Self-diffusion in amorphous silicon: An experimental and theoretical study


Self-diffusion in amorphous silicon: An experimental and theoretical study

Kirschbaum, J.; Teuber, T.; Radek, M.; Bracht, H.; Posselt, M.; Bougeard, D.

Amorphous silicon (a-Si) is a widely used material, especially for solar cells and thin-film-transistors. Measuring the self-diffusion coefficient of a-Si is experimentally demanding since recrystallization during diffusion annealing must be suppressed. We used Si on insulator (SOI) structures to stabilize the amorphous state during annealing. Isotopically enriched Si multilayers with a thickness per layer of about 10 nm were grown by means of molecular beam epitaxy on top of SOI wafers. Subsequently the whole top crystalline Si layer was amorphized by means of Si ion implantation. Before and after annealing the distribution of the Si isotopes within the isotope structure was measured with SIMS. The observed broadening suggests a significantly higher self-diffusion in the amorphous compared to the crystalline state. Molecular dynamics simulations are employed to gain information about the mechanism of self-diffusion. We used an adjusted Stillinger-Weber potential, as the original Stillinger-Weber parametrization for Si overestimates the mobility of the matrix atoms. The parameters were chosen to simulate the experimentally observed diffusion in a-Si. The coordination numbers and radial-distribution-function were analyzed to confirm the assumption of bond switching as the dominant mechanism of self-diffusion.

Keywords: amorphous silicon; diffusion

Involved research facilities

Related publications

  • Poster
    E-MRS Spring Meeting, Symposium K: Group IV semiconductors materials research - growth, characterization and applications to electronics and spintronics, 02.-06.05.2016, Lille, France

Permalink: https://www.hzdr.de/publications/Publ-23666