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Abstract 

The specific area of the solid-liquid interface of an assembly of dendrites is an important 

integral measure of the morphology of the microstructure forming during alloy solidification. It 

represents the inverse of a characteristic length scale and is needed for the prediction of 

solidification defects and material properties. In the present study, the evolution of the interfacial 

area of dendrites is analysed using 3D phase-field simulations. A general evolution equation is 

developed for the specific interfacial area as a function of time and solid volume fraction that 

accounts for the effects of growth, curvature-driven coarsening and interface coalescence. The 

relation is validated using data from previously performed synchrotron X-ray tomography and 

isothermal coarsening experiments. It is found to be valid for arbitrary and even varying cooling 

rates and for a wide range of binary alloys. The rate constant in the evolution equation is 

successfully related to alloy properties.  
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1. Introduction 

Dendrites are the primary microstructure in virtually all metal alloys solidified from the melt. 

Their morphology is critical to the formation of solidification defects, such as porosity, cracks and 

macrosegregation. Dendrites also control the distribution of alloying elements on a microscopic 

scale and thereby the amount and spatial arrangement of secondary phases, which in turn strongly 

affect the properties of solidified materials. Understanding the evolution of dendrites during alloy 

solidification is thus of both fundamental and technological interest [1]. The most common 

measure for characterizing solidification microstructures and correlating material properties is the 

secondary dendrite arm spacing. Clearly, this spacing is an incomplete description of the complex 

shape of dendrites. As described in our earlier work on this topic [2], the specific area of the solid-

liquid interface is an integral measure that characterizes the overall morphology in a more general 

sense [3,4]. The specific interface area 
sS  is defined as the area of the solid-liquid interface A  

per volume of the enclosed solid phase 
sV ,  

s sS A V     (1) 

The inverse of the specific interface area can be considered a characteristic length scale of the 

microstructure. A similar integral measure is the interfacial area density or concentration VS . It is 

defined as the interface area A   divided by the sample volume V   containing both solid and 

liquid phases,  

V s sS A V g S     (2) 

where s sg V V  is the solid volume fraction. The interfacial area density is a key ingredient in 

volume-averaged (macroscopic) models of alloy solidification [5]. It is needed, for example, in the 

modeling of microsegregation and of melt flow through the semi-solid mush, the permeability of 

which is directly related to VS  via the Kozeny-Carman relation  
3 21 s VP g S  [6]. 

Under isothermal conditions, the interface area decreases continually due to surface energy 

driven coarsening, even though the amount of solid does not change. This temporal variation can 

be described by a classical coarsening law of the form [3] 

 
1

1

0

n
n

s sS S Kt           (3) 
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where 
0sS  , n  , K  , and t   are specific interface area at 0t   , inverse coarsening exponent, 

coarsening rate constant, and time, respectively. An exponent of 3n   has been firmly established 

for volume diffusion-limited coarsening by both experiments and theory. It was first obtained in 

the LSW theory for Ostwald ripening [7-9] that describes the evolution of a system of dispersed 

spherical particles in the long-time limit. Although the LSW theory assumes spherical particles 

and 0sg   , 3n    has been found to be valid for more general geometries [3,10], including 

morphologies that are initially dendritic, and for higher solid volume fractions, e.g. [11]. The 

coarsening rate constant K  is generally a function of the solid fraction. More recently, a LSW-

type model has been derived for the important case of concurrent growth and coarsening [12]. 

Although this model is also limited to low sg , 3n   was obtained even in the presence of net 

solidification. 

As opposed to pure coarsening, solidification implies that the system is not isothermal (i.e., 

the cooling rate T   is non-zero) and the solid fraction sg   increases with time. Initially, the 

growth of the solid leads to an increase in the interface area. However, at higher solid fractions the 

evolution of the solid morphology becomes strongly affected by solutal interactions and by 

interface coalescence, which causes the interface area to decrease. For pure growth processes, in 

the absence of coarsening, the interfacial area density VS  can be correlated to sg  by an equation 

of the form  

 1
qp

V s sS cg g     (4) 

where c , p , and q  are constants. According to Eq. (4), with increasing solid fraction VS  first 

experiences a rise due to the creation of interfacial area by growth, goes through a maximum, and 

then decreases due to impingement and coalescence of interfaces. Various values for the constants 

p   and q   have been suggested. Speich and Fisher [13] found that data from recrystallization 

experiments could be described by 1p q   . A computational model for the growth and 

impingement of grains confirmed these exponents [14]. Other suggestions have been 

2 3p q   [15] and 1 2p q   [16]. A more detailed geometrical model of growing and 

impinging spheres has revealed that the constants C  , p  , and q   are influenced by the 
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nucleation kinetics and the spatial arrangement of the spheres [17]. Therefore, it is not possible to 

identify generally valid values for the constants in Eq. (4). 

In summary, the basic Eqs. (3) and (4) for the evolution of the interface area are limited to 

seemingly opposing cases. Equation (3) is valid only for isothermal conditions ( 0T   , 

const.sg  ), where the interface area decreases with time due to coarsening. Equation (4), on the 

other hand, describes processes where 
sg  increases due to growth ( 0T  ), but the interface area 

does not change when const.sg   Hence, the question remains how the two evolution equations 

can be combined to cover the general case of simultaneous growth and coarsening. Due to the 

length scales involved with dendrites, both phenomena are important in most alloy solidification 

processes. 

The direct study of the morphological evolution of dendritic microstructures during alloy 

solidification has become possible due to two relatively recent developments: (i) the availibility of 

computational tools, in particular the phase-field method [18] and high performance parallel 

computing platforms, to allow three-dimensional simulations to be conducted for realistic material 

properties and relatively large length and time scales, and (ii) the use of enhanced synchrotron and 

X-ray facilities to perform tomography in real time during solidification with sufficient resolution 

to measure the geometry of dendrites. In the present study, phase-field simulations of dendritic 

solidification of a binary alloy are used to study the variation of the interfacial area with solid 

fraction and time. The simulations extend our previous results [2] for a single to multiple cooling 

rates, including an isothermal coarsening case. A new specific interfacial area evolution equation 

is proposed that fits the simulation data over the entire range of cooling rates. Then, data from 

previously performed high-speed synchrotron X-ray tomography solidification [19–22] and 

isothermal coarsening [23–25] experiments involving different alloy systems are used to validate 

the general interface evolution equation. 

  

2. Phase-Field Simulations 

2.1. Computational Model 

The 3D phase-field model used in the present study is the same as in Ref. [2]. For 

completeness, it is briefly described in the following. We employ the well-established phase-field 

model for directional solidification of a dilute binary alloy of Echebarria et al. [26], which assumes 
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that the dendrites grow in a constant temperature gradient G  that moves at a constant velocity 

pV . The model is extended to account for solute diffusion in the solid [27]. 

The material data used in all simulations of the present study are representative of an Al-Cu 

alloy. They are given by an initial alloy solute concentration 
0 6C   wt. , liquidus slope 

2.6m   K/wt. , melting point of pure aluminum 660mT  oC, partition coefficient 0.14k  , 

solute mass diffusivities in the liquid 3000D  m2/s and solid 0.3sD  m2/s, respectively, 

Gibbs-Thomson coefficient 0.24  mK, and surface energy anisotropy coefficient 
4 0.02  . 

As illustrated in Fig. 1a, the computational domain covers a 1/8 sector of a dendrite by using 

available symmetries. The simulation domain has a width of 70 m, which represents one half of 

the primary dendrite spacing, and a length in the direction of the temperature gradient of 350 m. 

The boundaries are characterized by no-flux conditions. A small paraboloid at the bottom of the 

domain is used as the initial geometry of the solid. When the dendrite tip impinges on the upper 

wall, the simulation proceeds and the previously grown structure continues to solidify (see Fig. 3 

below). The initial temperature of the liquid is taken as the dendrite tip temperature during steady 

growth; the dendrite tip undercooling was determined iteratively from preliminary simulations. 

The phase-field model was implemented numerically using the parallel FEM library 

AMDiS [28,29]. It allows for adaptive mesh refinement, an example of which is shown in Fig. 1b. 

For the base case simulation, the smallest element size was 0.153 m, which can be compared to 

a steady state primary dendrite tip radius in the base case simulation of 2.7 m. The problem size 

was on average 72.5 10  degrees of freedom. A semi-implicit time discretization scheme was 

employed to allow for adaptation of the time step to the different time scales of the interface 

dynamics associated with growth and coarsening. The computations were carried out on a high 

performance computing (HPC) cluster using 512 CPUs. They took about one week of time. 

Numerous tests were performed to verify that the present results are independent of the diffuse 

interface thickness and other computational parameters used in the phase-field model. The 

directional solidification cases in Echebarria et al. [26] were repeated to provide a basic test of the 

present computations. Additional validation included the simulation of singular events, such as 

fragmentation of phases due to capillarity. The calculated variation of the neck radius near pinch-

off was compared to an exact analytical solution and excellent agreement was obtained [30]. 
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2.2. Base case simulation results 

The base case simulation is the same as the one reported in Ref. [2] and corresponds to a 

pulling speed of 300pV  m/s and temperature gradient of 200G  K/cm, resulting in a cooling 

rate of 
0 6T  K/s. As will be demonstrated later, at such a high cooling rate the evolution of the 

interface area is dominated by growth and coalescence, and curvature-driven coarsening is of 

secondary importance. 

Snapshots of the computed dendrite at four different times are shown in Fig. 2 [2]. During the 

first second (Figs. 2a and 2b) the primary dendrite tip translates the entire length of the simulation 

domain. This first stage is characterized by the development of numerous secondary dendrite 

branches behind the primary tip and a rapid increase in the interface area. At later times (Figs. 2c 

and 2d), the volume of solid continues to increase and sidebranches can be observed to coalesce. 

The impingement of interfaces leads eventually to the development of liquid channels and pockets 

inside the solid structure (Fig. 2d). The simulation was terminated at 7t  s, which corresponds 

to a solid volume fraction of 0.84sg   (see below).   

The interface area A  and solid volume sV  of the dendrite are evaluated for five different 

sample volumes along the computational domain, as shown in Fig. 3a [2]. The sample volumes 

are small enough to neglect temperature variations within them, but sufficiently large to avoid 

excessive scatter in the area and volume measurements. The tilted shape of the sample volumes 

further aids in suppressing scatter. The measured interface area and solid volume for each sample 

volume are plotted in Fig. 3 as a function of time [2]. For this figure only, 0t   refers to the 

instant when a portion of the interface enters the sample volume. It can be seen that the center 

sample volume is most representative of the average variation in A . The center sample volume is 

used exclusively in the following. 

The calculated interfacial area density and inverse specific interface area are plotted against 

time in Figs. 4a and 4b, respectively, and against solid fraction in Figs. 4d and 4e, respectively. 

The solid fraction variation is shown against time t  in Fig. 4c and against dimensionless time   

in Fig. 4f. The dimensionless time (or temperature) is defined as   0T T T t     , in which 

0mT T mC   is the liquidus temperature corresponding to the initial solute concentration and 

0T T      is the cooling rate scaled by the equilibrium freezing temperature range 
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 0 0 1 1T m C k   . Note that the curves in Figs. 4a to 4c start to increase from zero not until 

about 0.7t  s, which is the time from the beginning of the simulation when the primary dendrite 

tip reaches the center sample volume. Based on a detailed analysis, the evolution of the dendrite 

morphology in Fig. 4 can be divided into three stages. These stages were not clearly distinguished 

in Ref. [2]. 

Stage I is characterized by a steep increase in 
VS . This is caused by the initial free dendritic 

growth and sidebranching creating a large interfacial area, while the melt is still undercooled. Stage 

I ends at 1t  s when in Fig. 4f the solid fraction curve from the present simulation meets the 

curves for the classical lever rule and Scheil equation [31]. The latter two predictions assume that 

the liquid is not undercooled and the primary dendrite tip is located at the equilibrium liquidus 

temperature. During stage I, the solid fraction increases rapidly from zero to 0.3sg   . 

Afterwards, the lever rule and Scheil equation closely bound the solid fraction variation from the 

phase-field simulation [2]. This is expected because the present simulations account for finite-rate 

solute diffusion in the solid, whereas the lever rule and Scheil equation assume infinite and zero 

diffusion in the solid, respectively.  

Although 1

sS   increases steeply with time during stage I (Fig. 4b), when plotted against 
sg  

(Fig. 4e) 1

sS   is almost constant and equal to about 3 to 3.6 m during the entire stage, except at 

the very beginning. Since the secondary dendrite arms in stage I can be easily identified, it is useful 

to connect this value of 1

sS   with the study of Li and Beckermann [32] who measured geometrical 

parameters of pure succinonitrile dendrites grown in a microgravity environment. They found that 

the interfacial area density can be related to the secondary dendrite arm spacing 
2   by 

21.6VS  . This simple result can be explained by assuming that after some distance from the 

primary tip, the interfacial area is dominated by the secondary arms and that the sidearms grow in 

a planar or axial manner. The secondary dendrite arm spacing at the end of stage I ( 1t  s) can be 

estimated from Fig. 2b to be approximately 2 19  m in the region of the center sample volume 

(i.e., near mid-height). Hence 0.084VS  m-1, which agrees well with the value of  1sVS t   

in Fig. 4a. Equivalently, the scaling relation of Ref. [32] gives for the inverse specific interface 

area 1

2 1.6 3.56s s V sS g S g     m, since  1s 0.3sg t    , which is close to the value of 
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 1 1ssS t   in Fig. 4b. This agreement with a scaling relation obtained from experimental data 

lends some confidence to the present phase-field computations. More importantly, being able to 

predict VS  during stage I from the knowledge of 2  allows for the calibration of more general 

relations for 
VS  (see the next section). Empirical relations for 2  are available for many metal 

alloys of technological interest (e.g., aluminum alloys, steel) [31].        

Stage II is characterized by concurrent growth and coarsening near equilibrium without 

significant interface coalescence. It ends when VS  in Fig. 4a reaches its maximum value, which 

occurs at 2.5t  s. Fig. 2c shows the computed dendrite at the end of stage II ( 2.5t  s), when the 

solid fraction is equal to  2.5s 0.57sg t    (Fig. 4c). Another distinct criterion for the end of 

stage II can be obtained from Fig. 4b. Up until 2.5t  s, the inverse specific interface area varies 

as 1 1 3

sS t , as indicated by the dashed line; at later times, it increases at a significantly faster 

rate. As mentioned in the Introduction, a 1 3t  law for the evolution of the characteristic interfacial 

length scale, primarily known for curvature-driven coarsening at constant phase fractions, was also 

found to be valid for concurrent growth and coarsening in Ref. [12]. 

During stage III, coalescence of interfaces leads to a decrease in VS  (Fig. 4a) and an increase 

in 1

sS   that is much faster than a 1 3t  law (Fig. 4b). The interfaces impinge primarily between 

the thickening secondary dendrite arms (Figs. 2c and 2d). The coalescence of sidearms also leads 

to a considerable thickening of the primary stem during stage III.             

The plot of the computed interfacial area density VS  against the solid volume fraction sg  

in Fig. 4d demonstrates that VS  varies indeed in accordance with Eq. (4). By fitting the present 

data to Eq. (4), it is found that the exponents are equal to 0.99p   and 0.92q  . The proximity 

of these exponents to 1p q   found in Ref. [13] for pure growth indicates that curvature-driven 

coarsening is not important for the relatively high cooling rate used in the base case simulation. 

Clearly, exponents of 0.5p q   [19] do not fit the simulation results.  

 

2.3. Effect of cooling rate 

New results are now presented where the simulation is extended from a high cooling rate T  

(base case, coarsening of minor importance) toward low T , including the case 0T   such that 
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isothermal coarsening is achieved. The simulations for the lower cooling rates were all restarted 

from the base case results at the end of stage I ( 0.3sg  ). This allows one to clearly distinguish 

between the initial growth of the dendrite in the undercooled melt and the subsequent coarsening 

and coalescence processes. Restarting the simulation from an intermediate stage is necessary for 

the isothermal coarsening case, since only an existing solid structure can coarsen. In order to save 

computational time, the simulations were performed for a reduced computational domain that 

corresponds approximately to the center sample volume used for the base case (Fig. 2a) but has a 

rectangular cross section. Cooling rates equal to 1.0, 0.5, 0.1, and 0 times the base case cooling 

rate were investigated. The results of the simulations are plotted in Fig. 5 using the same structure 

as in Fig. 4. The lines in the plots of Fig. 5 up to 1t  s or 0.3sg   are identical for all cooling 

rates for the reason just explained. 

Focusing first on the solid fraction variation with time, Fig. 5c shows that as expected the 

solid fraction increases more slowly for the lower cooling rates and stays constant at 0.3sg   for 

the isothermal case. On the other hand, when plotted against the dimensionless time (Fig. 5f), all 

solid fraction variations collapse to a single line. This indicates that back diffusion in the solid does 

not have a significant effect in the present simulations. 

As mentioned before, the inverse specific interface area 1

sS   is a characteristic length scale 

of the microstructure. Fig. 5e shows that a reduced cooling rate leads to a coarser microstructure 

(larger 1

sS  )  at the same solid fraction. This effect is due to curvature-driven coarsening, which 

becomes more dominant as the solidification process becomes slower. On the other hand, Fig. 5b 

indicates that at a given time, the microstructure is finer (smaller 1

sS  ) for a smaller cooling rate. 

This can be attributed to the fact that coarsening is a slow process relative to growth and 

coalescence. In other words, the growth and coalescence that occur for a finite cooling rate increase 

1

sS   relative to the pure coarsening case when examining the microstructure at the same time. 

The interfacial area density VS   versus solid fraction plot in Fig. 5d is perhaps most 

interesting. The transition between stages II and III, marked by a dot with an arrow, shifts to lower 

solid fractions when the cooling rate is reduced. This implies that a coarser structure at the same 

solid fraction is more prone to coalescence. As expected, for the isothermal coarsening case the 

interfacial area density decreases at a constant solid fraction. For the next lowest normalized 

cooling rate (0.1), the strong effect of coarsening causes the interfacial area density to never 
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increase after stage I. Clearly, a relation for the interfacial area density of the form of Eq. (4) no 

longer works when coarsening is important. 

 

3. General Interfacial Area Evolution Equation 

To be valid for all cooling rates, a general evolution equation for the specific interfacial area 

during alloy solidification should combine growth, coarsening and interface coalescence 

mechanisms. Such a relation must contain both the solid volume fraction and time as independent 

variables. In solidification processes, the solid fraction can sometimes be related to the temperature 

through a relation such as the Scheil equation [31], and the temperature may be known as a function 

of time through the knowledge of the cooling rate. However, this is difficult when the cooling rate 

is highly variable and impossible during the initial period when the solid grows freely into an 

undercooled melt, especially if recalescence is involved [31]. Furthermore, during isothermal 

coarsening, solid fraction and time are completely unrelated. In order to cover all of these diverse 

mechanisms and cases, the following new relation is proposed here 

1 3 1 3

0 0(1 ) ( )r

s s sS g S K t        (5) 

where r , 0sS , and 
0K  are, at this point, fitting parameters. The second term on the right-hand-

side of Eq. (5) has the same form as the classical coarsening law given by Eq. (3). An exponent of 

3n    is adopted, since it is valid for concurrent growth and coarsening [12]. The first term 

accounts for diffusional interactions and interface coalescence, which become increasingly 

important as the solid volume fraction approaches unity. The strength of both processes is 

characterized by the exponent r . A least-square fit of the present 1

sS   data in Fig. 5 to Eq. (5) 

yields the following values for the three parameters: 0.4r   , 1

0 2.46sS   m and 0 23.5K 

m3/s. Figure 6a shows that Eq. (5) provides a reasonable fit to the present simulation results for 

all cooling rates. The values of 0K  and r  are discussed in later sections. 

According to Eq. (5), 1

0sS   is the inverse specific interface area or characteristic length scale 

of the solid at 0st g  . This value is generally not defined, since a solid structure of vanishing 

volume does not have a finite interface area or size. The present finite value for 1

0sS   (2.46 m) is 

simply a result of fitting the data over the entire duration of the simulations. It is interesting to note 

that this value is close to the present steady-state primary dendrite tip radius of 2.7 m (see Section 
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2.1). In the present simulations, 1 2.46sS   m is attained after a short time when a few secondary 

dendrite arms have entered the sample volume (see also Fig. 4b). Note that the initial secondary 

dendrite arm spacing is closely related to the primary dendrite tip radius [32]. The computed values 

of 1

sS   at earlier times do not affect the fit in a significant way. As demonstrated in the next section, 

1

0sS   can also be used to establish a unique reference time that is equal to 3

0 0 0st S K . Shifting 

time by this reference time then results in 1 0sS    at 0sg  .    

Using Eq. (2), Eq. (5) can be re-written in terms of the interfacial area density as 

3 1 3

0 0(1 ) ( )r

V s s sS g g S K t       (6) 

Note that the first two terms on the right-hand-side of Eq. (6) correspond to Eq. (4) with 1p   

and q r . Figure 6b shows that Eq. (6), with the values of the three parameters from above, fits 

the predicted 
VS  from the phase-field simulations reasonably well for all cooling rates, including 

isothermal coarsening. Some of the discrepancies can be attributed to the use of a reduced 

computational domain for the simulations in Fig. 6 (for 0.3sg  ). This can be seen by comparing 

the  V sS g  curves for 
0 1T T   in Figs. 4d (full domain) and 5d (reduced domain). Hence, the 

discrepancies in Fig. 6 between the simulation results and the fit should not be overemphasized. 

 

4. Experimental Validation Using Synchrotron X-ray Tomography Data 

The general interfacial area evolution equation, Eq. (5) or Eq. (6), is validated using data from 

eleven recently performed synchrotron X-ray tomography experiments [19–22]. In these 

experiments, the interface area and solid volume in a small cell of uniform temperature were 

measured in real time during solidification. Table 1 lists the main parameters of the experiments. 

They involve three binary alloy systems (Al-Cu, Mg-Sn, and Mg-Zn) and a wide range of solute 

concentrations and cooling rates. Experiments D1 to D7 with Mg-Zn alloys are characterized by 

an initial solidification phase, followed by an approximately isothermal holding phase. Note that 

the Al alloy dendrites have a cubic crystal lattice, whereas the Mg alloys have a hexagonal lattice. 

For each experiment, measurements of the specific interfacial area were made over a range of 

solid volume fractions and times. Because meaningful measurements could generally not be 

performed during the very initial period of solidifiction, it is not possible to identify the exact time 

at which the solid fraction starts to increase from zero. This problem was overcome by performing 
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the fit of the data using an arbitrary time scale. The resulting 1

0sS   is then used to calculate a time 

shift according to 3

0 0 0st S K . A plot of 1

sS   versus this shifted time then goes through the origin. 

The time shift has no effect on the values of the other two fitting parameters, 
0K  and r .  

Figure 7 shows the fit of the experimental data to the general interfacial area evolution 

equation as plots of 1

sS    versus shifted time (Figs. 7a and 7c) and 
VS   versus solid volume 

fraction (Figs. 7b and 7d). Excellent agreement can be observed. The fit is good even for those 

experiments that feature a highly variable cooling rate and include an isothermal holding phase. 

This can be attributed to including both the solid volume fraction and time as independent variables 

in the evolution equation. The values of the fitting parameter 
0K   obtained for the eleven 

experiments are listed in Table 1 and are discussed further in the next section. For all experiments, 

an exponent of 0.25r    was used. This value gave the best fit for Experiment A, where 

measurments were made over a solid fraction range from about 0.2 to 0.85. For the other 

experiments, the value of r  has a large uncertainty, because the measurements were made either 

over a relatively small solid fraction range or only at solid fractions below 0.4 (Experiments B and 

D1 to D7), where r  plays only a minor role. In fact, an exponent of 0.4r  , as obtained from 

the phase-field simulations, would have also resulted in a reasonably good fit for most experiments, 

except for Experiment A (not shown here for conciseness). The difference in the exponents 

between the simulations ( 0.4r  ) and the experiments ( 0.25r  ) may be explained by the highly 

regular and symmetric arrangement of the (columnar) dendrites in the simulations (Fig. 1a). Such 

an arrangement leads to stronger interface coalescence, a smaller interfacial area density and, 

hence, a higher exponent r . In contrast, the (equiaxed) dendrites in the experiments were grown 

freely, in the absence of a temperature gradient, and were oriented randomly. Clearly, the exact 

dependence of r  on the orientation and spacing of the dendrites deserves further investigation.  

 

5. Prediction of the Rate Constant 

Table 1 lists the values of the fitting parameter 0K  obtained for the eleven experiments and 

the phase-field simulations. While they vary by almost a factor of 50, the 0K  values for each 

individual alloy composition are close to each other, indicating that 0K  is indeed independent of 

the cooling rate. A general expression for 0K  in terms of alloy properties may be obtained by 
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realizing from Eq. (5) that 
0K   is the constant of proportionality at which the cube of a 

microstructural length scale, 3

sS  , evolves with time at a given solid fraction. According to various 

theories of growth and coarsening of solid-liquid mixtures [7,8,12], such a rate constant is always 

proportional to the product of the solute mass diffusivity in the liquid and the capillary length, i.e.,  

0 0K aD d     (7) 

where a  is a constant of proportionality. The capillary length for binary alloys at the equilibrium 

liquidus concentration 
0C  is defined as 

 
0

0 1
d

m C k





   (8) 

The present data are used in the following to determine if a unique value for the constant a  can 

be found that links 
0K  to alloy properties in accordance with Eq. (7). 

The various alloy parameters used to evaluate the product 0D d  are listed in Table 2. For 

the simulations, they are the same as those provided in Section 2.1 and simply represent popular 

choices for Al-Cu alloys [33]. For the experiments, the properties m  and k  were determined at 

each alloy composition 
0C  by taking into account the varying slopes of the liquidus and solidus 

lines in the relevant equilibrium phase diagrams [34]. For the Al-Cu experiments, the value for 

D   reflects the results of recent experiments [35]. For the Mg-Zn experiments, D   was 

estimated using data from Wang et al. [36]: theoretical predictions of the inter-diffusion coefficient 

in liquid Mg-Zn alloys at the melting point of pure Mg, which are relatively independent of solute 

content, were extrapolated to the approximate average temperature T  in the experiments (also 

listed in Table 2) using the Arrhenius exponent for self-diffusion of pure Mg. Since inter-diffusion 

coefficients for Mg-Sn could not be identified in the literature, the same data and procedure as for 

Mg-Zn was utilized. The Gibbs-Thomson coefficient   for the Al-Cu alloys was taken from 

Ref. [33]. For the Mg alloys,    was estimated as the value for pure Mg using the data and 

equations listed in Table 3. According to the data in Ref. [38], the surface tension for Mg-Zn alloys 

on the Mg-rich side is only weakly dependent on the solute content, justifying the use of pure Mg 

data. The slight temperature dependence of the    values for Mg in Table 2 stems from the 

temperature dependent properties in Table 3. 
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Figure 8 shows a plot of the present 
0K  values from Table 1 against the product 

0D d . It 

can be seen that Eq. (7) predicts the rate constant well, with 0.53 0.084a    obtained from a 

least-square fit. The deviations from Eq. (7) can easily be explained by uncertainties in the 

experiments and the alloy properties. Since the uncertainties in the properties are largest for the 

Mg alloys, another fit was performed using the Al alloy data only. This fit (not shown here for 

conciseness) gave 0.46 0.021a   , which is well within the uncertainty of the value from the fit 

of all datasets.      

 

6. Isothermal Coarsening Limit 

The general interfacial area evolution equation should also be valid for the limiting case of 

isothermal coarsening at a constant solid volume fraction. Comparing Eq. (5) to the classical 

coarsening law given by Eq. (3) yields for the coarsening rate constant 

3

0 (1 ) r

sK K g      (9) 

Hence, 
0K  can be interpreted as a coarsening rate constant in the limit of vanishing solid fraction. 

Eq. (9) then provides a relation for the dependence of the coarsening rate constant on the solid 

fraction. 

Figure 9 shows a comparison of Eq. (9) with experimental data for the coarsening rate constant 

as a function of the solid volume fraction as collected by Voorhees [9]. The data are from 

isothermal coarsening experiments on dispersed solid-liquid mixtures of Sn-Pb [23], Pb-Sn [23], 

Fe-Cu [24,25], and Co-Cu [25] alloys. Excellent agreement between the measurements and the 

present prediction can be observed for 0.25r  . It can be seen that even with 0.4r  , Eq. (9) 

fits the experimental coarsening date reasonably well. The exact morphology and arrangement of 

the solid particles in the isothermal coarsening experiments is not known, but it can be expected 

to be rather random and not aligned. Therefore, it is not surprising that the exponent 0.25r   

from the synchrotron X-ray tomography experiments, involving randomly arranged equiaxed 

dendrites, fits the isothermal coarsening data better. Recall that the exponent from the present 

phase-field simulations, 0.4r   , was obtained for highly aligned and symmetric columnar 

dendrites. In summary, the present general interfacial area evolution equation is not only valid in 

the limit of isothermal coarsening, but it also provides the correct solid fraction dependency of the 

coarsening rate constant. It is interesting to note that, even though the exponent r  was obtained, 
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in part, from experiments or simulations where curvature-driven coarsening is of minor importance, 

it is the same as in pure (isothermal) coarsening. 

 

7. Conclusions 

Phase-field simulations have been performed of columnar solidification of a binary alloy in 

order to study the evolution of the interface area of an assembly of dendrites. Three stages in the 

evolution of the interface area can be distinguished. During stage I, the dendrites grow in a melt 

that is still undercooled and the interface area and the solid volume fraction increase sharply with 

time. Towards the end of stage I, the interfacial area density may be related to the secondary 

dendrite arm spacing through 21.6VS  . During stage II, the inverse specific interfacial area 

evolves with time as 
1 1 3

sS t
, regardless of cooling rate. At the end of stage II, the interfacial 

area density reaches a maximum. During stage III, the interfacial area density decreases due to 

coalescence of interfaces.   

A general evolution equation for the specific interfacial area, Eq. (5), or the interfacial area 

density, Eq. (6), during dendritic alloy solidification has been developed and validated using data 

from both the present phase-field simulations and synchrotron X-ray tomography and isothermal 

coarsening experiments available in the literature. This equation contains both the solid volume 

fraction and time as independent variables. It is shown to be valid for arbitrary and variable cooling 

rates, including isothermal coarsening, and a wide range of (binary) alloys.  

The present evolution equation contains three fitting parameters: 1

0sS   , 0K  , and r  . The 

initial inverse specific interface area 1

0sS   represents an initial length scale of the microstructure. 

Although this parameter is generally not defined at the beginning of solidification, the simulations 

show that it can be taken equal to the primary dendrite tip radius. Alternatively, 1

0sS   can be used 

to establish a unique reference time at which 1 0sS   . The rate constant is given in terms of alloy 

properties by 0 00.5K D d , as verified by both simulation and experimental data covering a 

wide range of cooling rates and alloy systems. The experimental data for both solidification and 

isothermal coarsening suggest an exponent r  equal to 0.25. However, for the highly regular and 

symmetric dendrite arrangement assumed in the phase-field simulations, 0.4r   provides a better 

fit.  

Future research should be aimed at investigating in more detail the dependence of the 
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interaction and coalescence exponent r  on the arrangement and spacing of the dendrites. For 

example, for columnar solidification the exponent can be expected to depend on the spacing of the 

primary dendrite trunks, which in turn is a function of the cooling rate and the temperature gradient 

[31]. For equiaxed solidification, the number density of grains depends on the cooling rate. For a 

high grain density the growth can be globular rather than dendritic [31], which can be expected to 

result in a high r  . The present evolution equation should also be examined for higher solid 

fractions, exceeding 0.85. Often, additional phases (e.g., eutectic) form at such high solid fractions, 

and it is unclear how the present interfacial area evolution equation would perform in those cases. 

Extension of the equation to multi-component alloys and to account for melt convection would 

also be of great interest. 
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Table 1: Summary of the conditions for the phase-field simulations and the synchrotron X-ray 

tomography solidification experiments, together with the rate constants 
0K  resulting from the fit 

of the data to the general interfacial area evolution equation, Eq. (5). Experiments D1 to D7 are 

characterized by an initial constant cooling rate up to some solid fraction, followed by isothermal 

holding. The fits use 0.4r   for the simulations and 0.25r   for the experiments. 

 

  Ref. Alloy �̇� (K/min) 𝐾0 (μm3/s) 

simulations  present work Al-6wt. Cu -360, -180, -36, 0 23.5 

exp. A   [19] Al-10wt. Cu -3 9.59 

exp. B   [20] Al-24wt. Cu -2 3.05 

exp. C1   [21] Mg-15wt. Sn -3 26.3 

exp. C2   [21] Mg-15wt. Sn -12 24.5 

exp. D1   [22] Mg-25wt. Zn -25…0 2.33 

exp. D2   [22] Mg-25wt. Zn -25…0 1.91 

exp. D3   [22] Mg-25wt. Zn -3…0 2.79 

exp. D4   [22] Mg-38wt. Zn -25…0 0.79 

exp. D5   [22] Mg-38wt. Zn -25…0 0.62 

exp. D6   [22] Mg-38wt. Zn -3…0 0.64 

exp. D7   [22] Mg-38wt. Zn -3…0 0.57 
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Table 2: Estimated properties for the various alloys. 

 

 𝐶0 (wt. %) 𝑚 (K/wt. %) 𝑘 𝑇 (K) 𝐷ℓ (μm2/s) 𝛤 (Kμm) 

Simulation (Al-Cu) 6 -2.6 0.14 - 3000 0.24 

exp. A (Al-Cu) 10 -3.3 0.13 - 2400 0.24 

exp. B (Al-Cu) 24 -4.3 0.16 - 2400 0.24 

exp. C1-2 (Mg-Sn) 15 -2.0 0.3 853 6171 0.141 

exp. D1-3 (Mg-Zn) 25 -6.7 0.12 763 4146 0.147 

exp. D4-7 (Mg-Zn) 38 -9.3 0.13 683 2665 0.151 
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Table 3: Thermodynamic and surface properties of pure Mg. 

 

Parameter Symbol Value / Relation Units Ref. 

Melting temperature 𝑇𝑚 922 K  [34] 

Molar mass 𝑀 24.305 g/mol  [34] 

Latent heat at 𝑇𝑚 𝐿𝑚 8790 J/mol  [34] 

Liquid density 𝜌 1590 − 0.26 (𝑇 − 𝑇𝑚) kg/m3  [34] 

Interface energy liquid/vapor 𝛾𝐿𝑉 0.556 − 35×10−5(𝑇 − 𝑇𝑚) J/m2  [34] 

Interface energy solid/liquid 𝛾𝑆𝐿 0.1525 𝛾𝐿𝑉 J/m2  [37] 

Gibbs-Thomson coefficient 𝛤 𝛾𝑆𝐿𝑇𝑚/(𝐿𝑚𝜌/𝑀) K m  [31] 
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Fig. 1. Computational model: (a) assumed arrangement of the dendrites normal to the temperature 

gradient and triangular cross section of the calculation domain; (b) example of the adaptive mesh 

refinement used near the solid-liquid interface. 
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Fig. 2. Evolution of the dendrite geometry for the base case simulation: full view of the growing 

dendrite at t = 0.5 s (a) and 1 s (b); cutaway view of half of the dendrite at t = 2.5 s (c) and 7 s (d) 

[2]. 

 

  

(a) (b) (c) (d) 
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Fig. 3. Sample volumes at different positions along the growth direction (a), and measured 

evolution of the interface area (b) and solid volume (c) in the sample volumes for the base case 

simulation [2]. 
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Fig. 4. Base case simulation results: Variation of the interfacial area density with time (a) and solid 

fraction (d), inverse specific interface area with time (b) and solid fraction (e), and solid volume 

fraction with time (c) and dimensionless time or temperature (f). 
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Fig. 5. Computed variations of the interfacial area density, inverse specific interface area, and solid 

fraction for a step change in the cooling rate at 0.3sg   (open circle) to three different values. 

The black dot with an arrow in (d) marks the transition between stages II and III. 
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Fig. 6. Fit of the general relation (dashed lines) for the evolution of the inverse specific interface 

area (a) and the interfacial area density (b) to the phase-field simulation data of Fig. 5 for various 

cooling rates. 
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Fig. 7. Fits of the general interfacial area evolution equation (lines) to the synchrotron X-ray 

tomography experimental data (open circles) referenced in Table 1: (a) and (b) are for experiments 

A, B, C1 and C2; (c) and (d) are for experiments D1 to D7; (a) and (c) show the inverse specific 

interface area versus shifted time; (b) and (d) show the interfacial area density versus solid volume 

fraction. The exponent r   was found to be equal to 0.25 and the values of 0K   for each 

experiment are listed in Table 1.     
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Fig. 8. Variation of the rate constant 0K   with alloy properties 0D d  , using 0.4r    for the 

simulations and 0.25r   for the experiments. 
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Fig. 9. Comparison of measured and predicted variation of the normalized coarsening rate constant 

K  with solid volume fraction. The predictions are from Eq. (9) for 0.25r   (solid line) and 

0.4r   (dashed line). The data points are from isothermal coarsening experiments on dispersed 

solid-liquid mixtures of Sn-Pb [23], Pb-Sn [23], Fe-Cu [24,25], and Co-Cu [25] alloys. 
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