EDTA and DTPA as scaffolds for successful Ln3+/An3+ separations from spent nuclear fuel


EDTA and DTPA as scaffolds for successful Ln3+/An3+ separations from spent nuclear fuel

Langford-Paden, M. H.; Andrews, M. B.; Swinburn, A. N.; Alker, A.; Beal, K.; Anuar, N. S. B. K.; Knight, M. E.; Jones, J. E.; Beele, B.; Adam, C.; Panak, P.; Geist, A.; Kaden, P.; Natrajan, L. S.

Multi-dentate ligands are instrumental to extraction and separations chemistry associated with nuclear fuel reprocessing. Specifically, the TALSPEAK (Trivalent Actinide Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexations) process utilises DTPA to facilitate the separation of minor actinides, MA3+ (Am3+ and Cm3+), from Ln3+ and Y3+, allowing the MA3+ to be reprocessed further by transmutation. The TALSPEAK process involves the preferential extraction of the major component (Ln3+) into the organic phase using HDEHP, while the DTPA-derived ligands remain in the aqueous phase coordinating MA3+ which favour soft donor interactions. The process requires the use of lactic acid as a buffer to maintain pH 3.6 in order to prevent the precipitation of DTPA complexes at low pH, commonly experienced during the processing cycle. Amino acid conjugates derived from EDTA and DTPA present ideal candidates as self-buffering DTPA/EDTA ligands, therefore removing the need for lactic acid in the TALSPEAK process. The ligands (right) produce an internal buffer pH 1.5-2.5 at μM to mM concentrations. The synthesis, coordination chemistry, photophysical properties and separation behaviour of these new ligands and stability towards ionising radiation is presented.

Keywords: Lanthanide(III); Actinide(III); amino acids; DTPA

  • Poster
    ThUL School in Actinide chemistry 2016, 19.-23.09.2016, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-25385