Free - Surface Modelling in the Ribbon Growth on Substrate (RGS)process


Free - Surface Modelling in the Ribbon Growth on Substrate (RGS)process

Beckstein, P.; Galindo, V.; Gerbeth, G.

The cost efficient, high throughput production of metal- and semiconductor alloys is the foundation of many advanced technologies. With the development of the Ribbon Growth on Substrate (RGS) technology, a new crystallization technique is available that allows the controlled, high crystallization rate production of silicon wafers and advanced metal-silicide alloys. In contrast to other crystallization methods, like e.g. melt spinning or even directional solidification, the RGS process allows high volume manufacturing, better crystallization control and a high material yield due to a substrate driven process. To optimize the application of RGS further, insights from modelling the liquid metal flow are very desirable. We have already conducted extensive numerical investigations in order to study the involved AC magnetic fields. For the RGS technology, these magnetic fields play an essential role in realizing inductive heating and an additional magnetic retention effect.
New simulation results demonstrate the effect of the applied AC magnetic fields on the melt flow of liquid silicon. The focus is thereby devoted to the simulation of the melt surface deformation based on a multi-physical modelling approach in OpenFOAM (foam-extend). Our developed numerical tool allows us to model hydrodynamic and magnetodynamic effects and their interaction. Studies of the time-dependent free-surface flow under the influence of magnetic forces are the key for improving the RGS process as main flow structures and possible instabilities strongly depend on the melt shape.

Keywords: RGS process; OpenFOAM extend; Free-Surface Modelling

  • Poster
    1st German Czechoslovak Conference on Crystal Growth, GCCCG-1 / DKT2016, 16.-18.03.2016, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-23466