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Hyperspectral and LiDAR Fusion Using Extinction
Profiles and Total Variation Component Analysis

Behnood Rasti, Member, IEEE, Pedram Ghamisi, Member, IEEE, and Richard Gloaguen, Member, IEEE

Abstract—The classification accuracy of remote sensing data
can be increased by integrating ancillary data provided by mul-
tisource acquisition of the same scene. We propose to merge the
spectral and spatial content of hyperspectral images (HSIs) with
elevation information from light detection and ranging (LiDAR)
measurements. In this paper, we propose to fuse the data sets
using orthogonal total variation component analysis (OTVCA).
Extinction profiles are used to automatically extract spatial and
elevation information from HSI and rasterized LiDAR features.
The extracted spatial and elevation information is then fused
with spectral information using the OTVCA-based feature fusion
method to produce the final classification map. The extracted
features have high dimension, and therefore OTVCA estimates
the fused features in a lower dimensional space. OTVCA also
promotes piece-wise smoothness while maintaining the spatial
structures. Both attributes are important to provide homogeneous
regions in the final classification maps. We benchmark the
proposed approach (OTVCA-fusion) with an urban data set
captured over an urban area in Houston/USA and a rural region
acquired in Trento/Italy. In the experiments, OTVCA-fusion
is evaluated using random forest and support vector machine
classifiers. Our experiments demonstrate the ability of OTVCA-
fusion to produce accurate classification maps while using fewer
features compared with other approaches investigated in this
paper.

Index Terms— Extinction profiles (EPs), feature fusion, orthog-
onal total variation component analysis (OTVCA), random
forest (RF), support vector machines (SVMs).

I. INTRODUCTION

UE to a recent increase in the availability of varied

and complementary types of data from the immediate
surface of the earth, it is now routinely possible to acquire and
jointly utilize multisource data to improve the classification
accuracy of land-cover classes. Such data captured either by
active or passive remote sensors vary from spectral infor-
mation [e.g., multispectral and hyperspectral images (HSIs)],
to geometric information acquired by light detection and
ranging (LiDAR) sensors. This availability makes it possible
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to integrate rich multisensor information to further improve
object detection ability and classification performance.

The fusion of HSI and LiDAR was demonstrated to be
beneficial for a huge number of applications such as shadow,
height, and gap-related masking techniques [1]-[3], above-
ground biomass estimation [4], microclimate modeling [5],
quantifying riparian habitat structure [6], and fuel-type map-
ping [7]. In [8], the exploitation of multimodal data for earth
observation has been reviewed. In addition, the joint use
of LiDAR and HSI has shown promising results in terms
of providing higher classification accuracy than the use of
each source individually. To this end, in [9]-[14], spatial,
contextual, and structural information obtained by LiDAR has
been investigated along with spectral information captured by
multispectral and hyperspectral sensors. Results significantly
improved in terms of discrimination ability in forested and
urban areas.

However, the automatic fusion of multiple types of data
is not straightforward [12]. Moreover, the simple stacking of
extracted features obtained by different sensors might cause
the so-called curse of dimensionality, while the number of
training samples is limited [15]-[20]. In order to solve this
problem, several feature reduction techniques can be used [16].
This encourages one to develop an effective and efficient
fusion approach to perform both dimensionality reduction and
feature fusion at the same time [14].

Remote sensing images contain rich spatial information,
which can be found useful for the classification task [16].
Recently, extinction profiles (EPs) [21] have been devel-
oped as an effective tool to extract spatial information from
remote sensing images. It is worth mentioning that the thresh-
old values for EPs can be set automatically, and they are
also independent from the kind of the attribute being used
(e.g., area, volume, etc.).

Total variation (TV) [22] is an efficient regularization tech-
nique for image processing, which has been widely used
in remote sensing applications such as pansharpening [23],
synthetic aperture radar denoising [24], HSI denoising [25],
HSI compression [26], hyperspectral unmixing [27], [28],
and HSI feature extraction [29]. In [30], a nonconvex
TV-based regularization technique was proposed for HSI fea-
ture extraction. Also, it has been shown that the TV penalty as
a spatial regularizer captures spatial correlation and promotes
piece-wise smoothness that is of interest in HSI classification.

In this paper, a feature fusion technique for HSI and LiDAR
is proposed, which includes two main stages, spatial feature
extraction and fusion. EPs are used to extract spatial and
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LiDAR

Fig. 1. Work flow of the proposed fusion method.

elevation information from HSI and LiDAR, respectively.
Then, the extracted features from HSI and LiDAR are
fused by utilizing the orthogonal TV component analy-
sis (OTVCA) [30]. OTVCA estimates the fused features
in a lower dimensional space while promotes piece-wise
smoothness and maintains the spatial structures. The proposed
fusion technique is evaluated based on classification accuracies
obtained by applying both random forest (RF) and support
vector machine (SVM) classifiers on the fused features. Both
SVM and RF have been widely used for the classification of
HSI since they can handle high dimensionality with a limited
number of training samples, which is the common issue in
remote sensing [16].

The rest of this paper is organized as follows. Section II
describes the proposed OTVCA-fusion technique. The exper-
iments are described in Section III. Section IV concludes this
paper.

II. METHODOLOGY

In this section, after defining the notations used in this
paper (Section II-A), the proposed fusion technique will be
described in detail, which is composed of two parts, feature
extraction using EPs (Section II-A) and feature fusion using
OTCVA (Section II-C). Fig. 1 demonstrates the work flow of
the proposed method.

A. Notation

In this paper, the numbers of bands and pixels in each band
are denoted by p and n, respectively. Matrices are denoted by
bold and capital letters, column vectors by bold letters, and the
element placed in the ith row and jth column of matrix X by
x;j and the ith column by x(;). Identity matrix of size p x p is
denoted by I,. X stands for the estimate of the variable X, and
X" denotes the estimate of the variable X at the mth iteration.

B. Extinction Profiles (EPs)

Ghamisi et al. [21] proposed EPs by considering a set
of connected filters, extinction filters, which can maintain
relevant image extrema. Relevance here are defined based on

> KPCA

Classification
Map

OTVCA

the concept of the extinction value, proposed in [31]. Let
Max(X) = {My, M>, ..., My} represent the regional maxima
of the gray scale image X. Corresponding to each M;, we can
estimate an extinction value ¢; with respect to the increasing
attribute being analyzed. For the input gray scale image X,
the extinction filter preserves the n maxima with the highest
extinction values, EF*(X) = RS(X), where Rg (X) denotes
the reconstruction by dilation [32] of the mask image. This is
obtained by ¢ = max/_,{M/}, in which max is the pixel-wise
maximum operation. M| is the maximum with the highest
extinction value, followed by M) with the second highest
extinction value, and so on. For detailed description, please
see [21].

EPs are achieved by applying several extinction filters,
i.e., a sequence of thinning and thickening transformations,
with progressively higher threshold values to extract spatial
and contextual information of the input data. Thinning and
thickening can be achieved from a max- and a min-tree,
respectively [21]. The EP for the input gray scale image, X,
is obtained by

" (X), ¢P-1(X), ..., "1 (X), X,

thickening profile

EP(X) =

p P X), ..y P (X), p P (X) p (D)

thinning profile

where P, : {P;,} (i = 1,...,L) is a set of L ordered
predicates (i.e., P, € Pj, i < k). Please note that the
number of extrema is considered as the predicates. ¢ and y
are thickening and thinning transformations, respectively.

In order to generalize and perform the EP to HSI, one can
extract a few informative features from the whole dimension-
ality using an approach such as independent component analy-
sis (ICA). Then the extracted features are considered as base
images to produce EPs [33], entitled as extended EP (EEP).
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In more detail, this approach reduces the dimensionality of
the data from E C Z" to E/ C Z™ (m < n) with a generic
transformation ¥ : E — E’ (i.e., ICA). Then, the EP can be
performed on the most informative features Q; (i = 1,...,m)
of the extracted features, which can mathematically be given as

EEP(Q) = {EP(Q)), EP(Q,), ..., EP(Q,)}. 2)

The main reason for the use of ICA is that there is a
high redundancy between hyperspectral bands. In this context,
if any filtering approaches (e.g., morphological profiles (MPs)
[34] or EPs [33]) are applied on all single bands, the number of
redundant features will extremely be increased. Consequently,
the effect of the Hughes phenomenon or the curse of dimen-
sionality will be magnified, which downgrades classification
results.

Extended multi-EP (EMEP) concatenates different
EEPs (e.g., area, height, volume, diagonal of bounding box,
and standard deviation on different extracted features) into a
single stacked vector, which can be given as follows:

EMEP = {EEP,,, EEP,,, ..., EEP,, } 3)

where ax, k = {1, ..., w}, denotes different types of attributes.
Due to the fact that different extinction attributes provide
complementary spatial and contextual information, the EMEP
has a greater ability in extracting spatial information than
a single EP. For more detail, please see [21], [33]. It is
important to note that the EMEP and EP require almost the
same computational time since the most time demanding part
is on the construction of the max-tree and min-tree, which are
computed only once for each gray scale image [21], [33].

EPs work naturally with the number of extrema. EPs provide
better results in terms of classification accuracies than the ones
obtained by attribute profiles. Moreover, they address the issue
of adjusting threshold values, which was the main shortcoming
of the conventional APs [21].

C. Feature Fusion Using Orthogonal Total Variation
Component Analysis

Let HSI be the input hyperspectral data set, which provides
detailed spectral information. EPygsy represents the spatial
features produced by EPs on the first three independent com-
ponents. EPy ipar is the elevation information obtained by EPs
on the LiDAR derived digital surface model (DSM). To fuse
the aforementioned features, one needs to normalize the num-
ber of dimensionalities to put the same weight on each type
of the features and reduce the computational cost and noise
throughout the feature space [35]. To do so, kernel PCA [36]
was used as an effective tool to reduce the dimensionality of
each type of features independently, since it can represent a
higher order complex and nonlinear distribution in a fewer
number of dimensions to address Hughes phenomenon [15]
and high computational cost. The normalized dimension of
HSI, EPys;, and EPyipar is automatically set to the smallest
dimension of the above-mentioned features. For example, for
the Houston data, this value is set to 71 [9]. We show the
normalized features extracted from LiDAR and HSI with

Thematic classes:

[ Healty grass Bl Stressed grass HH Synthetic grass Bl Tree [ Soil
B Water [ Residential [ Commercial [ Road I Highway
B Railway [ Parking lot 1 B Parking lot 2 @ Tennis court B3 Running track

Fig. 2. Houston. (Top to bottom) LiDAR-derived rasterized data set; a color
composite representation of the HSI using bands 64, 43, and 22 as R, G, and
B, respectively; training samples; test samples; and legend of different classes.

Thematic classes:
Bl Apple Trees Bl Buildings 3 Ground

] Woods BN Vineyard B Roads

Fig. 3. Trento. (Top to bottom) LiDAR-derived rasterized data set; a color
composite representation of the HSI using bands 40, 20, and 10, as R, G,
and B, respectively; training samples; test samples; and legend of different
classes.

matrices Fysr and Fripar, respectively, and the HSI with
matrix H.

Extracted features from HSI and LiDAR are highly redun-
dant. In order to reduce the features’ redundancy, we propose
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TABLE 1
HOUSTON: CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT APPROACHES USING RF AND SVM. THE METRICS AA AND OA
ARE REPORTED IN PERCENTAGE. KAPPA COEFFICIENT IS OF NO UNITS. THE BEST RESULT IS SHOWN IN BOLD
‘ ‘ LiDAR (1) ‘ HSI (144) ‘ EPLiDAR(71) ‘ EPH51(213) ‘ EPLiDAR+HSI(284) ‘ OTVCA-fusion (50)

Class name | Train./Test | SVM RF | SVM RF | SVM RF | SVM RF | SVM RF | SVM RF
Grass Healthy 198/1053 11.68 13.49 83.48 83.38 57.36 74.26 79.39 77.49 79.39 78.06 79.77 80.63
Grass Stressed 190/1064 0.00 16.26 96.43 98.40 40.79 61.75 78.85 78.48 80.36 84.96 97.84 99.62
Grass Synthetic 192/505 87.13 56.63 99.80 98.02 98.61 97.23 | 100.00 100.00 | 100.00 100.00 100.00 100.00
Tree 188/1056 51.80 44.03 98.77 97.54 92.33 58.14 87.78 82.77 95.83 95.45 96.02 96.02
Soil 186/1056 12.12 58.05 98.11 96.40 83.43 82.10 99.81 97.73 99.81 98.77 98.67 99.43
Water 182/143 78.32 58.04 95.10 97.20 78.32 83.22 95.80 95.80 95.80 95.80 95.80 95.80
Residential 196/1072 56.90 39.09 89.09 82.09 55.22 77.33 85.17 73.23 80.41 73.41 88.90 86.01
Commercial 191/1053 13.11 29.53 45.87 40.65 29.06 68.28 65.15 59.92 90.41 85.28 87.65 93.54
Road 193/1059 14.92 13.60 82.53 69.78 67.33 59.40 89.90 83.00 89.80 93.96 87.35 97.07
Highway 191/1036 8.30 11.29 83.20 57.63 61.39 66.89 51.54 64.09 56.66 67.08 60.33 68.53
Railway 181/1054 72.68 40.42 83.87 76.09 99.72 99.91 87.76 84.72 90.70 90.89 99.34 98.86
Parking Lot 1 192/1041 0.00 9.99 70.99 49.38 63.11 64.75 84.34 78.10 89.91 88.57 97.69 100.00
Parking Lot 2 184/285 12.28 15.09 70.53 61.40 49.12 58.60 84.56 77.89 84.56 76.14 80.35 74.74
Tennis Court 1817247 97.57 80.16 | 100.00 99.60 | 100.00 100.00 | 100.00 99.60 | 100.00 100.00 100.00 100.00
Running Track 187/473 27.91 75.90 97.46 97.67 74.21 87.74 97.25 99.37 98.10 99.79 100.00 100.00
OA 28.82 31.83 84.69 77.47 67.2 73.42 85.82 80.36 86.87 86.98 90.33 92.45
AA 36.31 37.43 86.34 80.34 70.00 75.97 83.08 83.47 88.78 88.54 91.31 92.68
K 0.2422  0.2677 | 0.8340 0.7563 | 0.6440 0.7120 | 0.8168 0.7876 | 0.8577 0.8592 0.8950 0.9181

TABLE II

TRENTO: CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT APPROACHES USING RF AND SVM. THE METRICS AA AND OA
ARE REPORTED IN PERCENTAGE. KAPPA COEFFICIENT IS OF NO UNITS. THE BEST RESULT IS SHOWN IN BOLD

‘ ‘ LiDAR (1) ‘ HSI (63) ‘ EPLiDAR(71) ‘ EPHSI(213) ‘ EPLiDAR+HSI (284) ‘ OTVCA-fusion (50)

Class name | Train/Test | SYM ~ RF | SYM  RF | SVM  RF | SVM  RF | SVM RF | SVM RF
Apple trees 129/3905 37.10 4250 | 88.40 86.20 98.56 96.06 99.93  97.82 | 99.95 97.62 100.00 99.95
Buildings 125/2778 4140 5130 | 82.60 85.90 96.21 98.42 97.97 9425 | 97.24 96.80 98.45 98.81
Ground 105/374 0.00 3420 | 97.60 96.80 70.15 72.03 97.08 9499 | 96.45 94.36 96.26 99.47
Wood 154/8969 67.40  52.60 | 96.90 95.70 98.64 99.45 99.81  99.22 | 99.57 99.97 100.00 100.00
Vineyard 184/10317 | 87.60  46.50 | 77.10 80.10 58.39 69.89 99.57  98.76 | 99.26 99.10 98.55 99.99
Roads 122/3252 7990 3240 | 67.90 65.00 73.06 70.79 69.03  76.15 94.27 94.55 96.07 96.26
OA 63.30 4670 | 84.55 84.92 67.20 85.17 96.28 9590 | 98.68 98.39 98.89 99.48
AA 46.14 4331 85.14 85.01 70.00 84.43 9389 9353 | 97.79 97.06 98.22 99.08
K 0.5039  0.335 | 0.7965 0.8004 | 0.6440 0.8099 | 0.9505 94.53 | 0.9824  0.9785 0.9851 0.9931

a low-rank model for the fused features. In other words,
the extracted features from LiDAR and HSI can be represented
in a space of lower dimension. Note that this redundancy of
features can affect the classification results due to the Hughes
phenomenon and also fused features are expected to have a
lower dimension.

As a result, a low-rank model is suggested as

F=AV' +N (4)

where F = [f(;)] is an n x p matrix containing the vectorized
features at band i in its ith column, V is an unknown
subspace (low-rank) basis (p x r), A = [a(;)] contains the
ith vectorized unknown fused feature in its ith column, and
N = [n(;)] is an n x p matrix containing the vectorized noise
and error at band i in its ith column. Note that r is the number
of fused features (I < r < p), and F = [Fpus1, H, FLipaAR]
contains hyperspectral bands and features extracted from both
HSI and LiDAR rasterized data.

In (4), it is assumed that the fused features, F, and the basis
matrix, V, are unknown, and therefore they both need to be
estimated. To preserve the spatial structure of the features and
promote piece-wise smoothness on the fused features, we use

OTVCA [30], which is based on solving the following TV
penalized least squares problem:

R 1
A V) = in J(A,V) = in —||F — AVT 2
(A,V) = arg mip (A,V) =arg min 2|| [

.

+4 H\/(Dha(i))2 + Dya)?||, st V'V=l,
i=1

®)

where Dy and D, are the matrix operators for calculating the
first-order vertical and horizontal differences, respectively, for
a vectorized image. For an image of size n; x nz, we have
D, =R®1I, and D, =I,, ® R, where R is the first-order
difference matrix.

D. Estimation

A cyclic descent (CD) algorithm given in [30] is used to
solve (5) called OTVCA-CD, which solves the nonconvex
problem (5) with respect to one matrix at a time while the
other matrix is assumed to be fixed. Therefore, OTVCA-CD
consists of the following two steps.
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TABLE III

ASSESSMENT OF THE SIGNIFICANCE OF THE CLASSIFICATION ACCURACIES (zr¢, WHERE r AND ¢ INDICATE ROW AND COLUMN, RESPECTIVELY)
OBTAINED BY APPLYING RF AND SVM ON THE UNIVERSITY OF HOUSTON DATA SET USING DIFFERENT METHODS

\ RF \ SVM
| HSI  EPupar  EPus;  EPppagsnst | HSI EPppar  EPusi  EPpiparsnsi
EPLipar -7.27 -38.00
EPys; 223 10.48 1635 24.94
EPyipAR+HST 15.89 24.03 21.77 -0.79 38.70 20.87
OTVCA-fusion | 36.36 44.94 40.17 30.01 15.81 50.09 32.61 20.08
TABLE 1V

ASSESSMENT OF THE SIGNIFICANCE OF THE CLASSIFICATION ACCURACIES (zr¢, WHERE r AND ¢ INDICATE ROW AND COLUMN, RESPECTIVELY)
OBTAINED BY APPLYING RF AND SVM ON THE TRENTO DATA SET USING DIFFERENT METHODS

\ RF \ SVM
| HSI  EPupar  EPysi  EPpipapsust | HSI EPpipar  EPysi  EPpipagsnst
EPLipAR 1.08 -11.58
EPyg; 54.31 49.36 58.46 62.89
EPLipAR+HSI 59.98 58.18 17.44 63.34 71.45 16.78
OTVCA-fusion | 65.68 65.30 28.31 20.11 63.44 72.48 16.35 1.94

1) A-Step: When matrix V is fixed, it can be shown that
the minimization problem (5) can be considered as r separable
TV regularization problems, which can be solved using split
Bregman iterations as

A"F1 = SplitBregman(G, 2) (6)

where G = [g;)] = FV™.

2) V-Step: When matrix A is fixed, it can be shown that the
minimization problem (5) turns to an orthogonal (low-rank)
Procrustes problem where the solution is given by a low-rank
Procrustes rotation as

Vm+l — PQT

where matrices P and Q are given by the following singular
value decomposition (SVD):

FTAm+1 — PZQT

where X is a diagonal matrix that contains the singular
values of FT A" *!. The resulting algorithm is summarized in
Algorithm 1. For more details, see [30].

III. EXPERIMENTAL RESULTS

A. Data Description

1) Houston Data: The size of the HSI and DSM is 349 x
1905 with a spatial resolution of 2.5 m. The HSIs encompass
144 spectral bands ranging 0.38—1.05 um. Fig. 2 demonstrates
a color composite representation of the HSI and the corre-
sponding training and test samples. Table I details the number
of training and test samples of different classes.

2) Trento Data: The second data set is captured over a
rural area in the south of the city of Trento, Italy. The size of
the coregistered DSM and HSI is 600 by 166 pixels with a
spatial resolution of 1m. The HSI consists of 63 bands ranging
from 0.40 to 0.98 xm. Fig. 3 demonstrates a color composite
representation of the HSI and the corresponding training and

Algorithm 1 OTVCA-CD
Input:
F : Extracted Features,
r: Number of fused features,
A: TV regularization tuning parameter,
€: Tolerance values.
Output:
A: Fused features estimated,
V: Projection matrix estimated.
Initialization;V°,
while ||[A"F! — A™|| <€ do
A-step :
G =FV",
A"*1 = SplitBregman(G, 1),
V-step :
FTAm+l — PZQT,
Vm+l — PQT,
end

test samples. Table II gives information about the number of
training and test samples for different classes of interest.

B. Algorithm Setup

For the EPs, one needs to define only the number of
desired levels (s) as the whole process is automatic. To do
so, we have used exactly the same setup investigated in [33],
which demonstrates that the EPs are data set distribution
independent, and one can consider the same values for diverse
data captured by different sensors. In this context, in order
to generate the EP for area, volume, and diagonal of the
bounding box, the values of n used to generate the profile
are automatically given by |3/, where j = 0,1,...,s — 1.
The size of the EPs is 2s + 1, since the original image should
also be included in the profile. The profiles were computed
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Thematic classes:

@ Healty grass Bl Stressed grass Bl Synthetic grass Bl Tree 1 Soil
Il Water [ Residential [ Commercial [ Road @ Highway
I Railway [ Parking lot 1 [ Parking lot 2 M Tennis court 3 Running track

Fig. 4. Classification maps for the Houston data set. (a) Outputs of RF on HSI. (b) Output of SVM on HSI. (c) Output of RF on EPyjpaRr. (d) Outputs of
SVM on EPpipaRr. (e) Output of RF on EPygj. (f) Outputs of SVM on EPygy. (g) Output of RF on EPpipar+usI- (h) Outputs of SVM on EPyipaR+HSI-
(i) Output of the proposed method using RF. (j) Output of the proposed method using SVM.

using the four-connected connectivity rule. Here, s is set to
seven, as suggested in [33].

OTVCA is initialized as suggested in [30]. The tuning para-
meter A indicates the level of smoothness. In the experiments,
A is set to one percent of the intensity range of the features
extracted.

In terms of the SVM, a radial basis function (RBF) kernel
is used. The optimal hyperplane parameters C (parameter that
controls the amount of penalty during the SVM optimization)
and y (spread of the RBF kernel) have been traced in the
range of C = 1072,10!,...,10* and y =273,272,...,2¢
using fivefold cross validation.

For the RF, the number of trees is set to 300. The number
of the prediction variable is set approximately to the square
root of the number of input bands.

In this paper, overall accuracy (OA), average accuracy (AA),
kappa coefficient, and CPU processing time are used to
compare the classification approaches from different aspects.
In addition, in order to evaluate the significance of the
classification accuracies obtained using different approaches,
we use a statistical test. Since the samples were used for two
different classifications are not independent, we evaluate the

significance of two classification results with McNemar’s test,
which is given by [37]

= fiz — fa
iz + fa

where f;; is the number of correctly classified samples in
classification i and incorrectly in classification j. McNemar’s
test is based on the standardized normal test statistic, and
therefore the null hypothesis that is “no significant difference”
is rejected at the widely used p = 0.05 (|z| > 1.96) level of
significance.

For the sake of simplicity, the following names are used in
the experimental part: LIDAR and HSI show the classification
accuracies of the LiDAR-derived DSM and HSI, respectively.
EP1ipar and EPysr show the classification accuracies of
EPs applied to LiDAR and HSI. EPpipar+nst refers to the
classification accuracies of EPs applied to the stack of LiDAR
and HSIL

C. Classification Experiments

The classification results are given in Tables I and II for
the Houston and Trento data sets, respectively. The results are
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Fig. 5.

Classification maps for the Houston data set. (a) Outputs of RF on HSI. (b) Output of SVM on HSI. (c) Output of RF on EPyjpaRr. (d) Outputs of

SVM on EPpipaRr. (e) Output of RF on EPygj. (f) Outputs of SVM on EPygj. (g) Output of RF on EPipar+usI- (h) Outputs of SVM on EPyipaR+HSI-
(i) Output of the proposed method using RF. (j) Output of the proposed method using SVM.

compared based on class accuracies, OA, AA, and kappa coef-
ficient (x). The SVM parameters selected by cross validation
for Houston are C = 100 and for y = 0.5 and Trento are
C=1and y =0.5.

As can be seen from Table I, the consideration of the spatial
information extracted by the EP can significantly improve
classification accuracies compared with the situations where
the SVM and RF have directly been applied to the input
data sets. For instance, in the case of using SVM, applying
EP on the LiDAR (71 features) improves the OA by almost
38%. In the case of the HSI, due to the rich spectral infor-
mation, the consideration of the EPs slightly improves the
OA by almost 1% and 3%, using SVM and RF, respectively.
Due to the fact that the EPysr has been constructed only
on three ICs, it does not fully consider rich spectral infor-
mation provided by the whole dimensionality of the HSI.
In this context, HSI can classify different types of grasses
better than EPys;. EPpLipar+nsi outperforms the individual
use of each data in terms of OA, AA, and kappa, which

confirms that HSI and LiDAR provide complement informa-
tion to differentiate different classes of interest. The proposed
approach provides the best classification accuracy among
all the approaches considered in this paper. OTVCA-fusion
method clearly captures the redundant information existing
in the HSI and the profiles and leads to the accuracy of
over 90%. A similar trend can be seen in the case of
using RF, where the OA obtained from the 50 fused fea-
tures using OTVCA reaches over 92%, which is 5% more
than the integrated profiles having 284 features. In addition,
since the proposed method considers all spectral, spatial, and
contextual information, it reveals a promising performance
in terms of class specific accuracy and provides the best
classification results for classes Grass Stressed, Grass Syn-
thetic, Commercial, Road, Parking Lot 1, Tennis Court, and
Running Track.

As can be seen from Table II, in the case of the Trento
data set, the use of the EP can significantly improve classifi-
cation accuracies due to the fact that the EP can effectively
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Thematic classes:
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Fig. 6.

Il Vineyard B Roads

Classification maps for the Trento data set. (a) Outputs of RF on HSI. (b) Output of SVM on HSI. (c) Output of RF on EPy jpaRr. (d) Outputs of

SVM on EPpipaARr. (e) Output of RF on EPygj. (f) Outputs of SVM on EPygy. (g) Output of RF on EPpipARr+HsI- (h) Outputs of SVM on EPy;pAR+HSI-
(i) Output of the proposed method using RF. (j) Output of the proposed method using SVM.

extract spatial and contextual information. In addition, for both
RF and SVM classifiers, the 50 fused features obtained by
applying OTVCA improve the classification accuracies com-
pared with the integrated profiles (284 features). Moreover,
the proposed method using RF provides the best class specific
accuracy for almost all classes.

Overall, Tables I and I show that OTVCA-fusion improves
the classification accuracies using fewer number of fea-
tures for both rural and urban data sets. Moreover, from
Tables I and II, it can be seen that the RF provides higher
OA, AA, and kappa coefficients than SVM.

The assessment of the significance of the difference between
the OAs based on McNemar’s test is given in Tables III and IV
for the University of Houston and Trento data sets, respec-

tively. From Tables I and II, it is clear that the classification
accuracies obtained from LiDAR are considerably low, and
therefore they have not been included in the signification
assessments. As can be seen in Tables III and IV, in the case of
using RF, the improvements of OAs yielded by OTVCA-fusion
are statistically significant for both data sets compared with the
other methods. In the case of using SVM, the results confirm
that the improvements of the OAs yielded by OTVCA-fusion
for both data sets are also statistically significant compared
with the other methods except for the Trento data set when it
is compared with EPpipAR+HSI-

The classification maps obtained by different approaches
on the Houston data are shown in Fig. 4. From Fig. 4, it can
be seen that the proposed fusion technique provides classi-
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Fig. 7. HSI and LiDAR features of the Houston data set fused by OTVCA-
fusion and used for the classification tasks. From top to bottom, the numbers
of features are 1, 2, 3, 5, 15, 27, and 45.

fication maps having homogeneous regions while preserving
the structures, which is greatly of the interest specifically in
the case of urban data sets. This is because of using TV that
promotes smoothness while preserves the structures existing
in the features. In this paper, although the cloud shadow was
removed from the original data to a great extent, when ICA is
performed to the enhanced hyperspectral data to produce base
features for EPs, the shadow effect is partially appeared on
the second IC. This is the reason that the cloud shadow slightly
downgrades the quality of the classification maps obtained by
the proposed approach. In other words, pixels on the right sides
that are classified as water most probably are missclassified.
This is due to the attenuation of the spectra in the shadow
area.

In order to have a more precise evaluation of the obtained
classification maps, Fig. 5 is provided, which shows a close-
up of the resulting classification maps obtained by studied
approaches on the Houston data. As can be seen, the consid-
eration of the EPs can homogenize the classification maps
by extracting the structures of different objects and reduc-
ing the salt and pepper appearance of the labeled pixels
compared with a situation where only spectral information
is taken into account. This has been further improved by
the proposed approach, which uses OTVCA to fuse spectral,
spatial, and elevation information. In Fig. 5, it is evident
that the proposed method can extract the shape of different

TABLE V

CPU PROCESSING TIMES IN SECONDS CONSUMED BY
DIFFERENT TECHNIQUES APPLIED ON TRENTO

HSI EPLiDAR EPHS] EPLiDAR+HSI OTVCA-fusion
SVM | 11.99 15.97 50.30 78.44 390.18
RF 1.82 5.92 15.15 19.73 381.47

objects more precisely than the other investigated approaches,
while at the same time, it significantly reduces the noisy
behavior of the labeled pixels compared with EPs and HSI.
A few features obtained by the proposed fusion technique and
used for the classification of the Houston data set are shown
in Fig. 7.

Fig. 6 demonstrates the classification maps obtained by
different approaches on the Trento data set. The same trend as
the Houston data can also be found for the Trento data, where
the proposed approach provides a more precise classification
map than the ones obtained by other approaches. Regarding
the left side of Trento, visual comparison confirms that SVM
applied on OTVCA-fusion has missclassified a region and
labeled as buildings (also note that the improvement of the
classification accuracies obtained by the test samples is not
significant in this case). Also, the visual comparison of RF
applied on OTVCA-fusion show a considerable improvement,
which confirms the accuracies obtained by the test samples
and the results from McNemar’s test.

Comparing the results given for the Houston University
and Trento data sets shows that the improvement of the
classification accuracies in the case of Trento that is rural data
set is more significant than the Houseton University data set.
This could be due to the lower spatial resolution in rural area
where the TV component analysis should be very effective to
promote piecewise smooth regions.

Table V compares the CPU processing time (in seconds)
consumed by different techniques applied on Trento. As can be
seen, OTVCA-fusion is computationally expensive compared
with the other techniques used in the experiments due to the
inner TV-regularization loop in A-step of OTVCA-CD and
the SVD in V-step. Note that the CPU times for RF and SVM
classifiers are greatly affected by the number of samples used.

IV. CONCLUSION

In this paper, we proposed an innovative technique dedicated
to the fusion of HSI and LiDAR. First, EPs were used
to extract spatial and elevation information from HSI and
LiDAR. The extracted EPs were modeled based on unknown
fused features that live in a low-dimensional feature space.
Then, OTVCA, which is a nonconvex optimization feature
extraction technique, is utilized to estimate the unknown (low-
dimensional) fused features.

We investigated the performance of the proposed method
with two different data sets, captured over rural and urban
areas. The classification accuracy has been obtained using
RF and SVM classifiers for both rural and urban data sets.
We demonstrated that the low-dimensional fused features
obtained by the EPs and OTVCA improve the classification
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accuracies compared with the integrated features for HSI
and LiDAR using feature stacking. The experimental results
confirm that the EPs can effectively extract spatial and ele-
vation information from HSI and LiDAR, respectively. The
results also show that OTVCA-fusion technique captures the
redundancy of the features while improving the classification
accuracies. The proposed approach significantly improved
other approaches used for comparison (confirmed by McNe-
mar’s test) in terms of classification accuracy. In addition,
the experiments showed that OTVCA-fusion provides classi-
fication maps having homogeneous regions while preserving
the structures, which is due to the exploitation of the TV.
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