorschutzsysteme
- Speisewassersystem und
- Turbinenregelsystem.

3.3.2. Validierung des Programmcodes DYN3D sowie des gekoppelten Programmkomplex ATHLET-DYN3D

Beiträge zur Validierung von DYN3D

In Vorbereitung der Validierungrechnungen wurden auf der Grundlage der dokumentierten Transiente die kraftwerks- bzw. prozessspezifischen Datensätze für folgende Aufgaben erstellt:

- Bestimmung der neutronenphysikalischen Randbedingungen (Albedokoeffizienten des Neutronenflusses) mittels DYN3D
- Bestimmung der kritischen Borsäurekonzentration während der ersten 193 Betriebstage des 1. Brennstoffzyklus (d.h. für den Zeitraum, in welchem detailliertere Informationen über den Anlagenbetrieb verfügbar waren) mittels DYN3D
- Bestimmung der Abbrandverteilung zu Beginn der Transiente (d.h. nach 172 Betriebstagen des 1. Brennstoffzyklus) mittels DYN3D
- Durchführung von stationären Rechnungen für den Anlagenzustand zum Beginn bzw. am Ende der Transiente mittels DYN3D

Die erforderlichen Wirkungsquerschnitte wurden in einer 2-Gruppen-Näherung mit dem Programmcode NESSEL generiert /Agt90/.

Die Berechnung der äquivalenten Albedokoeffizienten erfolgte auf der Grundlage der Einführung von zusätzlichen radialen und axialen Reflektorschichten an der Kernperipherie. Die berechneten Koeffizienten dienten in alle weiteren Untersuchungen zur Beschreibung der neutronenphysikalischen Randbedingungen des Reaktorkerns.

Zur Bestimmung der kritischen Borsäurekonzentration fand neben der DYN3D-Programmversion ohne Berücksichtigung der Xenondynamik auch die erweiterte Version (DYN3D mit Xe-Option) Anwendung. Die Untersuchungen wurden für den gesamten Zeitraum des 1. Brennstoffzyklus, für den die detaillierteren Informationen über den Anlagenbetrieb verfügbar waren (d.h. für 193 effektive Betriebstage), durchgeführt. Im Rahmen von Variationsrechnungen konnte der Einfluss der axialen Nodalisierung des Reaktorkerns untersucht werden. So wurden Berechnungen mit 12 bzw. 18 axialen Nodes (d.h. 10 bzw. 16 Brennstoffnodes) durchgeführt. Die Ergebnisse sind in den Tabellen A2-1 und A2-2 (siehe Anhang 2) dargestellt.

Die Abbrandverteilung zum Zeitpunkt des Beginns der Transiente (d.h. nach 172 effektiven Betriebstagen) wurde mit dem Programmcode DYN3D in Rahmen von Voll-Core-Rechnungen bestimmt, wobei der Reaktorkern in 10 bzw. 16 Brennstoff-

schichten unterteilt wurde. Diese berechneten Verteilungen wurden entsprechend in den nachfolgenden stationären DYN3D- bzw. transienten ATHLET-DYN3D-Rechnungen verwendet.

Da der Anlagenbetrieb vor der zu betrachtenden Transiente durch weitere Inbetriebnahmeexperimenten gekennzeichnet war, konnte nicht von einer stationären Xenonbzw. Samariumverteilung ausgegangen werden. Um eine realistischere Verteilung der Xenon- und Samariumkonzentrationen zu Beginn der Transiente zu erhalten, wurden ausgehend vom Zustand, der nach 170 effektiven Betriebtagen erreicht worden war, die Xe-Dynamik in den verbleibenden 59 Stunden mit DYN3D unter Verwendung der entsprechenden Xe-Option berechnet. Somit standen die für 12 Höhennodes berechneten Verteilungen der Xe- und Sm-Konzentration für die Validierung des Programmkomplexes ATHLET-DYN3D und die für 18 axiale Nodes bestimmten Konzentrationsverteilungen für die DYN3D-Rechnungen zur Verfügung.

Für den Anlagenzustand vor dem Beginn der o.g. Transiente wurde mit den verschiedenen Programmversionen von DYN3D die radiale Leistungsverteilung für die Brennelemente eines 60°-Symmetrie-Sektors bestimmt. Dabei wurde einerseits die Xe- und Sm-Konzentration im Gleichgewicht betrachtet und andererseits mit der Xe-Option im DYN3D berechnet. Im Ergebnis dieser Vergleichsrechnungen konnte festgestellt werden, dass durch diese beiden verschiedenen Berechnungsmethoden praktisch keine Unterschiede in den berechneten Leistungsverteilungen auftraten. Daraus kann die Schlussfolgerung gezogen werden, dass die Xenondynamik vernachlässigbar ist und mit der Xe-Gleichgewichtsverteilung gerechnet werden kann. Um den Einfluss der verwendeten Querschnittsdatenbibliothek (NESSEL) zu untersuchen, wurde eine zusätzliche Rechnung unter Verwendung einer mit dem Programm KASSETA generierten Datenbibliothek durchgeführt /Sid89/.

Die berechneten Leistungen der einzelnen Brennelemente in einem 60°-Symmetrie-Sektor wurden mit den bereitgestellten Messwerten verglichen. Dieser Vergleich ist in der Tabelle A2-3 dargestellt. Die mittleren Abweichungen zwischen den Messwerten und den berechneten Leistungswerten für jeden der Brennelementtypen zeigt die folgende Tabelle.

Typ der BE	Anzahl der BE	NESSEL	KASSETA	
3.3 %	36	-1.32	-2.11	
3.3 % (profiliert)	6	-1.81	-3.61	
3.0 %	42	10.31	7.97	
2.0 %	79	-2.93	-1.21	
	163	0.7644	0.8066	

Tab. 3.3.4: Abweichungen der mit DYN3D berechneten BE-Leistungen von den Messwerten – gemittelt über alle Brennelemente mit gleicher Anreicherung [%]

Mit der Verwendung einer alternativen Datenbibliothek (KASSETA) konnte nachgewiesen werden, dass die erhöhten Abweichungen bei den Brennelementen mit einer Anreicherung von 3.0 % nicht in den neutronenphysikalischen Querschnittsdaten begründet sind. Die Ursachen für die Abweichungen sind also höchstwahrscheinlich in den Messwerten zu suchen. So könnten Faktoren wie die Zeit der Messwerterfassung, die Eichung der Messlanzen bzw. eine Softwareungenauigkeit durch die Verwendung einer älteren Version des Programmcodes BIPR zur Berechnung der Leistungsverteilung aus den Messgrößen mögliche Einflussquellen darstellen. Eine eindeutige Bestimmung der Fehlerquelle war nicht möglich, da weitere, den vorgeschriebenen Aufzeichnungsumfang überschreitende Informationen zum Inbetriebnahmeexperiment von September 1992 nicht verfügbar waren.

Für weitere Vergleichsrechnungen zum stationären Zustand vor der Transiente wurden die für das Brennelement mit dem Leistungsmaximum (d.h. №55 in der Voll-Core-Darstellung) bzw. für das heißeste Brennelement im 60°-Symmetrie-Sektor (d.h. №8) verfügbaren axialen Leistungsverteilungen herangezogen. Dabei beruhen diese Verteilungen auf den Messwerten der Elektronenemissionsdetektoren (EED), die ebenfalls unter Verwendung einer älteren Version des Programmcodes BIRP während der Aufzeichnungsphase bearbeitet wurden.

Die Berechnung der axialen Leistungsverteilung wurde mit und ohne Berücksichtigung der Xe-Dynamik aufgrund der Leistungsschwankungen vor der Transiente durchgeführt. Die Vergleiche der berechneten axialen Leistungsverteilungen für den gesamten Reaktorkern und für das Brennelement Nr.55 (bzw. Nr.8) mit den Messwerten sind in den Abbildungen 3.3.3 und 3.3.4 sowie in den Tabellen A2-4 und A2-5 dargestellt.

Abb. 3.3.3: Axiale Leistungsverteilung für den Abb. 3.3.4: Axiale Leistungsverteilung für das gesamten Reaktorkern Brennelement Nr.55 (bzw. Nr.8)

Die gemessene axiale Leistungsverteilung wurde in den Rechnungen nicht wiedergegeben. Während die Rechnung ein Maximum in der unteren Kernhälfte zeigt, liegt in den Messdaten das Maximum in der oberen Kernhälfte. Dies ist jedoch unter Berücksichtigung der konkreten Bedingungen (wie z.B. Abbrandverteilung und Regelstabposition) zum Zeitpunkt der betrachteten Transiente (nach 172 effektiven Betriebstagen) unplausibel. Somit müssen die Ursachen für die Abweichungen in der Signalaufzeichnung bzw. -bearbeitung vermutet werden. Die entsprechenden Ursprungsdaten waren für dieses Inbetriebnahmeexperiment am Block 6 des KKW Kozloduj leider nicht verfügbar.

Åhnliche mittels DYN3D für den WWER-1000-Reaktor durchgeführte Berechnungen (z.B. für den Block 4 im KKW Balakovo) /Kli00//Kli01/ haben gezeigt, dass die aufgezeichneten EED-Signale (unbearbeitete Messwerte) sowohl für den stationären Anlagenzustand vor der Transiente als auch danach eine gute Übereinstimmung mit den berechneten axialen Leistungsverteilungen aufwiesen.

Beiträge zur Validierung von ATHLET-DYN3D

Den Validierungsrechnungen für den Programmkomplex ATHLET-DYN3D wurde das Szenario der akquirierten Transiente zugrunde gelegt. Der erforderliche Eingangsdatensatz für diese Rechnungen wurde auf der Grundlage des im Rahmen eines komplementären Förderprojektes generierten ATHLET-Eingabedatensatzes erstellt.

Dabei wurde der Primärkreislauf der Anlage durch zwei separate Schleifen modelliert, die jeweils die heißen Stränge, die Dampferzeuger sowie die kalten Stränge mit den Hauptkühlmittelpumpen (HKP) von zwei Anlagenschleifen darstellen. Die Schleifen mit den während der Transiente abzuschaltenden HKP wurden entsprechend zu einer dieser modellierten Zweifachschleifen zusammengefasst. Der Druckhalter ist in jene Zweifachschleife eingebunden, deren HKP ständig in Betrieb sind.

Das Reaktormodell beinhaltet den Ringspalt, das untere Plenum, den Reaktorkern, das obere Plenum und den Reaktordeckel. Die den kalten Strängen der zwei Modellschleifen zugeordneten Ringspaltzonen sind über Querverbindungen miteinander thermohydraulisch gekoppelt. Das untere Plenum besteht aus drei Einzelobjekten. Der Reaktorkern wird durch zwei Kühlkanäle modelliert, welche die 109 Brennelemente des inneren Kernbereiches bzw. die 54 Brennelemente der Randzone des Reaktorkerns vereinen. Das obere Plenum ist aus vier Einzelobjekten und der Deckelbereich aus einem Objekt aufgebaut.

Die entsprechenden Nodalisierungsschemata des Primärkreislaufs sowie des Reaktors sind in den Abbildungen A3-1 und A3-2 (siehe Anhang 3) dargestellt.

Der modellierte Sekundärkreislauf wird durch die horizontalen Dampferzeuger, die Frischdampfleitungen, den Frischdampfsammler, die Sicherheitsventile, die Abblase ventile und die Turbinenventile gebildet (siehe Abbildung A3-3).

Dem Eingangsdatensatz wurden die Abmessungen, die Materialdaten und die Sollwerte der Regelgrößen eines WWER-1000/320 zugrunde gelegt. Die Abbildung 3.3.1 zeigt das die zu untersuchende Transiente charakterisierende Beladungsschema für den Reaktorkern.

Im Rahmen der Nachrechnung des transienten Prozesses sollten folgende Aufgabenstellungen betrachtet werden:

- die Berechnung der Anlagenparameter mit Hilfe des Programmkomplexes ATHLET-DYN3D (interne Kopplung), wobei die stationäre Xenonverteilung für den Zeitpunkt des Beginns der Transiente bestimmt wurde (d.h. ohne Berücksichtigung des vorangegangenen Betriebsprozesses) sowie
- die Berechnung der Anlagenparameter mit Hilfe des Programmkomplexes ATHLET-DYN3D (interne Kopplung), wobei die Xenon- bzw. Samarium-Konzentrationen am Beginn der Transiente unter Berücksichtigung der detaillierten Betriebsgeschichte innerhalb der letzten 59 Stunden vor dem Experiment bestimmt wurden (mittels der im DYN3D implementierten Xenon-Option).

Diese Rechnungen werden im weiteren Bericht mit den Bezeichnungen "RUN01" und "RUN02" gekennzeichnet. Die Ergebnisse dieser beiden Untersuchungen werden neben den Messwerten auch mit Ergebnissen aus einer äquivalenten ATHLET-Rechnung unter Verwendung des Punktkinetikmodells ("RUN00") verglichen.

Zur Einstellung von stabilen Startbedingungen für diese Berechnungen wurden vorab sogenannte "Nulltransienten" berechnet. Dabei wird das Zusammenspiel aller modellierten Anlagenkomponenten als Gesamtsystem unter der Annahme fehlender äußerer Einflüsse betrachtet. Der Vergleich der Anlagenparameter, die sich nach 300 Sekunden eingestellt hatten, mit den verfügbaren Messwerten vor dem Beginn der Transiente ist in der Tabelle 3.3.5 dargestellt.

N۷	Parameter	Messwert	Run 00	Run 01	Run 02			
Pri	Primärkreislauf							
1	Reaktorleistung, MW	2718.0	2717.3	2716.3	2716.8			
2	Regelstabposition der Gruppe K1, cm	353.0	353.0	353.0	353.0			
3	Regelstabposition der Gruppe K10, cm	275.5	275.5	275.5	275.5			
4	Druck im oberen Plenum, MPa	15.735	15.740	15.795	15.787			
5	Druckdifferenz über Reaktor, kPa	402.2	331.0 328.8	356.6 353.8	356.8 353.8			
6	Kühlmittelmassenstrom im PKL, kg/s	17864	17829.5	17818.0	17819.3			
7	Kühlmittelmassenstrom in Schleife 1, kg/s	4522, 4419*	4452.5	4452.4	4449.8			
8	Kühlmittelmassenstrom in Schleife 2, kg/s	4367, 4558*	4462.2	4456.6	4459.8			
9	Druckdifferenz über HKP-1, kPa	586.6, 605.3*	605.58	605.64	605.48			
10	Druckdifferenz über HKP-2, kPa	586.6, 590.6*	598.81	598.43	598.69			
11	Temperatur heißer Strang der Schleife 1, °C	315.5, 315.2*	316.1	316.3	316.3			
12	Temperatur heißer Strang der Schleife 2, °C	315.9, 315.5*	316.1	316.3	316.3			
13	Temperatur kalter Strang der Schleife 1, °C	287.3, 287.1*	289.1	289.0	289.3			
14	Temperatur kalter Strang der Schleife 2, °C	287.3, 286.7	287.4	287.7	287.6			
15	Höhenstand im Druckhalter, m	8.41, 8.38**	8.37	8.38	8.38			
16	Kühlmittelmassenstrom (Ausschleusung), kg/s	5.4	5.36	5.36	5.36			
17	Kühlmittelmassenstrom (Zuspeisung), kg/s	5.9	5.36	5.36	5.36			
18	Temperaturdifferenz (Zuspeisung), °C	21.9	22.0	22.0	22.0			
19	Mittlere Kernaustrittstemperatur, °C	309.4, 315.6	316.7	316.5	316.6			
20	Maximale Kernaustrittstemperatur, °C	314.5	319.5	322.1	322.3			
Se	kundärkreislauf							
21	Leistung DE-1, MW	657.0, 656.0*	662.9	667.9	662.8			
22	Leistung DE-2, MW	668.0, 686.0*	705.0	699.6	705.0			
23	Druck am Austritt DE-1, MPa	6.01, 6.02*	6.012	6.069	6.031			
24	Druck am Austritt DE-2, MPa	6.05, 6.02*	6.021	6.074	6.040			
25	Höhenstand (Wasserspiegel) im DE-1, m	2.08, 2.12*	2.147	2.113	2.148			
26	Höhenstand (Gemischspiegel) im DE-1, m	2.41, 2.42*	2.931	2.876	2.930			
27	Höhenstand (Wasserspiegel) im DE-2, m	2.07, 2.13*	2.045	2.077	2.047			
28	Höhenstand (Gemischspiegel) im DE-2, m	2.40, 2.38*	2.816	2.850	2.816			
29	Speisewassermassenstrom zum DE-1, kg/s	345.6, 352.2*	357.36	357.36	357.36			
30	Speisewassermassenstrom zum DE-2, kg/s	360.6, 368.3*	372.96	372.96	372.96			
31	Speisewassertemperatur zum DE-1, °C	215.8, 210.8*	213.3	213.3	213.3			
32	Speisewassertemperatur zum DE-2, °C	214.1, 211.3*	212.7	212.7	212.7			
33	Frischdampfmassenstrom von DE-1, kg/s	-	353.7	356.9	353.4			
34	Frischdampfmassenstrom von DE-2, kg/s	-	376.6	373.4	376.6			
35	Druck im Frischdampfsammler, MPa	5.876, 5.866**	5.887	5.944	5.907			

Vergleich der für den Zustand vor der Transiente berechneten Anlagenparametern mit den Messwerten Tab. 3.3.5:

Anmerkungen:

* für Schleife 1 und 2 (bzw. Schleife 3 und 4) in der Anlage ** verschiedene Messungen (Messsysteme)

Die Ergebnisse der sich anschließenden Nachrechnungen des Prozessverlaufes zeigen die Abbildungen A3-4 ... A3-27 (siehe Anhang 3). Einen Überblick über die durchgeführten Vergleiche von Messwerten mit den berechneten Parameterverläufen gibt die folgende Tabelle.

Parameter	Bezeichnung des Signals bzw. des Objekts in der Rechnung	Messwert- kennzeichnung	Nr. der Abbildung (Anhang 3)
Primärkreislauf	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Reaktorleistung, MW	POWER, NUCL.POW	NIK	A3-5, A3-6
Reaktivität	REACTIVITY		A3-7
Regelstabposition der Gruppe K1, m	CR01POS	1	A3-8
Regelstabposition der Gruppe K10, m *	CR10POS	56, 61	A3-9
Druck im oberen Plenum, MPa	PV-UP-4	YC20P22	A3-10
Kühlmittelmassenstrom im PKL, kg/s	P1-CL, GJ		A3-11
Druckdifferenz über Reaktor, kPa	DPP-RPVx	YC14P03	A3-12
Druckdifferenz über HKP, kPa	PUMP; DPP	YAx0P15	A3-13
Druckdifferenz über HKP, kPa	PUMP; DPP	YAx0P18	A3-14
Kühlmitteltemperatur im heißen Strang, °C	Px-HL, TL	YAx1T24	A3-15
Kühlmitteltemperatur im kalten Strang, °C	Px-CL, TL	YAx2T24	A3-16
Höhenstand im Druckhalter, m	P0-PRESS	YP10L0x	A3-17
Leistung der Druckhalterheizer, W	PRZ-Q-HTR		A3-18
Sekundärkreislauf			
Leistung der Dampferzeuger, MW	STGx, QHTX		A3-19
Druck im Dampferzeuger, MPa	Sx-DRUM	YBx0P10	A3-20
Höhenstand (Wasserspiegel) im DE, m	Sx-DRUM	YBx0L11	· A3-21
Höhenstand (Gemischspiegel) im DE, m	Sx-DRUM	YBx0L19	A3-22
Speisewassermassenstrom, kg/s *	C1.SxFW-F	RL7xF01	A3-23
Speisewassertemperatur, °C *	C1.SxFW-T	RL7xT01	A3-24
Frischdampfmassenstrom, kg/s	Sx-DRUM		A3-25
Druck im Frischdampfsammler, MPa	C1.TPCOL	RC11P0x	A3-26
Reaktorkern			
Mittlere Kernaustrittstemperatur, °C	T-CORout_C		A3-27
Maximale Kernaustrittstemperatur, °C	T-HOTout_C		A3-28

Tab. 3.3.6:	Liste über die Vergleiche von berechneten Parameterverläufen während der Tran-
	siente mit verfügbaren Messdaten

Anmerkung: * diese Parameter sind in den Rechnungen vorgegebene Randbedingungen

Weiterhin wurden die für den Anlagenzustand nach der Transiente (d.h. 300 s nach Abschaltung der HKP) berechneten Parameter den entsprechenden Messwerten gegenübergestellt und in der Tabelle 3.3.7 zusammengefasst.

Tab. 3.3.7:	Vergleich der für den Zustand nach der Transi	ente berechneten Anlagenparame-
	tern mit den Messwerten	-

N⁰	Parameter	Messwert	Run 00	Run 01	Run 02			
Pri	Primärkreislauf							
1	Reaktorleistung, MW	1024, 935	903.1	1000.3	988.9			
2	Regelstabposition der Gruppe K1, cm	33.0	33.0	33.0	33.0			
3	Regelstabposition der Gruppe K10, cm	234.5	237.0	237.0	237.0			
4	Druck im oberen Plenum, MPa	15.568	15.523	15.581	15.575			
5	Druckdifferenz über Reaktor, kPa	94.18	75.64*, 84.20**	82.15*, 85.40**	82.23*, 85.46**			
6	Kühlmittelmassenstrom im PKL, kg/s	10094	8391.8	8453.6	8456.2			
7	Kühlmittelmassenstrom in Schleife 1, kg/s	-303, -372	-1184.6	-1253.2	-1253.9			
8	Kühlmittelmassenstrom in Schleife 2, kg/s	5261, 5511	5380.5	5480.0	5482.0			
9	Druckdifferenz über HKP-1, kPa	60.8, 69.6	45.95	51.50	51.56			
10	Druckdifferenz über HKP-2, kPa	362.0, 367.9	473.26	455.30	455.41			
11	Temperatur heißer Strang der Schleife 1, °C	277.9, 276.5	275.1	275.1	275.2			
12	Temperatur heißer Strang der Schleife 2, °C	301.9, 301.8	296.7	298.6	298.4			
13	Temperatur kalter Strang der Schleife 1, °C	283.6, 284.5	282.4	283.1	283.0			
14	Temperatur kalter Strang der Schleife 2, °C	284.2, 284.0	282.1	282.8	282.8			
15	Höhenstand im Druckhalter, m	7.050, 7.090	6.396	6.548	6.519			
16	Leistung der zugeschalteten Druckhalterheizer	540	540	540	540			
17	Kühlmittelmassenstrom (Zuspeisung), kg/s	7.30	7.28	7.28	7.28			
18	Kühlmittelmassenstrom (Ausschleusung), kg/s	5.80	5.84	5.84	5.84			
19	Temperaturdifferenz (Zuspeisung), °C	20.7	22.0	22.0	22.0			
20	Mittlere Kernaustrittstemperatur, °C	302.4, 289.5	303.0	305.3	305.0			
21	Maximale Kernaustrittstemperatur, °C	309.5	305.1	313.3	313.0			
Se	kundärkreislauf							
22	Leistung DE-1, MW	0, 0	45.22	52.23	51.43			
23	Leistung DE-2, MW	453, 473	416.43	458.52	451.52			
24	Druck am Austritt DE-1, MPa	5.81, 5.81	5.848	5.847	5.849			
25	Druck am Austritt DE-2, MPa	5.94, 5.93	5.897	5.908	5.907			
26	Höhenstand (Wasserspiegel) im DE-1, m	2.35, 2.35	2.26	2.20	2.24			
27	Höhenstand (Gemischspiegel) im DE-2, m	2.41, 2.37	2.36	2.31	2.35			
28	Höhenstand (Wasserspiegel) im DE-2, m	2.21, 2.24	2.33	2.27	2.28			
29	Höhenstand (Gemischspiegel) im DE-2, m	2.37, 2.35	2.75	2.73	2.73			
30	Speisewassermassenstrom zum DE-1, kg/s	0.3, 0.0	0.30	0.30	0.30			
31	Speisewassermassenstrom zum DE-2, kg/s	212.5, 228.6	220.6	220.6	220.6			
32	Speisewassertemperatur zum DE-1, °C	168.3, 203.1	185.5	185.5	185.5			
33	Speisewassertemperatur zum DE-2, °C	165.8, 168.9	167.4	167.4	167.4			
34	Frischdampfmassenstrom von DE-1, kg/s	-	25.70	27.62	29.64			
35	Frischdampfmassenstrom von DE-2, kg/s	-	198.18	222.38	219.14			
36	Druck im Frischdampfsammler, MPa	5.857, 5.857	5.841	5.842	5.842			

Anmerkungen:

ļ.

Ľ

I.

ļ

L

L

I.

ļ

* für die havarierte Schleife 1 ** für die intakte Schleife 2 Der Vergleich der mit dem Programmkomplex ATHLET-DYN3D gewonnenen Rechenergebnisse mit den Zeitverläufen der Messdaten während der Transiente ergab eine gute Übereinstimmung. Geringfügige Abweichungen waren bei den berechneten Zuschaltzeiten der Druckhalterheizer zu verzeichnen. Dabei konnte in den Nachrechnungen der Transiente ein vorzeitiges Zu- bzw. Abschalten der Heizer festgestellt werden. Abweichungen gibt es auch in der Verteilung der Massenströme auf die abgeschalteten und in Betrieb befindlichen Schleifen sowie im Verlauf der Kaltund Heißstrangtemperaturen während des Pumpenauslaufens. Diese Abweichungen zeigen, dass das Auslaufverhalten der Pumpen bzw. der Übergang zum Gegenstrom in den abgeschalteten Schleifen nicht korrekt modelliert wird. Hier wäre eine Anpassung des Pumpenmodells erforderlich.

Durch den Vergleich der mittels Punktkinetik (ATHLET) bzw. 3D-Neutronenkinetik (ATHLET-DYN3D) für die grundlegenden Anlagenparameter bestimmten Zeitverläufe während der Transiente konnte der Einfluss der Betrachtung von neutronenphysikalischen 3D-Effekten während der Betriebstransiente "Abschaltung [2v4] Hauptkühlmittelpumpen" untersucht werden. Der Vorteil der 3D Neutronenkinetik besteht vor allem darin, dass die neutronenphysikalische Rechnung ohne weitere Anpassungen zu einer guten Übereinstimmung der Reaktorleistung mit dem Experiment führt, während für eine Punktkinetikrechnung immer erst Reaktivitätskoeffizienten angepasst werden müssen, wobei diese Anpassung nicht eindeutig ist. Die weiteren Unterschiede in den Ergebnissen der Punktkinetikrechnung (Run00) und den Rechnungen mit 3D Kinetik (Run01, Run02) sind hauptsächlich durch die Differenzen in der Reaktorleistung bedingt. Zwischen den Rechnungen mit und ohne Xenondynamik (Run02, Run01) treten erwartungsgemäß kaum Unterschiede auf.

3.4. Adaption des thermohydraulischen Kernmodells von DYN3D für die Abschätzung von Querströmungen zwischen Brennstoffkassetten

Zur Abschätzung von Querströmungen im Reaktorkern, d.h. Strömungen quer zu den normalerweise längsangeströmten Brennstabbündeln, wurde ein einfaches Modell entwickelt, in DYN3D implementiert und erprobt.

3.4.1. Einfaches Querströmungsmodell in DYN3D

Das Modell basiert auf der Annahme, dass auf jeder axialen Ebene des Reaktorkerns ein Druckausgleich in radialer Richtung stattfindet. Es wird also angenommen, dass sich durch lokale Unterschiede in den Kühlmittelparametern und -geschwindigkeiten aufbauende Druckdifferenzen innerhalb jeder axialen Ebene durch entsprechende Umverteilung der Kühlmittelströmung abbauen /Fos82/. Diese Näherung ist bei kleinen Quermassenströmen, wobei im Vergleich zum Druckverlust in Längsrichtung des Bündels nur geringe radiale Druckdifferenzen auftreten, gerechtfertigt. Sie entspricht der Annahme, die Widerstandskoeffizienten in Querrichtung seien gleich Null, während die Näherung isolierter Kanäle unendlich großen Querströmungswiderständen entspricht. Allerdings wird im entwickelten Modell eine weitere Näherung gemacht - es wird nicht berücksichtigt, von welchem in welchen Kanal Kühlmittel umverteilt wird. Die Umverteilung erfolgt nur so, dass in jeder axialen Ebene Druckausgleich erfolgt und die Massenbilanz des Kühlmittels erfüllt wird. Die Energie- und Impulsbilanzen in radialer Richtung werden dabei lokal verletzt, aber im Mittel über jede axiale Schicht wieder erfüllt. Die turbulente Vermischung wird ebenfalls vernachlässigt.

Im Thermohydraulikmodell des Codes DYN3D können folgende Randbedingungen für die Berechnung des Kühlmittelmassenstromes durch den Reaktorkern gewählt werden:

- gegebener Druckverlust ∆p₀ über dem Kern, wobei der Druckverlust über jedem Kühlkanal gleich ist,
- gegebener Gesamtmassenstrom m_{tot} durch den Reaktorkern mit der Bedingung gleichen Druckverlustes über jedem Kühlkanal.

Im ersten Fall wird die Verteilung der Massenströme m_küber die Kühlkanäle aus der Bedingung

$$\Delta p_k(\dot{m}_k) = \Delta p_0 \qquad (3.4.1)$$

für alle Kühlkanäle k mit bekanntem Druckverlust Δp_0 iterativ ermittelt. Im zweiten Fall müssen die Bedingungen:

$$\Delta p_1 = \Delta p_2 = \dots = \Delta p_K \qquad (3.4.2)$$
$$\sum_k \dot{m}_k = \dot{m}_{tot} \qquad (3.4.3)$$

für alle Kühlkanäle k und

erfüllt werden, wobei der Druckverlust
$$\Delta p_{\kappa}$$
 unbekannt ist. In diesem Fall werden zu-
nächst mit Schätzwerten für die Massenströme in jedem Kühlkanal \dot{m}_{κ} Druckdifferen-
zen über jedem Kanal berechnet, die aber die Bedingung (3.4.2) zunächst noch nicht
erfüllen. Anschließend werden die Werte für die Massenströme unter Einhaltung der
Bedingung (3.4.3) korrigiert. Diese Iteration wird wiederholt, bis die Bedingung (3.4.2)
erfüllt ist.

Bei Berücksichtigung von Querströmungen werden die Bedingungen (3.4.2) und (3.4.3) nicht nur für jeden Kühlkanal, sondern für jeden axialen Abschnitt i jedes Kühlkanals k gefordert, d.h.

$$\begin{split} \Delta p_{1,i} &= \Delta p_{2,i} = ... = \Delta p_{K,i} \qquad (3.4.2a) \\ &\sum_{k} \dot{m}_{k,i} = \dot{m}_{tot,i} \qquad (3.4.3a) \end{split}$$

Bei Berücksichtigung von Querströmungen wird also der gleiche Algorithmus wie für die Berechnung der Massenstrom- und Druckverteilung bei vorgegebenem Gesamtmassenstrom durch den Kern mit isolierten Kanälen abgearbeitet, in diesem Fall allerdings für jede axiale Schicht des Reaktorkerns. Damit bleiben die Kühlkanäle nur über die Randbedingung gleichen Druckverlustes über jeder axialen Schicht miteinander gekoppelt. Es ist somit kein Gleichungssystem mit Quer- und Längsmassenströmen zu lösen, die Rechenzeit ist gegenüber der Näherung isolierter Kanäle kaum höher. Allerdings muss die physikalische Näherung in Kauf genommen werden, dass bei der Umverteilung der Massenströme die Impuls- und Energiebilanz in radialer Richtung nur im Mittel über die axiale Schicht erfüllt werden.

Ein Kühlkanal kann einem Brennelement (BE), aber auch einer Gruppe von Brennelementen zugeordnet sein. Der Druckverlust beeinhaltet Reibungsdruckverluste bei

Längsanströmung des Brennstabbündels $\frac{\partial p_R}{\partial z}$, Einzeldruckverluste am Eintritt und

Austritt sowie an Distanzgittern der BE $\frac{\partial p_{EV}}{\partial z}$, den hydrostatischen Druckverlust ρg und den stationären $\frac{\partial}{\partial z} (G^2 v_1)$ sowie instationären $\frac{\partial G}{\partial t}$ Beschleunigungsdruckverlust. Die Bewegungs- bzw. Impulsbilanzgleichung lautet:

$$\frac{\partial \mathbf{G}}{\partial t} + \frac{\partial}{\partial z} \left(\mathbf{G}^2 \mathbf{v}_1 \right) + \frac{\partial \mathbf{p}_{\mathrm{R}}}{\partial z} + \frac{\partial \mathbf{p}_{\mathrm{EV}}}{\partial z} + \rho \mathbf{g} + \frac{\partial \mathbf{p}}{\partial z} = \mathbf{0}$$
(3.4.4)

Hier ist G die Massenstromdichte, p der Druck, ρ die Dichte und v_I das spezifische Volumen für Impulstransport. Die Bewegungsgleichung (3.4.4) wird gemeinsam mit der Kontinuitätsgleichung

$$\frac{\partial \rho}{\partial t} + \frac{\partial G}{\partial z} = 0 \qquad (3.4.5)$$

gelöst.

Die linearisierte und diskretisierte Bewegungsgleichung (3.4.4) hat die Form /Roh86/:

$$p_{i+1}^{n+1} = p_i^{n+1} + a_{1,i}G_{i+1}^{n+1} + a_{2,i}G_i^{n+1} + b_i \quad (3.4.4a)$$

wobei die oberen Indizes das Zeitgitter und die unteren Indizes das Ortsgitter bezeichnen. Es erfolgt also eine implizite Zeitdiskretisierung. Die Kontinuitätsgleichung lautet in diskretisierter Form :

$$G_{i+1}^{n+1} = G_i^{n+1} + c_i$$
 (3.4.5a)

Die Koeffizienten a_{1,i}, a_{2,i}, b_i und c_i hängen nur von sekundären Parametern bzw. den Variablen p und G zum vorhergehenden Zeitschritt ab. Die Gleichungen (3.4.4a) und (3.4.5a) lassen sich sowohl bei vorgegebenem Druck am Kernein- und -austritt oder vorgegebenem Druck am Kernaustritt und gegebener Massenstromverteilung am Kerneintritt nach der Druck- und Massenstromdichteverteilung auflösen.

Bei gegebenem Gesamtmassenstrom durch den Kern bzw. Berücksichtigung von Querströmungen müssen iterativ die Bedingungen (3.4.2) und (3.4.3) bzw. (3.4.2a) und (3.4.3a) erfüllt werden. Im folgenden wird die iterative Prozedur für den Fall mit Querströmung beschrieben.

Zunächst wird aus (3.4.4a) und (3.4.5a) mit vorgegebenen Schätzwerten für die Kühlkanals iedes eine Druckund Massenstromdichten Eintritt am Massenstromverteilung berechnet. Im allgemeinen werden jedoch die über jeden eines Kühlkanals ermittelten axialen Abschnitt jeden Kühlkanal bzw. Druckdifferenzen zunächst nicht gleich sein. Deshalb wird in der nächsten Iteration folgende Korrektur der Schätzwerte für die Massenströme vorgenommen /Gru93/:

$$\mathbf{G}_{i,k}^{*} = \frac{\mathbf{G}_{i,k}^{(m)}}{\sqrt{\Delta p_{i,k}}} \cdot \frac{\dot{\mathbf{m}}_{\text{tot,i}}}{\sum_{k} \frac{\mathbf{A}_{k} \mathbf{G}_{i,k}^{(m)}}{\sqrt{\Delta p_{i,k}}}}$$
(3.4.6)

$$\mathbf{G}_{i,k}^{(m+1)} = \theta \mathbf{G}_{i,k}^{\star} + (1 - \theta) \mathbf{G}_{i,k}^{(m)}$$
(3.4.7)

Die Summation erfolgt über alle Kühlkanäle k, der Index (m) bezeichnet die Nummer der Iteration, A_k ist der freie Querschnitt des Kühlkanals, θ ist ein Relaxationsparameter. Es gilt die Beziehung $\dot{m}_k = A_k \cdot G_k$. Durch die Korrektur der Massenstromdichten nach (3.4.6) und (3.4.7) wird die Erfüllung der Bedingung

$$\sum_{k} A_{k} \cdot G_{i,k}^{(m)} = \dot{m}_{tot,i}$$

in jedem Iterationsschritt m gewährleistet.

Der totale Massenstrom $\dot{m}_{tot,i}$ durch jede axiale Ebene i des Kerns ist im stationären Fall für jede Schicht gleich und entspricht dem Eintrittsmassenstrom. Im instationären Fall wird bei einer zeitlichen Änderung der Kühlmitteldichte der Massenstrom ortsabhängig. $\dot{m}_{tot,i}$ wird in diesen Fall über die Integration der Massenbilanz- oder Kontinuitätsgleichung (3.4.5) über eine axiale Schicht Δz_i und Summation über alle Kühlkanäle ermittelt:

$$\dot{m}_{tot,i+1} = \dot{m}_{tot,i} - \sum_{k} A_{k} \int_{\Delta z_{i}} \frac{\partial \rho_{k}}{\partial t} dz$$
 (3.4.8)

Am Kerneintritt wird eine Gleichverteilung der Massenstromdichten über alle Kühlkanäle angenommen.

Im Fall isolierter Kanäle ist die Iterationsprozedur analog, wird aber nicht über alle axialen Schichten des Reaktorkerns ausgeführt, sondern nur über alle Kühlkanäle als Ganzes. Es entfällt also der Index i für die axiale Schicht.

In physikalischer Hinsicht ist die beschriebene Näherung für die Abschätzung von Quermassenströmen folgendermaßen zu werten. Die Näherung berücksichtigt den konvektiven Queraustausch in konservativer Weise. Ein höherer Druckverlust entsteht im axialen Node eines Kühlkanals, wenn aufgrund der höheren Leistungsdichte das Kühlmittel stärker aufgeheizt ist als den Nachbarkanälen, somit eine geringere Dichte und eine höhere Geschwindigkeit besitzt. In diesen Fall wird Kühlmittel aus dem heißeren Kanal auf Nachbarkanäle verteilt, bis die Druckverluste ausgeglichen sind. Der Massenstrom im heißeren Kanal wird also verringert, die Aufheizung vergrößert. Die turbulente Vermischung, die einen teilweisen Ausgleich dieses Effekts bewirken würde, wird vernachlässigt. Weiterhin wird nicht berücksichtigt, dass die Enthalpie des aus dem heißeren Kanal verdrängten Kühlmittels höher ist als die Enthalpie in den Kanälen, in die es umverteilt wird. Die Differenzen zwischen heißeren und kälteren Kanälen werden also gegenüber der exakten Behandlung überschätzt. Dennoch bewirkt die näherungsweise Berücksichtigung der Quervermischung einen Abbau der Konservativität gegenüber der Betrachtung isolierter Kanäle, da bei isolierten Kanälen ein lokal höherer Druckverlust in einer Schicht eine Verringerung des Massenstromes über die gesamte Kanalhöhe bewirkt.

3.4.2. Vergleichsrechnungen

Nachdem dieses Modell in den Code DYN3D implementiert worden war, konnte seine Funktionsweise unter stationären Bedingungen mittels Testrechnungen (Rechnungen mit bzw. ohne Berücksichtigung der Vermischung im Kern) nachgewiesen werden. Im Rahmen dieses Funktionsnachweises wurden Rechnungen zu stationären

Reaktorzuständen im KKW Kozloduj durchgeführt und die Rechenergebnisse mit Messwerten der Kernaustrittstemperaturen verglichen.

Für die analysierte Transiente wurden Vergleichsrechnungen zwischen DYN3D mit einfachem Querströmungsmodell und dem Unterkanalanalyse-Code COBRA-41 durchgeführt. Die Ergebnisse beider Rechnungen wurden mit den innerhalb eines 60°-Sektors ermittelten Messwerten der Reaktoraustrittstemperatur verglichen.

Bei den DYN3D-Rechnungen fanden sowohl die Standardversion als auch die weiterentwickelte Programmversion mit ihren verschiedenen Berechnungsoptionen Anwendung. Dabei war zwischen folgenden Varianten zu unterscheiden:

- ① Rechnung ohne Berücksichtigung des Xenon-Verhaltens und der Kühlmittelvermischung
- ② Rechnung mit Berücksichtigung des Xenon-Verhaltens aber ohne Kühlmittelvermischung
- ③ Rechnung ohne Berücksichtigung des Xenon-Verhaltens aber mit Berücksichtigung der Kühlmittelquerströmung
- ④ Rechnung mit Berücksichtigung des Xenon-Verhaltens und der K
 ühlmittelquerströmung

Abb. 3.4.1: Nodalisierung des Reaktorkerns im Programmcode COBRA4-I

Im Rahmen der Berechnungen mit dem Programmcode COBRA-4I wurde der Kern in 326 Kanäle (d.h. zwei Kanäle pro BE) unterteilt. Somit wurde die Anzahl der benachbarten Kühlkanäle eines Kanals auf vier reduziert, wie es für den Code COBRA-4I

erforderlich ist. Diese Nodalisierung des Reaktorkerns ist in der Abbildung 3.4.1 dargestellt.

Als vorzugebende Leistungsverteilung wurden in den verschiedenen Berechnungsvarianten einerseits die Messdaten (Rechnungen jeweils mit isolierten Kanälen und mit Kühlmittelvermischung bzw. andererseits die Ergebnisse aus DYN3D-Rechnungen (Rechnungen jeweils mit isolierten Kanälen wurd mit Kühlmittelvermischung) verwendet.

Zum Vergleich der mit COBRA-4I in den Berechnungsvarianten ⑦ und ⑧ bestimmten Kühlmittelaustrittstemperaturen mit DYN3D Ergebnissen, wurden die Berechnungen ① und ③ nochmals mit einer verfeinerten Nodalisierung der Kernhöhe (d.h. mit 18 axialen Nodes) wiederholt. Diese Varianten werden mit ①* und ③* gekennzeichnet.

In den DYN3D-Rechnungen war festzustellen, dass das Einbeziehen des Xenon-Verhaltens in die Bestimmung der Ausgangsparameter keinen Einfluss auf die berechneten Kühlmittelaustrittstemperaturen hatte, so dass die Ergebnisse der Berechnungen ① und ② bzw. ③ und ④ identisch sind.

In den Abbildungen 3.4.2 und 3.4.3 sind die Abweichungen der für die Brennelemente eines 60°-Sektors in den verschiedenen Varianten berechneten Kühlmittelaustrittstemperaturen von den Messwerten dargestellt.

Abb. 3.4.2: Abweichungen der berechneten Kühlmittelaustrittstemperaturen von den Messwerten ($\Delta T = T_{Berechnung} - T_{Messwert}$)

Abb. 3.4.3: Abweichungen der berechneten Kühlmittelaustrittstemperaturen von den Messwerten (∆T = T_{Berechnung} – T_{Messwert})

Die Ergebnisse aus den COBRA4-I-Rechnungen mit isolierten Kühlkanälen und mit Quervermischung zwischen den Kühlkanälen zeigten, dass eine geringere Austrittstemperatur in den BE an der Kernperipherie auftrat, wenn die Vermischung berücksichtigt wird. Diese Tendenz konnte sowohl in der Rechnung mit der Leistungsverteilung aus den Messwerten als auch in der Rechnung mit einer mittels DYN3D berechneten Leistungsverteilung beobachtet werden.

Bei der Anwendung des vereinfachten Quervermischungsmodell im DYN3D war eine entgegengesetzte Tendenz zu verzeichnen, da im Falle einer Berücksichtigung der Quervermischungseffekte die Austrittstemperaturen in den BE an der Kernperipherie etwas höher waren.

Der Vergleich zwischen den Berechnungen und der Messung ist in der Tabelle 3.4.1 dargestellt. Dabei befinden sich die BE mit einer Anreicherung von 3.3 % an der Peripherie des Reaktorkerns, während die BE mit einer Anreicherung von 2.0 % den zentralen Teil des Kerns charakterisieren.

Typ der BE	Anzahl der BE	DYN3D			COBRA4-I				
		0/0	3/4	0*	3*	\$	6	Ø	8
3.3 %	36	4.64	4.63	4.61	4.67	6.83	6.87	6.34	6.35
3.0 %	42	9.47	9.42	9.47	9.42	9.02	8.99	11.87	11.81
2.0 %	79	6.37	6.41	6.39	6.36	9.45	9.42	8.33	8.31

Tab. 3.4.1: Abweichungen der berechneten Kühlmittelaustrittstemperaturen von den Messwerten [K]

Der in den Berechnungen erhaltene Einfluss der Quervermischung auf die Verteilung der Kühlmittelaustrittstemperaturen (ca. 0.1 K) ist im Vergleich zu den systematischen Abweichungen zwischen den berechneten Temperaturgrößen und den Messwerten (5 – 9 K) sehr klein. Dieser hohe systematische Fehler der gemessenen Austrittstemperaturen ist in der Konstruktion der Messeinrichtung begründet, wobei der kühlere Kühlmittelmassenstrom durch das Zentralrohr der BE die über dem BE angebrachten Temperaturmessstellen beeinflusst. Deshalb sind diese Temperaturmesswerte für die abschließende Validierung des Quervermischungsmodells ungeeignet.

Weiterhin wurde der Einfluss einer detaillierteren Modellierung des Reaktorkerns auf das thermohydraulische Verhalten während der Transiente analysiert. Während bei den bisherigen ATHLET-Nachrechnungen der Reaktorkern durch zwei Kühlkanäle (d,h, innere Zone mit 109 Brennelementen und äußere Zone mit 54 Brennelementen) modelliert worden war, wurde bei diesen Untersuchungen der Kern in 10 einzelne Kühlkanäle unterteilt, die untereinander über 19 Verbindungselemente verbunden waren. Die Gruppierung der Brennelemente in 10 Kühlkanäle ist der Abbildung A3-28 (siehe Annhang 3) zu entnehmen. Diese Modellierung zeigte eine der Möglichkeiten zur Berücksichtigung von Quervermischungsprozessen im Programmcode ATHLET bzw. im gekoppelten Programmkomplex ATHLET-DYN3D (interne Kopplungsvariante) auf. Im Vergleich zu den Rechnungen mit der vereinfachten Kernmodellierung (zwei Kühlkanäle) wurde festgestellt, dass sich unter Berücksichtigung einer Quervermischung im Kern der Kühlmitteldurchsatz in den Brennelementen der inneren Zone erhöhte und in den Brennelementen am Rand des Reaktorkerns verringerte. Die gleiche Tendenz erhält man bei stationären DYN3D-Rechnungen mit dem vereinfachten Querströmungsmodell. Eine merkliche Umverteilung des Durchsatzes konnte sowohl zwischen den modellierten Kühlkanälen als auch über ihre Höhe beobachtet werden (in der Größenordnung von einigen bis zu 15 % des Massenstromes pro Brennelement). Die Ergebnisse zeigen, dass die Quervermischung im WWER-1000-Kern mit seinen mantellosen Brennelementen zu berücksichtigen ist, insbesondere für Transienten, die durch asymmetrische Kühlmitteleintrittsbedingungen und eine stark ungleichmäßige Leistungsverteilung im Reaktorkern gekennzeichnet sind.

Die mit verschiedenen Querströmungs-Modellen (DYN3D, COBRA4I, ATHLET) unterschiedlich berechneten Massenstrom- und Temperaturverteilungen belegen, dass die Behandlung der Querströmungen, insbesondere der turbulenten Vermischung im Reaktorkern, noch nicht befriedigend gelöst ist.

Die im Rahmen dieses Vorhabens bei der Codeentwicklung sowie -validierung erzielten wissenschaftlichen Ergebnisse sind in einem gemeinsamen internen Bericht /Pan00/ detaillierter dargestellt.
4. Zusammenfassung

Der im FZR entwickelte Programmcode DYN3D und der Programmkomplex ATHLET-DYN3D, der eine Anbindung des 3D Kernmodells DYN3D an den thermohydraulischen Systemcode ATHLET der GRS darstellt, wurden mit der Übergabe, der Einweisung in ihre Nutzung sowie einer kontinuierlichen fachlichen Unterstützung der bulgarischen Experten bei der Lösung von Aufgabenstellungen im Rahmen des WTZ-Vorhabens erfolgreich im INRNE Sofia eingeführt. Während der Nutzertrainings ermöglichten die verschiedenen Arten von Beispielrechnungen einen umfassenderen Einblick in die Anwendungs- bzw. Modifikationsmöglichkeiten des Stand-alone-Codes des gekoppelten Programmsystems. und So wurden vergleichende Analysen zu einem Frischdampfleckszenarium für WWER-440 und WWER-1000 durchgeführt.

Im Rahmen dieses Vorhabens wurde das Inbetriebnahmeexperiment "Abschaltung von [2v4] in Betrieb befindlichen Hauptkühlmittelpumpen (HKP) im KKW Kozloduj (Block 6)" aufbereitet und dokumentiert. Diese Dokumentation liegt als interner Bericht des INRNE /Ili00/ vor.

Mit den Nachrechnungen dieses Inbetriebnahmeexperiments wurden Beiträge zur Validierung von DYN3D in der Stand-alone-Version sowie von ATHLET-DYN3D in der gekoppelten Programmversion geleistet. Dabei erfolgte die Validierung des Stand-alone-Codes DYN3D durch den Einsatz verschiedener Programmversionen bei der Bestimmung von Reaktorparametern für den stationären Anlagenzustand am Beginn der Transiente. Mit diesen Variationsrechnungen konnten auch der Einfluss von verfügbaren Programmoptionen (wie z.B. die Berücksichtigung der Xe-Dynamik) auf die Anlagenparameter untersucht werden. Die Berechnungen des transienten Anlagenverhaltens während des Experiments mittels ATHLET-DYN3D stellten eine Möglichkeit zur Validierung des gekoppelten Programmkomplexes dar. Diese Validierungsrechnungen zeigten, dass die Modellierung des Primärkreislaufs eines WWER-1000 einschließlich Kern und Neutronenkinetik mit ATHLET-DYN3D zufriedenstellend ist. Unsicherheiten bestehen noch bei einigen Daten (Schaltkriterien für Druckhalterheizer, Pumpencharakteristik) sowie bei der Modellierung der Sekundärseite (insbesondere der liegenden Dampferzeuger).

Durch die Implementierung eines vereinfachten Modells zur Simulation von Querströmungen im Reaktorkern konnte das Einsatzgebiet von DYN3D auf Prozessanalysen mit asymmetrischen thermohydraulischen Randbedingungen ausgedehnt werden. Mit diesen Arbeiten leisteten die bulgarischen Experten einen aktiven Beitrag zur Programmentwicklung. Die Validierung des implementierten Querströmungsmodells durch Vergleichsrechnungen zwischen dem modifizierten DYN3D und dem Unterkanalanalyse-Code COBRA-4I sowie auf der Grundlage von verfügbaren Messdaten aus dem Inbetriebnahmeexperiment hat gezeigt, dass insbesondere bei der Entwicklung von Modellen zur Berücksichtigung 3-dimensionaler Strömungseffekte im Reaktor noch weiterer Forschungsbedarf besteht.

In den Fachgesprächen bekundete der bulgarische Partner sein Interesse an neuen im FZR erstellten Programmversionen von DYN3D (z.B. Programmmodifikation mit Xe-Option) bzw. des gekoppelten Programmcodes ATHLET-DYN3D. Mit den bisher bereitgestellten Instrumentarien konnten die Experten vom INRNE zahlreiche Aufgabenstellungen ihrer wissenschaftlichen Tätigkeit erfüllen und einen Beitrag zur Codevalidierung leisten.

5. Literatur

- /Agt90/ Agthe G., H.-J. Kretzschmar: "Zur automatisierten Bereitstellung neutronenphysikalischer Weniggruppenparameter für die makroskopische Berechnung von Spaltzonen thermischer Reaktoren", Kernenergie 33 (1990), Teil I: Heft 4, S.165, Teil II: Heft 5, S.214
- /Fos82/ Foskolos K., S. Güntay, G. Varadi: "Die Core-thermohydraulik-Moduln des LWR-Simulationscodes SILWER", EIR-Report Nr. 452, Würenlingen, Januar 1982
- /Gru93/ Grundmann U., U. Rohde: "DYN3D/M2 a Code for Calculation of Reactivity Transients in Cores with Hexagonal Geometry", Report FZR 93-01, Rossendorf, Januar 1993
- /Gru95/ Grundmann U., D. Lucas, S. Mittag, U. Rohde: "Weiterentwicklung und Verifikation eines dreidimensionalen Kernmodells für Reaktoren vom Typ WWER und seine Ankopplung an den Störfallcode ATHLET", Forschungszentrum Rossendorf, Report FZR-84, April 1995
- /Gru98/ Grundmann U., S. Kliem, E. Krepper, S. Mittag, U. Rohde, F. Schäfer, A. Seidel: "Qualifizierung des Kernmodells DYN3D im Komplex mit dem Störfallcode ATHLET für die Störfallanalyse von WWER-Reaktoren", Forschungszentrum Rossendorf, Report FZR-216, März 1998
- /Gru99/ Grundmann U., S. Mittag, U. Rohde: "The 3-Dimensional Core Model DYN3D", Forschungszentrum Rossendorf, Report FZR-248, Januar 1999
- /IIi00/ Ilieva B., D. Panayotov, M. Avramova, N. Todorova: "Coast-down of two of four working main coolant pumps (VVER-1000, Kozloduy NPP, Unit 6): Start-up Experiment Data", Internal Report INRNE/K624Data Edition 2.0, Sofia, January 2000
- /Kli00/ Kliem S., S. Mittag, A. Seidel, U. Grundmann: "DYN3D-ATHLET calculations modelling the turning-off of one feed water pump from working two in the Balakovo-4 VVER-1000", Forschungszentrum Rossendorf, Internal Technical Report FZR/SRR195/BALA2.1, February 2000
- /Kli01/ Kliem S., S. Mittag, F.-P. Weiß, R. Kyrki-Rajamäki, A. Hämäläinen, S. Langenbuch, S. Danilin, J. Hadek, G. Hegyi, A. Kuchin, D. Panayotov: "Validation of coupled neutron kinetic / thermal-hydraulic codes Part 1: Analysis of a VVER-1000 transient (Balakovo-4)", Annals of Nuclear Energy 28/9 (2001), pp. 857-873
- /Pan00/ Panayotov D., B. Ilieva, M. Avramova, U. Rohde, A. Seidel: "DYN3D, ATHLET and ATHLET/DYN3D Internal Coupled Codes Calculation of start-up experiment with coast-down of two neighbour from working four main coolant pumps (Kozloduy NPP Unit 6 VVER-1000)", Internal Report INRNE/K624/DYN3D-ATHLET Edition 1.0, Sofia, April 2000

- /Roh86/ Rohde U.: "Ein theoretisches Modell für Zweiphasenströmungen in wassergekühlten Kernreaktoren und seine Anwendung zur Analyse des Naturumlaufs im Heizreaktor AST-500", Dissertation, Report ZfK-595, Rossendorf, Juli 1986
- /Sid89/ Sidorenko V.D., S.P. Averyanova: "The code KASSETA for calculation of neutronic physical characteristics of the fuel assemblies of the LWR reactors, IAE Kurchatov Moskau, 1989 (in Russian)

Auszug aus der Messdatensammlung

- Zeitverläufe ausgewählter Parameter -

Abbildungsverzeichnis zum Anhang 1

- Abb. A1-1 Druckdifferenz über Hauptkühlmittelpumpen
- Abb. A1-2 Kühlmitteltemperatur in den heißen und kalten Strängen der Schleifen
- Abb. A1-3 Regelstabpositionen
- Abb. A1-4 Reaktorleistung
- Abb. A1-5 Druck im oberen Plenum
- Abb. A1-6 Druckdifferenz über Reaktorkern
- Abb. A1-7 Temperatur im Druckhalter
- Abb. A1-8 Druck und Höhenstand im Druckhalter
- Abb. A1-9 Druck in den Dampferzeugern
- Abb. A1-10 Höhenstand in den Dampferzeugern
- Abb. A1-11 Druck im Frischdampfsammler
- Abb. A1-12 Leistung des Turbinengenerators
- Abb. A1-13 Speisewasserdruck sowie Speisewasser- und Zusatzspeisewassermassenstrom
- Abb. A1-14 Drehzahl der Turbospeisewasserpumpen
- Abb. A1-15 Massenstrom durch Speisewasserregelventile
- Abb. A1-16 Stellung der Speisewasserregelventile

Abb. A1-1: Druckdifferenz über Hauptkühlmittelpumpen

Abb. A1-2: Kühlmitteltemperatur in den heißen Strängen [YA11(21,31,41)T24] und kalten Strängen [YA12(22,32,42)T24] der Schleifen

Abb. A1-3: Regelstabpositionen

Abb. A1-5: Druck im oberen Plenum

Abb. A1-6: Druckdifferenz über Reaktorkern

Abb. A1-7: Temperatur im Druckhalter

Abb. A1-9: Druck in den Dampferzeugern DE-1 ... DE-4

Abb. A1-10: Höhenstand in den Dampferzeugern DE-1 ... DE-4

Abb. A1-11: Druck im Frischdampfsammler

Abb. A1-12: Leistung des Turbinengenerators

Abb. A1-13: Speisewasserdruck [RL41P02, RL42P02] und Speisewassermassenstrom [RL41F01, RL42F01] sowie Zusatzspeisewassermassenstrom [RL51F01, RL52F01]

Abb. A1-14: Drehzahl der Turbospeisewasserpumpen

Abb. A1-15: Massenstrom durch Speisewasserregelventile

Abb. A1-16: Stellung der Speisewasserregelventile – Hauptregelventil [RL71(72,73,74)S02] und Inbetriebnahmeregelventil [RL71(72,73,74)S04]

Ergebnisse der Validierungsrechnungen (I)

(DYN3D)

	Effektive Betriebstage	Messwert C _B , g/kg	Berechnungen mit 12 axialen Nodes						
LIC.			DYN3D (Standardversion)			DYN3D mit Xe-Option			
NI.			C _B , g/kg	∆C _B , g/kg	Fehler, %	C _B , g/kg	$\Delta C_{\rm B}, g/kg$	Fehler, %	
0	0.000	7.81	6.821	-0.989	-12.66	6.832	-0.978	-12.52	
1	0.644	7.46	6.664	-0.796	-10.67	6.667	-0.793	-10.63	
2	2.193	6.78	6.693	-0.087	-1.28	6.698	-0.082	-1.21	
3	4.004	6.88	6.490	-0.390	-5.67	6.496	-0.384	-5.58	
4	7.808	6.67	6.335	-0.335	-5.02	6.345	-0.325	-4.87	
5	12.481	6.14	6.243	0.103	1.68	6.258	0.118	1.92	
6	13.764	6.59	6.217	-0.373	-5.66	6.227	-0.363	-5.51	
7	18.800	6.15	5.956	-0.194	-3.15	5.963	-0.187	-3.04	
8	24.803	5.86	5.796	-0.064	-1.09	5.802	-0.058	-0.99	
9	28.175	5.74	6.173	0.433	7.54	6.175	0.435	7.58	
10	30.930	6.07	5.488	-0.582	-9.59	5.488	-0.582	-9.59	
11	31.667	5.87	6.107	0.237	4.04	6.112	0.242	4.12	
12	37.393	6.06	6.046	-0.014	-0.23	6.048	-0.012	-0.20	
13	44.427	5.90	5.897	-0.003	-0.05	5.900	0.000	0.00	
14	50.269	5.80	5.811	0.011	0.19	5.814	0.014	0.24	
15	57.599	5.73	5.502	-0.228	-3.98	5.497	-0.233	-4.07	
16	64.626	5.48	5.358	-0.122	-2.23	5.352	-0.128	-2.34	
17	72.575	5.28	5.205	-0.075	-1.42	5.198	-0.082	-1.55	
18	81.231	5.07	4.978	-0.092	-1.81	4.964	-0.106	-2.09	
19	88.671	4.94	4.866	-0.074	-1.50	4.851	-0.089	-1.80	
20	94.223	4.82	4.765	-0.055	-1.14	4.760	-0.060	-1.24	
21	101.109	5.02	4.753	-0.267	-5.32	4.751	-0.269	-5.36	
22	107.917	4.89	4.612	-0.278	-5.69	4.612	-0.278	-5.69	
	115.600		4.443			4.444			
	123.320		4.274			4.275			
	131.040		4.105			4.105			
	138.759		3.935			3.936			
23	143.200	4.66	3.966	-0.694	-14.89	3.982	-0.678	-14.55	
24	147.900	4.34	3.526	-0.814	-18.76	3.502	-0.838	-19.31	
25	152.600	3.60	3.366	-0.234	-6.50	3.331	-0.269	-7.47	
26	161.513	3.21	3.565	0.355	11.06	3.587	0.377	11.74	
	168.093		3.424			3.447			
27	170.280	3.38	2.975	-0.405	-11.98	2.929	-0.451	-13.34	
28	171.592	2.84	3.605	0.765	26.94	3.619	0.779	27.43	
29	171.597	2.85	3.004	0.154	5.40	2.992	0.142	4.98	
30	172.189	2.76	2.992	0.232	8.41	2.978	0.218	7.90	
32	176.931	3.19	2.936	-0.254	-7.96	2.923	-0.267	-8.37	
33	182.100	2.90	2.873	-0.027	-0.93	2.864	-0.036	-1.24	
	190.849		2.688			2.678			
34	193.017	2.81	2.642	-0.168	-5.98	2.632	-0.178	-6.33	

Tab. A2-1:Vergleich der berechneten kritischen Börsäurekonzentration mit den Messwerten im
Zeitraum von 193 effektiven Betriebstagen (12 axiale Nodes)

					Anhang 2	
	Berech	nnungen mit	t 18 axialen	Nodes		
DYN3D	(Standardv	ersion)	DYN3D mit Xe-Option			
, g/kg	$\Delta C_{B}, g/kg$	Fehler, %	C _B , g/kg	$\Delta C_{\rm B}, g/kg$	Fehler, %	
5.821	-0.989	-12.66	6.830	-0.980	-12.55	
6.661	-0.799	-10.71	6.663	-0.797	-10.68	
5.694	-0.086	-1.27	6.698	-0.082	-1.21	
5.481	-0.399	-5.80	6.488	-0.392	-5.70	
5.338	-0.332	-4.98	6.347	-0.323	-4.84	
5.249	0.109	1.78	6.263	0.123	2.00	
5.218	-0.372	-5.64	6.228	-0.362	-5.49	
5.952	-0.198	-3.22	5.962	-0.188	-3.06	
5.790	-0.070	-1.19	5.796	-0.064	-1.09	
6.165	0.425	7.40	6.167	0.427	7.44	
5.481	-0.589	-9.70	5.481	-0.589	-9.70	

Lfd.	Effektive Betriebstage	Messwert C _B , g/kg	DYN3D (Standardversion)			DYN3D mit Xe-Option		
Nr.			C _B , g/kg	$\Delta C_{\rm B}, q/kq$	Fehler, %	C _B , q/kq	$\Delta C_{\rm B}$, q/kg	Fehler, %
0	0.000	7.81	6.821	-0.989	-12.66	6.830	-0.980	-12.55
1	0.644	7.46	6.661	-0.799	-10.71	6.663	-0.797	-10.68
2	2.193	6.78	6.694	-0.086	-1.27	6.698	-0.082	-1.21
3	4.004	6.88	6.481	-0.399	-5.80	6.488	-0.392	-5.70
4	7.808	6.67	6.338	-0.332	-4.98	6.347	-0.323	-4.84
5	12.481	6.14	6.249	0.109	1.78	6.263	0.123	2.00
6	13.764	6.59	6.218	-0.372	-5.64	6.228	-0.362	-5.49
7	18.800	6.15	5.952	-0.198	-3.22	5.962	-0.188	-3.06
8	24.803	5.86	5.790	-0.070	-1.19	5.796	-0.064	-1.09
9	28.175	5.74	6.165	0.425	7.40	6.167	0.427	7.44
10	30.930	6.07	5.481	-0.589	-9.70	5.481	-0.589	-9.70
11	31.667	5.87	6.103	0.233	3.97	6.106	0.236	4.02
12	37.393	6.06	6.039	-0.021	-0.35	6.040	-0.020	-0.33
13	44.427	5.90	5.891	-0.009	-0.15	5.894	-0.006	-0.10
14	50.269	5.80	5.801	0.001	0.02	5.803	0.003	0.05
15	57.599	5.73	5.497	-0.233	-4.07	5.491	-0.239	-4.17
16	64.626	5.48	5.351	-0.129	-2.35	5.344	-0.136	-2.48
17	72.575	5.28	5.195	-0.085	-1.61	5.188	-0.092	-1.74
18	81.231	5.07	4.962	-0.108	-2.13	4.948	-0.122	-2.41
19	88.671	4.94	4.851	-0.089	-1.80	4.837	-0.103	-2.09
20	94.223	4.82	4.753	-0.067	-1.39	4.748	0.072	-1.49
21	101.109	5.02	4.740	-0.280	-5.58	4.737	-0.283	-5.64
22	107.917	4.89	4.596	-0.294	-6.01	4.598	-0.292	-5.97
	115.600		4.427			4.428		
	123.320		4.256			4.257		
	131.040		4.084			4.085		
	138.759		3.913			3.914		
23	143.200	4.66	3.943	-0.717	-15.39	3.960	-0.700	-15.02
24	147.900	4.34	3.502	-0.838	-19.31	3.477	-0.863	-19.88
25	152.600	3.60	3.339	-0.261	-7.25	3.304	-0.296	-8.22
26	161.513	3.21	3.534	0.324	10.09	3.557	0.347	10.81
	168.093		3.392			3.416		
27	170.280	3.38	2.949	-0.431	-12.75	2.902	-0.478	-14.14
28	171.592	2.84	3.577	0.737	25.95	3.591	0.751	26.44
29	171.597	2.85	2.977	0.127	4.46	2.964	0.114	4.00
30	172.189	2.76	2.964	0.204	7.39	2.950	0.190	6.88
31	172.361	2.79	3.097	0.307	11.00	3.093	0.303	10.86
32	176.931	3.19	2.908	-0.282	-8.84	2.895	-0.295	-9.25
33	182.100	2.90	2.844	-0.056	-1.93	2.835	-0.065	-2.24
	190.849		2.657		<u> </u>	2.647		<u> </u>
34	193.017	2.81	2.611	-0.199	-7.08	2.601	-0.209	-7.44

Vergleich der berechneten kritischen Börsäurekonzentration mit den Messwerten im Zeitraum von 193 effektiven Betriebstagen (18 axiale Nodes) Tab. A2-2:

	Messwert	NES	SEL	KASSETA		
BE ¹		Berechnete Leistung, [MW]	Abweichung [%]	Berechnete Leistung, [MW]	Abweichung [%]	
1	17,60	17,10	-2,84	17.20	-2.27	
2	18,27	17,60	-3,65	17.70	-3.10	
3	18,22	17,60	-3,39	17.80	-2.29	
4	17,63	19,70	11,72	19.50	10.59	
5	17,97	17,30	-3,71	17.70	-1.48	
6	17,87	17,20	-3,73	17.40	-2.61	
7	16,60	16,30	-1,81	16.00	-3.61	
8	19,10	21,00	9,95	20.50	7.33	
9	17,80	17,10	-3,93	17.50	-1.69	
10	17,70	17,00	-3,95	17.40	-1.69	
11	18,57	20,50	10,41	20.10	8.26	
12	17,17	18,73	9,13	18.20	6.02	
13	11,35	10,90	-3,96	10.80	-4.85	
14	17,82	17,10	-4,02	17.40	-2.34	
15	16,82	16,60	-1,29	17.10	1.68	
16	16,97	16,80	16,80 -0,98 17.20		1.38	
17	16,40	16,00	-2,44	16.20	-1.22	
18	13,35	13,30	-0,37	13.20	-1.12	
19	17,65	17,00	-3,68	17.40	-1.42	
20	16,97	16,80	-0,98	17.20	1.38	
21	17,02	19,00	11,66	18.60	9.30	
22	13,62	13,70	0,61	13.60	-0.12	
23	18,55	20,50	10,51	20.10	8.36	
24	16,40	16,00	-2,44	16.20	-1.22	
25	13,65	13,70	0,37	13.60	-0.37	
26	17,18	18,70	8,83	18.20	5.92	
27	13,38	13,30	-0,62	13.20	-1.37	
28	11,35	10,90	-3,96	10.80	-4.85	
M ²	16,534	16,694	0,764	16.707	0.807	

Tab. A2-3:

Vergleich der mit DYN3D berechneten BE-Leistungen mit den Messwerten für die Brennelemente eines 60°-Symmetrie-Sektors

¹ Nr. der Brennelemente im 60°-Symmetrie-Sektor ² Mittelwert über alle Brennelemente des 60°-Symmetrie-Sektors

Nr. der	Kernhöhe [cm]	Messwert	DYN3D ohne	Xe-Dynamik	DYN3D mit Xe-Dynamik		
Höhen- nodes			Relative Leistung	Abweichung [%]	Relative Leistung	Abweichung [%]	
17	343.91	0.504	0.4077	-19.15	0.4218	-16.36	
16	321.72	0.803	0.6771	-15.73	0.6997	-12.91	
15	299.53	0.940	0.8052	-14.35	0.8299	-11.73	
14	277.34	1.000	0.8653	-13.47	0.8875	-11.25	
13	255.16	1.000	0.8943	-10.57	0.9105	-8.95	
12	232.97	0.974	0.9016	-7.47	0.9089	-6.72	
11	210.78	0.949	0.9041	-4.71	0.9021	-4.92	
10	188.59	0.923	0.9103	-1.38	0.9006	-2.44	
9	166.41	0.906	0.9231	1.89	0.9083	0.26	
8	144.22	0.897	0.9434	5.12	0.9265	3.23	
7	122.03	0.889	0.9709	9.23	0.9543	7.36	
6	99.84	0.889	1.0027	12.80	0.9882	11.17	
5	77.66	0.872	1.0277	17.88	1.0160	16.54	
4	55.47	0.855	1.0154	18.80	1.0063	17.74	
3	33.28	0.786	0.8957	13.91	0.8886	13.00	
2	11.09	0.504	0.5478	8.64	0.5433	7.74	
Mittelwert		0.8558	0.8558	0.0904	0.8558	0.1104	

Tab. A2-4:Vergleich der mit DYN3D berechneten und über den Reaktorkern gemittelten axialen
Leistungsverteilungen mit den Messwerten

Nr. der	Kernhöhe [cm]	Messwert	DYN3D ohne	e Xe-Dynamik	DYN3D mit Xe-Dynamik		
Höhen- nodes			Relative Leistung	Abweichung [%]	Relative Leistung	Abweichung [%]	
17	343.91	0,72	0,5687	-21,02	0,5885	-18,26	
16	321.72	1,15	0,9447	-17,85	0,9769	-15,05	
15	299.53	1,35	1,1308	-16,24	1,1663	-13,60	
14	277.34	1,44	1,2190	-15,35	1,2516	-13,09	
13	255.16	1,44	1,2623	-12,34	1,2862	-10,68	
12	232.97	1,39	1,2827	-7,72	1,2935	-6,94	
11	210.78	1,36	1,2931	-4,92	1,2895	-5,19	
10	188.59	1,32	1,3057	-1,08	1,2901	-2,27	
9	166.41	1,29	1,3269	2,86	1,3035	1,04	
8	144.22	1,28	1,3588	6,16	1,3322	4,08	
7	122.03	1,27	1,4013	10,34	1,3758	8,33	
6	99.84	1,27	1,4503	14,20	1,4290	12,52	
5	77.66	1,26	1,4908	18,32	1,4748	17,05	
4	55.47	1,24	1,4788	19,26	1,4679	18,38	
3	33.28	1,13	1,3130	16,19	1,3056	15,54	
2	11.09	0,73	0,8130	11,37	0,8087	10,78	
Mitt	telwert	1,2275	1,2275	0,1365	1,2275	0,1647	

T

Tab. A2-5:Vergleich der mit DYN3D berechneten axialen Leistungsverteilungen für das Brennele-
ment Nr.55 (bzw. Nr.8) mit den Messwerten

Ergebnisse der Validierungsrechnungen (II) (ATHLET-DYN3D)

Abbildungsverzeichnis zum Anhang 3

- Abb. A3-1 Nodalisierungsschema des Primärkreislaufs
- Abb. A3-2 Nodalisierungsschema des Reaktors
- Abb. A3-3 Nodalisierungsschema des Sekundärkreislaufs
- Abb. A3-4 Reaktorleistung
- Abb. A3-5 Reaktorleistung
- Abb. A3-6 Reaktivität
- Abb. A3-7 Regelstabposition der Gruppe K1
- Abb. A3-8 Regelstabposition der Gruppe K10
- Abb. A3-9 Druck im oberen Plenum
- Abb. A3-10 Kühlmittelmassenstrom im PKL
- Abb. A3-11 Druckdifferenz über Reaktor
- Abb. A3-12 Druckdifferenz über HKP
- Abb. A3-13 Druckdifferenz über HKP
- Abb. A3-14 Kühlmitteltemperatur im heißen Strang
- Abb. A3-15 Kühlmitteltemperatur im kalten Strang
- Abb. A3-16 Höhenstand im Druckhalter
- Abb. A3-17 Leistung der Druckhalterheizer
- Abb. A3-18 Leistung der Dampferzeuger
- Abb. A3-19 Druck im Dampferzeuger
- Abb. A3-20 Höhenstand (Wasserspiegel) im DE
- Abb. A3-21 Höhenstand (Gemischspiegel) im DE
- Abb. A3-22 Speisewassermassenstrom
- Abb. A3-23 Speisewassertemperatur
- Abb. A3-24 Frischdampfmassenstrom
- Abb. A3-25 Druck im Frischdampfsammler
- Abb. A3-26 Mittlere Kernaustrittstemperatur
- Abb. A3-27 Maximale Kernaustrittstemperatur
- Abb. A3-28 Beladungsschema für den Reaktorkern und Zuordnung der Brennelemente zu 10 Kühlkanälen

Abb. A3-3 Nodalisierungsschema des Sekundärkreislaufs

A3-4

Abb. A3-7 Regelstabposition der Gruppe K1

Abb. A3-8 Regelstabposition der Gruppe K10

Abb. A3-14 Kühlmitteltemperatur im heißen Strang

Abb. A3-15 Kühlmitteltemperatur im kalten Strang

Abb. A3-16 Höhenstand im Druckhalter

Abb. A3-17 Leistung der Druckhalterheizer

Abb. A3-18 Leistung der Dampferzeuger

Abb. A3-20 Höhenstand (Wasserspiegel) im DE

Abb. A3-21 Höhenstand (Gemischspiegel) im DE

Abb. A3-22 Speisewassermassenstrom

Abb. A3-23 Speisewassertemperatur

Abb. A3-26 Mittlere Kernaustrittstemperatur

Abb. A3-27 Maximale Kernaustrittstemperatur

A3-16

Abb. A3-28 Beladungsschema für den Reaktorkern und Zuordnung der Brennelemente zu 10 Kühlkanälen