Development of biomolecular corona-resistant nanomaterials suitable for biological applications


Development of biomolecular corona-resistant nanomaterials suitable for biological applications

Joshi, T.; Nsubuga, A.; Zarschler, K.; Stephan, H.

Nanoparticle (NP) size, shape, charge, surface structure and the capping moieties have a significant influence on their eventual pharmacokinetic behaviour. For NPs to avoid accumulation in the organs of the mononuclear phagocyte system (MPS), it is important that they resist nonspecific adsorption of proteins (biomolecular corona) onto their surface. Reported methods to make corona-resistant hydrophilic NPs mostly suffer from serious drawbacks in regards to the in vivo applications of the engineered NMs. The major ones being (1) substantial increase in the hydrodynamic diameter (Dh) of the modified NMs, and (2) the formation of anti-PEG antibodies in vivo. Herein, we will present our efforts towards tackling the problem of biomolecular corona formation in ultrasmall iron oxide nanoparticles (USPIONs) and lanthanide-doped upconverting nanoparticles (UCNPs) by using amphiphilic zwitterionic polymers and low molecular weight entities as capping ligands on the NP surface. Our studies show that such surface functionalization strategy can produce biocompatible NPs that exhibit negligible interaction with biomolecules, and are suitable for developing multimodal imaging/therapeutic agents.

  • Invited lecture (Conferences)
    10th International Symposium on Nano & Supramolecular Chemistry, 09.-12.07.2018, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-27740
Publ.-Id: 27740