Our strategic approach: Reactive transport modelling based on parameters obtained from batch and GeoPET column experiments: example from leaching of a fractured drill core


Our strategic approach: Reactive transport modelling based on parameters obtained from batch and GeoPET column experiments: example from leaching of a fractured drill core

Karimzadeh, L.; Kulenkampff, J.; Schymura, S.; Eichelbaum, S.; Lippmann-Pipke, J.

Abstract

The EU-funded research project BIOMOre[1] is designed to develop a new technological concept for the in-situ recovering of copper from deep European Kupferschiefer ore deposits by using controlled stimulation of pre-existing fractures in combination with in-situ bioleaching. The BIOMOre project mainly focuses on the leaching experiments in lab and field scale and the related reactive transport modeling including the required backcoupling from geochemical reactions on the hydrodynamics as well as the upscaling. We here present most recent, preliminary results that focus on reactive transport simulations on a drill core sample in 4D (3D+t). While we still use synthetic porosity and velocity fields, the model is capable of later imported velocity and effective porosity fields obtained from the transport process visualization method, GeoPET. This technique has been established by members of the Reactive Transport Division of the HZDR in the past decade and allows the direct, non-destructive, quantitative spatiotemporal visualization of (reactive) transport processes in natural geological media on drill-core scale [2-6].
A mechanically induced fracture was designed with a geomechanical shear test in a calciferous sandstone drill core sample obtained from the Kupferschiefer ore formation. While the long term leach experiment is still ongoing the pH value and preliminary Ca+ and Cl- contents from the breakthrough are aligned with those from the reactive transport modelling conducted by means of iCP[7] (an interface coupling of the finite element based code COMSOL Multiphysics® with the geochemical code PhreeqC). The model consideres mineral leaching due to the injection of an acidic solution with pH of 1.5 to the fracture. Currently the flow is still simulated by the Forchheimer equation [8] in matrix and fracture. The chemical processes considered in the model are kinetically controlled mineral dissolution and precipitation in the porous media simulated by means of PHREEQC[9] and advective-dispersive transport in the fracture and matrix diffusion in the rock mass calculated by COMSOL Multiphysics. Calcite dissolution and gypsum precipitation were monitored in the results of the model.
Our further tasks in the project will consider more realistic structure geometry of rock core sample (fracture and matrix) and quantified advective distributions obtained from GeoPET.

Keywords: Reactive transport modeling; GeoPET; In-situ leaching; iCP

Involved research facilities

  • PET-Center
  • Invited lecture (Conferences)
    7th Reactive Transport PhD Workshop, 23.02.2017, Leipzig, Germany

Permalink: https://www.hzdr.de/publications/Publ-25200