Drastic change of the Fermi surface across the metamagnetic transition in CeRh2Si2


Drastic change of the Fermi surface across the metamagnetic transition in CeRh2Si2

Götze, K.; Aoki, D.; Lévy-Bertrand, F.; Harima, H.; Sheikin, I.

We report high field de Haas–van Alphen (dHvA) effect measurements in CeRh2Si2 both below and above the first-order 26 T metamagnetic transition from an antiferromagnetic to a polarized paramagnetic state. The dHvA frequencies observed above the transition are much higher than those observed below, implying a drastic change of the Fermi-surface size. The dHvA frequencies above the transition and their angular dependence are in good agreement with band-structure calculations for LaRh2Si2, which correspond to CeRh2Si2 with localized f electrons. Given that the f electrons are also localized at low fields in CeRh2Si2, the Fermi-surface reconstruction is due to the suppression of antiferromagnetism and the restoration of the crystallographic Brillouin zone rather than the delocalization of the f electrons. This example suggests that the intuitive notation of “small” and “large” Fermi surfaces commonly used for localized and itinerant f electrons, respectively, requires careful consideration, taking into account the modification of the Brillouin zone in the antiferromagnetic state, when interpreting experimental results.

Permalink: https://www.hzdr.de/publications/Publ-25467
Publ.-Id: 25467