Tuning pattern symmetry by choosing the substrate in reverse epitaxy


Tuning pattern symmetry by choosing the substrate in reverse epitaxy

Engler, M.; Ou, X.; Facsko, S.

Ion beam erosion of solid surfaces is long known to yield regular surface morphologies, like periodic ripples or hexagonal dot patterns. At room temperature, semiconductors are amorphized by the ion beam. Pattern formation under these conditions has been studied extensively in the last decades.

Ion beam erosion above a material dependent dynamic recrystallization temperature allows the formation of crystalline nano scale patterns on semiconductor surfaces. At these elevated temperature pattern formation is driven by diffusion of vacancies created by sputtering of atoms. Anisotropic diffusion on the surface and diffusion barriers across step edges lead to the formation of pattern reflecting the symmetry of the irradiated surface. We will discuss how the surface symmetry determines the pattern symmetry.

Keywords: reverse epitaxy; ion beam; pattern; pattern formation; semiconductor

Related publications

  • Lecture (Conference)
    80. Jahrestagung der DPG und DPG-Frühjahrstagung, 06.-11.03.2016, Regensburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-23868
Publ.-Id: 23868