Detection of Extraterrestrial ⁶⁰Fe in Antarctica with AMS


Detection of Extraterrestrial ⁶⁰Fe in Antarctica with AMS

Koll, D.; Faestermann, T.; Korschinek, G.; Merchel, S.; Welch, J. M.; Kipfstuhl, S.

The long-lived radioactive isotope ⁶⁰Fe with a half-life of 2.6 Myr is mainly produced by stellar nucleosynthesis and ejected into space by core-collapse supernovae. Former investigations by Accelerator Mass Spectrometry (AMS) showed a supernova signal on Earth 1.7-3.2 Myr ago.

Considering an enrichment of the solar neighborhood in long-lived radionuclides by previous supernovae, deposition of ⁶⁰Fe on Earth could be currently ongoing. To investigate this case, 500 kg of Antarctic snow were analyzed by Accelerator Mass Spectrometry with the 14 MV tandem accelerator and the Gas-filled Analyzing Magnet System (GAMS) at the Maier-Leibnitz-Laboratorium in Garching, Germany.

Indeed, ⁶⁰Fe was discovered in Antarctic snow and by the measurement of ⁵³Mn, which is dominantly produced by cosmic ray interactions with solar system objects, the origin of these ⁶⁰Fe atoms could be deduced.

Keywords: AMS; supernovae

Related publications

  • Lecture (Conference)
    83. Jahrestagung der DPG und DPG-Frühjahrstagung der Sektion Atome, Moleküle, Quantenoptik und Plasmen (SAMOP) in Zusammenarbeit mit der Deutschen Gesellschaft für Massenspektrometrie DGMS 2019, 10.-15.03.2019, Rostock, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28777
Publ.-Id: 28777