Experimentelle Untersuchungen zum Einfluss von Betriebs- und Designparameter auf das Absorptionsverhalten von Anstaupackungen


Experimentelle Untersuchungen zum Einfluss von Betriebs- und Designparameter auf das Absorptionsverhalten von Anstaupackungen

Flechsig, S.; Utchenko, Y.; Sohr, J.; Schubert, M.; Hampel, U.; Kenig, E. Y.

Aufgrund des hohen Energiebedarfs thermischer Trennverfahren besteht ein hoher Forschungsbedarf für die Entwicklung effizienter und ressourcenschonender Prozesse. Bei Trennkolonnen weisen Einbauten ein erhebliches Entwicklungspotential auf, welche die Fluiddynamik und den Stofftransport entscheidend beeinflussen.
Die Anstaupackung stellt eine Entwicklung im Bereich der Packungskolonnen dar, die eine Intensivierung des Stofftransports und eine Kapazitätserweiterung ermöglicht. Die Anstaupackung besteht aus einer Kombination von zwei Lagen typischer strukturierter Packungen mit unterschiedlicher spezifischer Oberfläche, welche alternierend angeordnet werden. Die untere Anstaulage weist dabei eine geringere Lastgrenze als die darüber angeordnete Abscheidelage auf. Anstaupackungen werden üblicherweise zwischen den Flutpunkten der beiden Lagen betrieben, wodurch ein axial heterogenes Strömungsmuster entsteht. Dabei bildet sich oberhalb der gezielt gefluteten Anstaulage eine Sprudelschicht, die durch eine intensive Vermischung und ein hohes Maß an Turbulenz der beteiligten Phasen geprägt ist und zu deutlich höheren Trennleistungen führen kann. Oberhalb der Sprudelschicht in der Abscheidelage dominiert die für Packungen typische Rieselfilmströmung in der die aus der Sprudelschicht mitgerissenen Tropfen abgeschieden werden [1].
Da bislang das Trennverhalten von Anstaupackung fast ausschließlich theoretisch analysiert wurde [2], werden im Rahmen eines von der DFG geförderten Kooperationsprojekts die Auswirkungen der einzelnen Strömungsregime auf Fluiddynamik und Stofftransport komplementär sowohl experimentell als auch theoretisch untersucht. Für diesen Zweck werden erstmalig Experimente an einer Absorptions-/ Desorptionsanlage durch bildgebende Messungen der Strömung in Anstaupackungen ergänzt. An der Universität Paderborn werden für verschiedene Design- und Betriebsparameter Technikumsversuche zur CO2-Absorption in einer wässrigen Monoethanolamin-Lösung durchgeführt. Die Anlage ermöglicht die Aufnahme von Temperaturprofilen der Gasphase sowie von Konzentrationsprofilen beider Phasen. Am Helmholtz-Zentrum Dresden-Rossendorf wird mittels ultraschneller Röntgentomographie ein detaillierter Einblick in die Phasenverteilung der verschiedenen Strömungszustände ermöglicht. Die Messdaten beider Projektpartner werden zur Erarbeitung von Korrelationen für Stoffübergang, Phasengrenzfläche, Holdup und Druckverlust genutzt, welche in einem rate-based-Model Verwendung finden.
Im Rahmen dieser Arbeit wird der Einfluss wichtiger Betriebs- und Designparameter auf das Absorptionsverhalten in Anstaupackungen experimentell untersucht, um einerseits effizienzsteigernde Betriebsbedingungen zu identifizieren und anderseits eine Basis für die experimentelle Validierung von neuen Simulationsmodellen zu schaffen. Zusätzlich wird eine empirische Korrelationsgleichung zur Bestimmung des integralen Stoffdurchgangskoeffizienten entwickelt, die den Einfluss der Temperatur des Lösungsmittels, der Gas- und Flüssigkeitsbelastung, der CO2-Konzentration im Rohgas sowie der MEA-Konzentration in der Lösung berücksichtigt. Die vorgeschlagene Korrelation ermöglicht damit eine überschlägige Auslegung von Absorptionskolonnen mit Anstaupackungen.

[1] U. Brinkmann, B. Kaibel, M. Jödecke, J. Mackowiak, E.Y. Kenig: Beschreibung der Fluiddynamik von Anstaupackungen, Chemie Ingenieur Technik 84: 36-45 (2012).
[2] Ö. Yildirim, E.Y. Kenig: Rate-based modelling and simulation of distillation columns with sandwich packings, Chemical Engineering and Processing: Process Intensification 98, 147-154 (2015).

  • Lecture (Conference)
    Jahrestreffen der Fachgemeinschaft Prozess-, Apparate- und Anlagentechnik, 20.-21.11.2017, Würzburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-27211
Publ.-Id: 27211