Vibrational spectroscopy of Ga+ ion implanted ta-C films


Vibrational spectroscopy of Ga+ ion implanted ta-C films

Berova, M.; Sandulov, M.; Tsvetkova, T.; Bischoff, L.; Boettger, R.; Abrashev, M.

In the present work, low energy Ga+ ion beam implantation was used for the structural and optical properties modification of tetrahedral amorphous carbon (ta-C) thin films, using gallium (Ga+) as the ion species. Thin film samples (d~40nm) of ta-C, deposited by filtered cathodic vacuum arc (FCVA), have been implanted with Ga+ at ion energy E = 20 keV and ion doses D=3.1014÷3.1015 cm-2. The Ga+ ion beam induced structural modification of the implanted material results in a considerable change of its optical properties, displayed in a significant shift of the optical absorption edge to lower photon energies as obtained from optical transmission measurements. This shift is accompanied by a considerable increase of the absorption coefficient (photo-darkening effect) in the measured photon energy range (0.5÷3.0 eV). These effects could be attributed both to additional defect introduction and increased graphitisation, as well as to accompanying formation of bonds between the implanted ions and the host atoms of the target, as confirmed by infra-red (IR) and Raman measurements. The optical contrast thus obtained (between implanted and unimplanted film material) could be made use of for information archiving, in the area of high-density optical data storage, while using focused Ga+ ion beams.

Keywords: ta-C; ion implantation; Raman; FTIR; spectroscopy

Related publications

Permalink: https://www.hzdr.de/publications/Publ-23423
Publ.-Id: 23423