Plasmonic field guided patterning of ordered colloidal nanostructures


Plasmonic field guided patterning of ordered colloidal nanostructures

Huang, X.-P.; Chen, K.; Qi, M.-X.; Zhang, P.-F.; Li, Y.; Winnerl, S.; Schneider, H.; Yang, Y.; Zhang, S.

Nano-patterned colloidal plasmonic metasurfaces are capable of manipulation of light at the subwavelength scale. However, achieving controllable lithography-free nano-patterning for colloidal metasurfaces still remains a major challenge, limiting their full potential in building advanced plasmonic devices. Here, we demonstrate plasmonic field guided patterning (PFGP) of ordered colloidal metallic nano-patterns using orthogonal laser standing evanescent wave (LSEW) fields. We achieved colloidal silver nano-patterns with a large area of 30 mm² in <10 min by using orthogonal LSEW fields with a non-focused ultralow fluence irradiation of 0.25 W cm⁻². The underlying mechanism of the formation of the nanopatterns is the light-induced polarization of the nanoparticles (NPs), which leads to a dipole-dipole interaction for stabilizing the nano-pattern formation, as confirmed by polarization-dependent surface-enhanced Raman spectroscopy. This optical field-directed self-assembly of NPs opens an avenue for designing and fabricating reconfigurable colloidal nano-patterned metasurfaces in large areas.

Keywords: ordered colloidal nanostructures; plasmonic field guided patterning; polarization stabilizing

Permalink: https://www.hzdr.de/publications/Publ-28934
Publ.-Id: 28934