Magnon auto-oscillation under zero magnetic field


Magnon auto-oscillation under zero magnetic field

Nishida, N.; Hache, T.; Arekapudi, S. S. P. K.; Awad, A. A.; Hellwig, O.; Fassbender, J.; Schultheiss, H.

Magnons are attractive for application in energy efficient information technology, because they propagate without any actual charge currents and they offer high frequencies up to THz range. Here we present a novel scheme for magnon generation using spin currents and domain walls.
When a charge current is applied to a heavy metallic/ferromagnetic bilayer, the spin currents originating from a spin Hall effect in the heavy metal apply a spin transfer torque on the magnetization. This allows driving efficiently auto-oscillations of magnetization [1]. We focused on domain walls as local magnon nano channels [2]. Since domain walls can be moved by electrical currents [3], they are attractive for reprogrammable nano circuits.
A 370 nm wide zigzag structure was fabricated from a Pt/CoFeB bilayer. A domain wall was generated at the apex by magnetic saturation. The magnon intensity on the remanent state was measured by Brillouin light scattering microscopy [4] with applying a dc current. The magnon excitation showed the dc current dependency. Magnons were detected only for positive dc currents. We succeeded to drive magnon auto-oscillation in the domain wall under zero magnetic field by spin transfer torque.

Reference
[1] A. N. Slavin and V. Tiberkevich, IEEE Trans. Magn. 45, 1875 (2009).
[2] K. Wagner et. al., Nat. Nanotech. 11, 432 (2016).
[3] S. S. P. Parkin et. al., Science 320, 190 (2008).
[4] T. Sebastian et. al., Front. Phys. 3, 35 (2015).

Involved research facilities

Related publications

  • Lecture (Conference)
    9th Joint European Magnetic Conference, 03.-07.09.2018, Mainz, Germany

Permalink: https://www.hzdr.de/publications/Publ-28122