Traveling-Wave Electron Acceleration, Optical FELs and Thomson Scattering -- Designing laser pulses with a (pulse-front) tilt


Traveling-Wave Electron Acceleration, Optical FELs and Thomson Scattering -- Designing laser pulses with a (pulse-front) tilt

Debus, A.; Steiniger, K.; Siebold, S.; Bussmann, M.; Pausch, R.; Albach, D.; Loeser, M.; Roeser, F.; Huebl, A.; Widera, R.; Cowan, T.; Schramm, U.

Generating and controlling ultrashort, pulse-front tilted laser pulses is essential for Traveling-Wave Electron Acceleration (TWEAC), Traveling-Wave Thomson Scattering (TWTS) and Traveling-Wave Optical FELs (TWTS-OFELs). All these applications require controlling angular and group-delay dispersion, while keeping experimental setups as compact as possible. However, the varying requirements with respect to laser power, extent of focal region, incident angles and laser mode quality lead to differing strategies in designing experimental setups.

In this overview poster we provide answers to the question: What experimental efforts in terms of laser system and optics are necessary in current labs for first proof-of-principle realizations of the different applications of "Traveling-Wave" laser pulses -- ranging from low-bandwidth and yield-enhanced Thomson sources (TWTS), laser-based electron accelerators beyond the LWFA depletion and dephasing limits (TWEAC) and ultimately an optical free-electron laser (TWTS-OFEL)?

Keywords: Laser-produced plasmas; Plasma-based accelerators; Laser-wakefield acceleration; Traveling-wave electron acceleration; TWEAC; optical FEL; traveling-wave; Thomson scattering; pulse-front tilt; out-of-focus interaction

  • Poster
    4. Annual MT Meeting, 12.-14.6.2018, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28503