New possibilities of plasma immersion ion implantation (PIII) and deposition (PIII&D) in industrial components using metal tube fixtures


New possibilities of plasma immersion ion implantation (PIII) and deposition (PIII&D) in industrial components using metal tube fixtures

Ueda, M.; Silva, A. R.; Pillaca, E. J. D. M.; Mariano, S. F. M.; Rossi, J. O.; Oliveira, R. M.; Pichon, L.; Reuther, H.

New possibilities of Plasma Immersion Ion Implantation (PIII) and deposition (PIII&D) for treating industrial components in the batch mode have been explored. A metal tubular fixture is used to allocate the components inside around and along the tube, exposing to the plasma only the parts of each component that will be implanted. Hollow cathode- like plasma is generated only inside the tube filled with the desired gas, by applying high negative voltage pulses to the hollow cylindrical metal fixture which is insulated from the vacuum chamber walls. The metal tube (Me-tube) loaded with workpieces can be set-up inside the vacuum chamber in the standing-up, upside down or lying down arrangements. PIII tests were also run with and without metal sheet lids on the tube as well as with and without the components. Sputtering deposition and carbonitriding are also possible in this scheme by placing carbon tapes inside the tube and running the process with nitrogen PIII. Relatively clean DLC (Diamond Like Carbon) PIII&D deposition is possible by this method also since the plasma occupies mainly the Me-tube interior and not the whole chamber. Furthermore, operating high density PIII and PIII&D systems without additional plasma source, using only the high voltage pulser, is now possible to treat three dimensional parts. These methods are very convenient for batch processing of industrial parts by ion implantation and by ion implantation and deposition, in which a large number of small to medium size components can be treated by PIII and PIII&D, very quickly, efficiently and also at low cost.

Related publications

Permalink: https://www.hzdr.de/publications/Publ-24366
Publ.-Id: 24366