Thermal convection in rotating spherical shells: Temperature-dependent internal heat generation using the example of triple-𝛼 burning in neutron stars


Thermal convection in rotating spherical shells: Temperature-dependent internal heat generation using the example of triple-𝛼 burning in neutron stars

Garcia Gonzalez, F.; Chambers, F.; Watts, A.

We present an extensive study of Boussinesq thermal convection including a temperature-dependent internal heating source, based on numerical three-dimensional simulations. The temperature dependence mimics triple-α nuclear reactions and the fluid geometry is a rotating spherical shell. These are key ingredients for the study of convective accreting neutron star oceans. A dimensionless parameter Raₙ, measuring the relevance of nuclear heating, is defined. We explore how flow characteristics change with increasing Raₙ and give an astrophysical motivation. The onset of convection is investigated with respect to this parameter and periodic, quasiperiodic, chaotic flows with coherent structures, and fully turbulent flows are exhibited as Raₙ is varied. Several regime transitions are identified and compared with previous results on differentially heated convection. Finally, we explore (tentatively) the potential applicability of our results to the evolution of thermonuclear bursts in accreting neutron star oceans.

Downloads

Permalink: https://www.hzdr.de/publications/Publ-28764
Publ.-Id: 28764