Flow morphology in feed pipes: theoretical analysis and experimental investigation


Flow morphology in feed pipes: theoretical analysis and experimental investigation

Döß, A.; Schubert, M.; Hampel, U.; Schleicher, E.; Geipel, C.; Mehringer, C.; Flegiel, F.

Efficient separation in distillation columns driven by the thermodynamic non-equilibrium between vapor and liquid phase is achieved by high turbulence as well as large interfacial area. At the same time, intensive interactions between vapor and liquid phases result in the formation of droplets, whose entrainment by the vapor phase may drastically reduce the separation capacity. The feed pipe is a prone position for such droplet formation. Besides the flash evaporation, the evolving flow morphology in the feed pipe is decisive for the droplet generation.The flow morphology in pipes depends on fluid flow rates and properties as well as on the pipe geometry. Several models and flow regime maps for fully developed flows in small pipe diameters exist, relating operating conditions and flow morphology. However, industrial feed pipe configurations with larger diameters and bends are so far not studied.
Thus, an experimental study in feed pipes of 50 mm and 200 mm diameter is performed using the wire-mesh sensor technique (Fig. 1). The wire-mesh sensor visualizes the dynamic flow structure in the pipe cross-section at high spatiotemporal resolution (1 to 3 mm, up to 10,000 Hz). The obtained data are compared with the
state-of the art models to assess their applicability for feed pipes. This project is supported by the Federal Ministry for Economic Affairs and Energy (BMWi) based on a decision by the German Bundestag (FKZ 03ET1395D).

Keywords: Two-phase flow morphology; Horizontal feed pipe; Wire-mesh sensor

Involved research facilities

  • TOPFLOW Facility
  • Lecture (Conference)
    ACHEMA 2018, Session: TERESA – Droplet entrainment and droplet reduction in mass transfer devices, 11.-15.06.2018, Fankfurt am Main, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28179