Investigation of the ion induced magnetization in FeRh


Investigation of the ion induced magnetization in FeRh

Semisalova, A.; Barton, C.; Bali, R.; Böttger, R.; Thomson, T.; Potzger, K.; Lenz, K.; Lindner, J.; Fassbender, J.

Structurally B2-ordered equiatomic FeRh thin films are known for unique properties such as a temperature, magnetic field, and spin polarized current driven phase transition from the antiferro- to the ferromagnetic state. The strain and structural disorder also influences the magnetic properties of FeRh, which opens a new way for controllable modification of properties at the micro- and nanoscale. Namely, structural modification by ion beam irradiation was shown to be an effective tool for tuning the phase transition temperature in FeRh as well as the saturation magnetization [1-3]. Here, we present a detailed study of magnetic properties of ion irradiated 40 nm thick FeRh films using magnetometry and broadband ferromagnetic resonance technique. The structurally ordered films were deposited epitaxially on MgO(001) substrates using magnetron sputtering. The irradiation was performed with 25 keV Ne ions at fluences of 0.1 – 4 ions/nm2 leading to a controllable reduction of the order parameter. The ion beam induced magnetization of FeRh at room temperature was shown to be as high as 1300 kA/m. Ferromagnetic resonance measurements performed at frequencies up to 40 GHz show that the Gilbert damping in structurally disordered ferromagnetic FeRh films is comparable to Py films. Such a relatively low damping in combination with the highly tunable saturation magnetization appears promising for further experiments on magnetization dynamics and spin wave propagation in FeRh thin films and nanostructures fabricated using ion beam irradiation.
[1] N. Fujita et al., J. Appl. Phys. 107 (2010) 09E302
[2] A. Heidarian et al., Nucl. Instr. Meth. B 358 (2015) 251-254
[3] S.P. Bennett et al., Mater. Res. Lett. 6 (2018) 106-112

Keywords: FeRh; disorder; FMR; Gilbert damping; ion irradiation

Related publications

  • Lecture (Conference)
    21st International Conference on Ion Beam Modification of Materials IBMM 2018, 24.-29.06.2018, San Antonio, Texas, USA

Permalink: https://www.hzdr.de/publications/Publ-28747
Publ.-Id: 28747