Fifteen Years of Radionuclide Research at the KIT Synchrotron Source in the Context of the Nuclear Waste Disposal Safety Case


Fifteen Years of Radionuclide Research at the KIT Synchrotron Source in the Context of the Nuclear Waste Disposal Safety Case

Rothe, J.; Altmaier, M.; Dagan, R.; Dardenne, K.; Fellhauer, D.; Gaona, X.; González-Robles Corrales, E.; Herm, M.; Kvashnina, K.; Metz, V.; Pidchenko, I.; Schild, D.; Vitova, T.; Geckeis, H.

For more than 120 years, systematic studies of X-ray interaction with matter have been the basis for our understanding of materials—both of natural or man-made origin—and their structure-function relationships. Beginning with simple radiographic imaging at the end of the 19th century, X-ray based analytical tools such as X-ray diffraction, X-ray fluorescence and photoemission or X-ray absorption techniques are indispensable in almost any field of chemical and material sciences—including basic and applied actinide and radionuclide studies. The advent of dedicated synchrotron radiation (SR) sources in the second half of the last century has revolutionized the analytical power of X-ray probes, while—with increasing number of SR facilities—beamline instrumentation followed a trend towards increasing specialization and adaption to a major research topic. The INE-Beamline and ACT station at the KIT synchrotron source belong to the exclusive club of a few synchrotron beamline facilities—mostly located in Europe—dedicated to the investigation of highly radioactive materials. Since commissioning of the INE-Beamline in 2005, capabilities for synchrotron-based radionuclide and actinide sciences at KIT have been continuously expanded, driven by in-house research programs and external user needs.

Permalink: https://www.hzdr.de/publications/Publ-29035
Publ.-Id: 29035