Structural and Magnetic Properties of the Trirutile-type 1D-Heisenberg Anti-Ferromagnet CuTa2O6


Structural and Magnetic Properties of the Trirutile-type 1D-Heisenberg Anti-Ferromagnet CuTa2O6

Golubev, A.; Dinnebier, R. E.; Schulz, A.; Kremer, R. K.; Langbein, H.; Senyshyn, A.; Law, J. M.; Hansen, T. C.; Koo, H.-J.; Whangbo, M.-H.

We prepared trirutile-type polycrystalline samples of CuTa2O6 by low-temperature decomposition of a Cu−Ta−oxalate precursor. Diffraction studies at room temperature identified a slight monoclinic distortion of the hitherto surmised tetragonal trirutile crystal structure. Detailed high-temperature X-ray and neutron powder diffraction investigations as well as Raman scattering spectroscopy revealed a structural phase transition at 503(3) K from the monoclinic structure to the tetragonal trirutile structure. GGA+U density functional calculations of the spin-exchange parameters as well as magnetic susceptibility and isothermal magnetization measurements reveal that CuTa2O6 is a new 1D Heisenberg magnet with predominant anti-ferromagnetic nearest-neighbor intrachain spin-exchange interaction of ∼50 K. Interchain exchange is a factor of ∼5 smaller. Heat capacity and low-temperature high-intensity neutron powder diffraction studies could not detect long-range order down to 0.45 K.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)

Permalink: https://www.hzdr.de/publications/Publ-26149