Attachment of hydrophobic particles to the surface of an immersed gas bubble


Attachment of hydrophobic particles to the surface of an immersed gas bubble

Lecrivain, G.; Yamamoto, R.; Hampel, U.; Taniguchi, T.

The transport of colloidal particles at the fluidic interface of a binary fluid is of significant importance to the flotation process. Flotation is a separation process in which hydrophobic particles attach to the surface of rising air bubbles while the undesired hydrophilic particles settle down the bottom of the cell to eventually be discharged. Current numerical models developed for the simulation of the particle attachment process are still at an early stage of development. The fine attaching particles have so far been modelled as point particles, thereby neglecting the deformation of the fluidic interface. Here the combination of the smooth profile method with an in-house binary fluid model is suggested to directly simulate the attachment of a single particle to an immersed bubble under various capillary numbers.

Keywords: Froth flotation; Three-phase system; Particle attachment

  • Contribution to proceedings
    81st Annual meeting of the Society of Chemical Engineers Japan, 13.-15.03.2016, Kansai University, Senriyama Campus, Japan
    Proceedings of the 81st Annual meeting of the Society of Chemical Engineers Japan

Permalink: https://www.hzdr.de/publications/Publ-23434
Publ.-Id: 23434