Recycling Indices Visualizing the Performance of the Circular Economy


Recycling Indices Visualizing the Performance of the Circular Economy

Reuter, M. A.; van Schaik, A.

The EU has adopted an ambitious Circular Economy (CE) package. This action plan aims to "close" the loop of product lifecycles through improved product design, improved collection, recycling, remanufacture and re-use. Through this the EU envisages to bring benefits both environmentally as well as economically. Recycling forms the heart of the CE system; metal and material recycling and metallurgical processing are key enablers. Maximizing the recovery of materials from End-of-Life (EoL) products, while simultaneously lowering the environmental footprint, is a vital outcome. Therefore, designing greener products while also optimizing organisational and technology infrastructures of industrial recycling processing flow sheets are vital. This enables the maximal recovery of materials and also especially strategic elements from EoL products, requiring a deep understanding of the fundamental opportunities and limits and the dynamics of the evolving and agile system. In order to inform the consumer, this paper presents the developed Recycling Index (RI) (analogous to the EU Energy Labels) that includes a new Material-RI.These are based on simulation models that have their roots in minerals and metallurgical processing. It builds on previous work by the authors that visualises and communicate the recycling performance of a product as well as of the individual materials in a clear, easy and transparent manner. It will help to empower the consumer to make informed purchasing decisions. Furthermore, RIs are essential for communicating greener design and efforts to improve resource efficiency by producers and state-of-the art recycling and (metallurgical) processing technology by industry. The RI is an excellent tool to provide insight into possibilities and improvements as well as barriers and limits for CE to policy makers and to close the missing links in the CE.

Keywords: Recycling; Design for Recycling; Recycling Index; Simulation; Calculation methods for recycling rates; Circular Economy

  • World of Metallurgy - Erzmetall 69(2016)4, 201-216

Downloads

Permalink: https://www.hzdr.de/publications/Publ-24124
Publ.-Id: 24124