Observations of Coherent Optical Transition Radiation Interference Fringes Generated by Laser Plasma Accelerator Electron Beamlets


Observations of Coherent Optical Transition Radiation Interference Fringes Generated by Laser Plasma Accelerator Electron Beamlets

Lumpkin, A.; Laberge, M.; Rule, D.; Zgadzaj, R.; Hannasch, A.; Downer, M.; Zarini, O.; Bowers, B.; Irman, A.; Couperus, J.; Debus, A.; Kohler, A.; Schramm, U.

We report initial observations of coherent optical transition radiation interferometry (COTRI) patterns generated by microbunched electrons from laser-driven plasma accelerators (LPAs). These are revealed in the angular distribution patterns obtained by a CCD camera with the optics focused at infinity, or the far-field, viewing a Wartski two-foil interferometer. The beam divergences deduced by comparison to results from an analytical model are sub-mrad, and they are smaller than the ensemble vertical beam divergences measured at the downstream screen of the electron spectrometer. The transverse sizes of the beamlet images were obtained with focus at the object, or near field, and were in the few-micron regime as reported by LaBerge et al. [8]. The enhancements in intensity are significant relative to incoherent optical transition radiation (OTR) enabling multiple cameras to view each shot. We present two-foil interferometry effects coherently enhanced in both the 100-TW LPA at 215 MeV energy at Helmholtz-Zentrum Dresden-Rossendorf and the PW LPA at 1.0-GeV energy at the University of Texas-Austin. A transverse emittance estimate is reported for a microbunched beamlet example generated within the plasma bubble.

Keywords: LPA; microbunching; COTR; beam size; divergence

  • Contribution to proceedings
    18th Advanced Accelerator Concepts Workshop (AAC 2018), 12.-17.08.2018, Breckenridge, CO, USA
    2018 IEEE Advanced Accelerator Concepts Workshop (AAC): IEEE, 978-1-5386-7721-6
    DOI: 10.1109/AAC.2018.8659381
    Cited 2 times in Scopus

Permalink: https://www.hzdr.de/publications/Publ-29001
Publ.-Id: 29001