Compliance-current-modulated resistive switching with multi-level resistance states in single-crystalline LiNbO3 thin film


Compliance-current-modulated resistive switching with multi-level resistance states in single-crystalline LiNbO3 thin film

Pan, X.; Shuai, Y.; Wu, C.; Luo, W.; Sun, X.; Zeng, H.; Guo, H.; Yuan, Y.; Zhou, S.; Böttger, R.; Cheng, H.; Zhang, J.; Zhang, W.; Schmidt, H.

Resistive switching behavior of a ca. 600 nm thick single-crystalline LiNbO3 (LNO) film has been investigated after vacuum-annealing. Oxygen vacancies (OVs) were generated in the LNO thin film during the annealing process. After electro-forming, filamentary resistive switching has been observed, and the performance of switching can be tuned by the compliance current level. Multi-level resistance states including four different low resistance states, were realized by setting different compliance currents, revealing that both concentration of OVs within the conductive filament and the geometry of the conductive filament influence the switching behavior. The conduction mechanisms of the charge transport during switching is discussed based on the current-voltage curves.

Related publications

Permalink: https://www.hzdr.de/publications/Publ-28976
Publ.-Id: 28976