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Electro-vortex flow simulation using coupled meshes

Norbert Weber, Pascal Beckstein, Vladimir Galindo, Marco Starace, Tom
Weier

Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany

Abstract

A numerical model for simulating electro-vortical flows in OpenFOAM is devel-

oped. Electric potential and current are solved in coupled solid-liquid conductors

by a parent-child mesh technique. The magnetic field is computed using a com-

bination of Biot-Savart’s law and induction equation. Further, a PCG solver

with special regularisation for the electric potential is derived and implemented.

Finally, a performance analysis is presented and the solver is validated against

several test cases.

Keywords: electro-vortex flow, OpenFOAM, coupled parent child mesh

1. Introduction1

Electro-vortex flow is highly relevant in many industrial processes. Possible2

applications span from electromagnetic stirring [1] for grain size reduction in3

solidification [2, 3] over electrode welding [4], electroslag welding, electroslag4

(re-)melting [5, 6], vacuum arc melting [7] to electrolytic reduction (of e.g. alu-5

minium [8]). Further, many technical devices, as liquid fuses [9], electric jet6

engines, arc furnaces [10] and liquid metal batteries [11, 12, 13] involve or rely7

on electro-vortex flows. For an overview about such flows, see [14, 15, 16].8

Electro-vortex flow is not an instability. It develops at (or near) a changing9

cross-section of a (liquid) conductor. Radial currents produce, together with10

their own magnetic field, a Lorentz force, which is non-conservative, i.e. its curl11

is not equal to zero. This force cannot be compensated totally by a pressure12
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gradient and therefore drives a flow. For an illustrative example, see Shercliff13

[17].14

Numerical simulation of electro-vortex flow is easy when modelling only the15

fluid, or a non-conducting obstacle inside a fluid. However, in most realistic16

cases, electric current passes from solid to liquid conductors and vice versa.17

The electric potential in these regions must therefore be solved in a coupled18

way. The classical, segregated approach means solving an equation in each19

region, and coupling the potential only at the interfaces by suitable boundary20

conditions [11]. While that is easy to implement, convergence is rather poor.21

An implicit coupling of the different regions by block matrices is a sophisticated22

alternative for increasing convergence [18]. However, it is memory-intensive and23

by no means easy to implement.24

In this article we will present an alternative effective option for region cou-25

pling in OpenFOAM. We solve global variables (electric potential, current den-26

sity) on a global mesh with a variable electric conductivity according to the27

underlying material. We then map the current density to the fluid regions and28

compute the electromagnetic induced flow there. This parent-child mesh tech-29

nique was already used for the similar problem of thermal conduction [19, 20]30

and just recently for the solution of eddy-current problems with the finite volume31

method [21].32

2. Mathematical and numerical model33

2.1. Overview34

The presented multi-region approach is based on a single phase incompress-

ible magnetohydrodynamic (MHD) model [22, 11]. The flow in the fluid is

described by the Navier-Stokes equation (NSE)

∂u

∂t
+ (u · ∇)u = −∇p+ ν∆u +

J ×B

ρ
, (1)

with u denoting the velocity, t the time, p the modified pressure, ν the kinematic

viscosity and ρ the density. We split the electric potential φ, the current density
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J and the magnetic field B into a constant (subscript 0) and induced part (lower

case) as

φ = φ0 + ϕ (2)

J = J0 + j (3)

B = B0 + b. (4)

In order to determine the distribution of the constant part of the electric po-

tential φ0 we solve a Laplace equation for the electric potential

∇ · σ∇φ0 = 0 (5)

on the global mesh. The above equation is obtained starting from the Kirchhoff

law of charge conservation (∇ · J0 = 0) and J0 = −σ∇φ0. Note that the

conductivity σ is a field and not a constant, because the equation is solved on

the full geometry. The global current density is then calculated as

J0 = −σ∇φ0 (6)

and mapped to the fluid region. Afterwards, the constant magnetic field is35

determined as described in section 2.1.1 only in the fluid.36

Often it is sufficient to calculate only the constant current and magnetic field.

Nevertheless, our solver also allows to compute their induced counterparts, e.g.

for simulating the Tayler instability [23, 24, 25]. The scheme is similar to that

described above: in a first step, the induced electric potential ϕ is determined

by solving a Poisson equation

∇ · σ∇ϕ = ∇ · σ(u×B) (7)

after mapping the source term u×B to the global mesh. The induced current

can be computed taking into account Ohm’s law

j = σ(−∇ϕ+ u×B). (8)

After mapping j to the fluid mesh we determine the induced magnetic field as37

described in section 2.1.1.38
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create global mesh create fluid mesh

set boundary condition
for static potential φ0

solve Laplace equation for φ0

compute static current density J0

map J0 to fluid mesh

compute static magnetic field B0

determine time step ∆t

solve Navier-Stokes equation for u and p

map u × B to global mesh

solve Poisson equation
for electric potential ϕ

compute induced current density j

map j to fluid mesh

compute induced magnetic field b

compute Lorentz force fL

t < tE

end

no

yes

Figure 1: Flowchart of the simulation model.

Our model is not capable of describing AC currents, because we use the39

quasi-static approximations by neglecting the temporal derivation of the vector40

potential (da/dt = 0) and magnetic field (db/dt = 0) [26]. For a detailed41

flowchart of the model, please refer to figure 1.42

2.1.1. Computation of the magnetic field43

For the computation of both, the constant part of the magnetic field B0 and

its induced counterpart b we use the inversion of Ampères law, the Biot-Savart
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integral

B(r) =
µ0

4π

∫
J(r′)× (r − r′)

|r − r′|3 dV ′ (9)

to determine both from the current density J . This integro-differential approach44

was proposed by Meir and Schmidt [27, 28, 29, 30, 31, 32] and later used for45

describing dynamos [33, 34, 35] and the Tayler instability [22].46

In order to obtain the magnetic field in one single cell (at the position r),47

the electric current densities of all other cells (at the position r′) have to be48

integrated. The number of operations is therefore equal to the number of cells49

squared. This way of computation is extremely costly. We will explain here50

several ways for a speed up of the procedure. Solving Biot-Savart’s integral on51

a coarser grid, recalculating it every nth time step, and an appropriate paral-52

lelisation [22] are the most simple ways.53

The parallelisation is implemented in OpenFOAM using MPI. Basically, each54

processor contains only the current density of its local cells. With this, it com-55

putes the magnetic field for the full geometry (see figure 2a). Finally, the field56

B of each cell has to be summed up over all processors. This might be done57

using the MPI function ALLREDUCE, resulting in a correct and global B on58

all processors. However, this is not necessary, because a single processor needs59

only its local B for further computation. Therefore, each processor receives only60

its local magnetic field from all other processors and adds up all contributions61

given. The communication process is illustrated in figure 2b.

B B BJ J J

processor 1 prozessor 2 prozessor 3

(a)

processor 1 processor 2 processor 3

(b)

Figure 2: Each processor computes a full magnetic field from its local current J (a), receives

afterwards only its local B from all other processors and adds it up (b).

62

Increasing the speed-up considerably is possible by computing Biot-Savart’s
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integral only on the boundaries and solving the induction equations [36, 37]

0 = ∆B0 (10)

0 =
1

σµ0
∆b +∇× (u×B) (11)

for the constant and induced magnetic field in the quasi-static limit [26].63

An even faster alternative is shifting the problem from the magnetic field B

to the vector potential A using the relation B = ∇×A. Similar to Biot-Savart’s

law for B, the vector potential can be determined by Green’s identity [38]:

A(r) =
µ0

4π

∫
J(r′)

|r − r′|dV
′. (12)

Please note that this formula is much cheaper to compute than Biot-Savart’s64

law (equation 9) [39, 40].65

The transport equations for the vector potential are derived from Ampère’s

law, B = ∇ × A, Ohm’s law [41] and using the Coulomb gauge condition

∇ ·A = 0 as

0 =
1

σµ0
∆A0 −∇φ0 (13)

0 =
1

σµ0
∆a + u× (B0 +∇× a)−∇ϕ. (14)

Calculating the magnetic field by Biot-Savart’s integral (equation 9) gives66

the most accurate result but takes very long. Solving a transport equation67

for A or B or computing B = ∇ × A always induces a certain numerical68

error when calculating the gradients. However, combining Green’s identity with69

the transport equation for the vector potential is very fast. We will therefore70

compute the large and static magnetic field B0 by Biot-Savarts law and the71

weak induced field b by Green’s identity and equation (14).72

3. Discretisation73

Special attention must be paid to the discretisation of the Laplace term74

∇·(σ∇φ) of equation 5 and 7 because of the sharp jump in conductivity between75
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different materials. A linear interpolation of σ would lead to a wrong potential76

near the interface.77

For a consistent application of the Gauss theorem to discretise the equa-

tions, the electric conductivity is interpolated harmonically. Knowing that the

potential φf and the normal current (j · n)f must be continous from a cell P

to its neighbour N , we find the conductivity at the face f to be

σf =

(
(δP /δ)

σP
+

(δN/δ)

σN

)−1
(15)

with δi denoting the distance cell centre - face and δ the distance between78

both cell centres. In the quasi-static limit, this exactly matches the embedded79

discretisation scheme which was derived in [21] to get a proper discretisation of80

the Laplacian.81

Secondly, care must be taken when computing the gradient of the potential

to determine the current density as J = −σ∇φ. In order to be able to use

the Gauss theorem for discretisation, the electric potential on the faces must

be determined. Using the same assumptions as for the harmonic interpolation

described above, we identify the electric potential at the face as

φf = wφP + (1− w)φN (16)

with the interpolation weight

w =
δNσP

δPσN + δNσP
. (17)

As before, this interpolation scheme corresponds to the embedded discretisa-82

tion of the gradient from [21] in case of the quasi-static assumption. All other83

discretisation schemes do not need special attention.84

4. Equation solvers85

The solution procedure of our model is illustrated in figure 1. As the Navier-86

Stokes equation is discretised and solved by means of the PISO-algorithm [42],87

three different Poisson equations need to be addressed within each time step.88
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This comprises the Laplace equation for the static potential φ0, one Poisson89

equation for the potential ϕ and another Poisson equation for the fluid pressure90

p. Especially the latter two are most commonly solved for Neumann boundary91

conditions. To improve the overall robustness of the solution process in connec-92

tion with the employed parent-child mesh approach, we have implemented an93

alternative regularisation technique for the iterative equation solvers in Open-94

FOAM, which is briefly explained in the following.95

The discretisation of a Poisson equation leads to a linear equation system

Mψ = r, (18)

where M ∈ Rn×n is a symmetric positive semi-definite matrix, ψ ∈ Rn is the96

discrete solution vector for either ϕ or p, and the right-hand side r ∈ Rn mainly97

represents the inhomogeneous part. Each row of the system (18) is related to one98

of n cells. In case of a Neumann problem, the system matrix will be singular and99

the solution is only defined up to an additive constant vector. More specifically,100

the one-vector 1 = (1, 1, . . . , 1, 1)T lies in the null space of the linear map Mψ.101

In other words, v1 = 1/
√
n is a normalized eigenvector corresponding to the102

eigenvalue λ1 = 0 in accordance with the identity (M− λ1I)v1 = 0.103

In OpenFOAM such a singular matrix M is regularised by means of adding

the equation

cRψP = cRψR (19)

to the row which belongs to cell P , where cR is initially an arbitrary coefficient,104

ψP is the unknown solution and ψR is a reference solution for that cell. In105

order to slightly increase diagonal dominance of M, cR is usually set to the106

diagonal coefficient of the matrix before adding the equation: cR = mP . By107

specifying the reference value ψR, the solution gets locally constrained in a108

weak sense. This approach is however extremely sensitive to the smallest errors109

in the corresponding compatibility condition of the Neumann problem. Such110

numerical errors may arise from the data exchange between child and parent111

mesh due to interpolation.112
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A much more robust regularisation can be achieved by inverting the idea113

of the so called Hotelling deflation [43], which is actually a simple technique to114

solve eigenproblems by selectively shifting single known eigenvalues of a matrix115

to zero. Conversely, we may use the same procedure to shift them also from116

zero to an arbitrary value, thus inflating the matrix.117

According to the spectral theorem for symmetric matrices [44], it is possible

to decompose M based on its eigenvalues λk and orthonormal eigenvectors vk:

M =

n∑
k=1

λkvkv
T
k = λ1v1v

T
1 +

n∑
k=2

λkvkv
T
k . (20)

Using this decomposition we may then create a non-singular matrix M̃ using

only v1 from above:

M̃ = M + λ̃1v1v
T
1 = M + λ̃1

1

n
11T , (21)

where λ̃1 is any non-zero eigenvalue replacing λ1. It is important to note that M̃

does not preserve the original sparsity pattern of M, which is usually undesired.

Hence, a direct manipulation would not only mean a waste of memory, but also

a contraction in terms of the face addressing of OpenFOAM. However, we may

include the modification indirectly when computing the matrix-vector product:

M̃ψ = Mψ+ λ̃1
1

n
11Tψ = Mψ+ λ̃1

1

n

n∑
k=1

ψk1, (22)

which is essentially the kernel of any iterative equation solver [45]. Furthermore118

parallelisation is straight-forward as the exchange of the rightmost sum does119

only require little communication.120

Taking the properties of M into consideration, it can be shown that all of121

its eigenvalues are smaller or equal to twice the maximum of its diagonal coeffi-122

cients. Therefore we use the diagonal mean as modified eigenvalue λ̃1 = 〈mP 〉,123

thus preserving the spectral radius of M. Tests with the preconditioned CG-124

method [45] showed that the smoothness of the numerical solution is preserved125

even if errors in the compatibility condition exist. Compared to the original126

regularisation technique in OpenFOAM we could not find any drawbacks.127
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5. Results128

5.1. Test case 1: speed-up of Biot-Savart’s law129

In this section we present a performance analysis of the magnetic field com-130

putation in a cylindrical geometry with an imposed current density J (the other131

parts of the solver are switched off). The speedup and scaling analysis is car-132

ried out on a cluster with Intel 8-Core Xeon 3,3 GHz CPUs cross linked with133

40 Gbit/s Infiniband. The solvers are compiled with OpenFOAM 2.2.0 and MPI134

1.6.3.135

In a first step we solve only Biot-Savart’s law (equation 9) for all cells and136

boundary faces – on a changing number of processors. The test case contains137

352 000 cells. Figure 3a shows a good scaling up to 64 processors. The com-
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Figure 3: Computation time of Biot-Savart’s law on 1 to 64 processors (a) and communication

time divided by total time (b).

138

munication time is 28 % when using all 64 processors. In that case a single139

processor contains only 5500 cells.140

In a second test case, we use the same configuration again and compare the141

full Biot-Savart integral with the method of solving the induction equation 10.142

For the latter, we compute Biot-Savart’s law only on the patches in order to143

obtain the correct boundary conditions. Figure 4 shows the relative computation144

times (total cpu time/(cpu time for simulation in one processor)*100%) for one145

to 16 processors. The method of using the Biot-Savart law on the boundary146

regions only together with the solution of the corresponding induction equation147
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Figure 4: Relative calculation time for the volume based Biot-Savart and the surface based

Biot-Savart combined with solving the induction equation.

in the inner region scales very well, too; it is approximately 13.5 times faster than148

the volume Biot-Savart method. Note that this factor will probably increase for149

larger problems with more cells.150

In a third case we use a mesh with 63 200 cells and compare the magnetic151

field with the vector potential approach. In both cases we firstly compute the152

boundary conditions and solve then a transport equation for A or B on a single153

processor 50 times. The fastest result we obtain by using Biot-Savart for the154

vector potential (equation 12 and 13). Computing the magnetic field on the155

boundary and solving the induction equation (equation 9 and 10) is five times156

slower. The volume-based Biot-Savart is 84 times slower. Of course this holds157

only for the Biot-Savart calculation; the differences for the whole solver, where158

the flow simulation is included, will be smaller.159

5.2. Test case 2: current distribution in 2D160

In a second test case the discretisation schemes for electric conductivity and161

potential are validated by comparison with the commercial software Opera. We162

simulate a simple two-dimensional geometry (1 × 2 × 0.1 m), consisting of two163

conductors of very different conductivity with an inclined surface (inclination164

45◦) – see figure 5a. A vertical current of 1 A is applied. Figure 5b shows the165

equipotential lines, figure 5c the current lines and 5d the disturbed current. As166
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expected, the current lines concentrate in the area of high conductivity. Figure 6

(a) (b) (c) (d)

Figure 5: Conductivity (a), electric potential (b), complete current (c) and disturbed current

(d). The applied electrical current of 1 A if flowing upwards.

167

shows the electric potential and horizontal current along a vertical centred line.168

The result of OpenFOAM and Opera match very well. Obviously, Opera uses169

Dirichlet boundary conditions for the electric potential (i.e. an equal-potential170

surface) – so the same was done in OpenFOAM.
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Figure 6: Electric potential (a) and horizontal current (b) along a centered vertical line for

an applied current of 1 A.

171

5.3. Testcase 3: electro-vortex flow in a cylindrical geometry172

Several model experiments [46, 47, 48] and similar analytical solutions [49,173

50] of electro-vortex flow are known from literature with most of them unfortu-174

nately lacking detailed information. Here we will study the well reviewed exam-175
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ple of a thin electrode touching a cylindrical bath of liquid metal [51, 52, 53].176

The experiment was conducted at the Institute of Physics in Riga and pub-177

lished by Zhilin et al. [54]. Figure 7 illustrates the setup: a horizontal current178

passes through a cylindrical bath of liquid mercury (colored in blue). One cop-179

per electrode covers the whole surface, the other is reduced to a small rod. The180

whole experiment is embedded into a steel pipe; two mercury filled “buffer zones181

provide for a smooth current transition” between external wires and the exper-182

iment. The axial velocity along the cylinder axis is measured with a spacing of183

1 mm in x-direction at y = 0.184

Unfortunately, the article does not provide any details about the external185

current leads. They are therefore assumed to be infinitely long. The mea-186

surements colored in red (fig. 7) were not quoted by Zhilin et al. [54], but187

estimated from the sketch. Similarly, the material properties were not given by188

[54]; they may vary considerably depending on the exact material/alloy. We189

assume the copper conductivity to be σCu = 58.5 · 106 S/m, the conductivity of190

mercury as σHg = 1.04 · 106 S/m and its density as ρHg = 13 534 kg/m3. The191

tube is made of “stainless steel”; we assume therefore an electric conductivity192

of σSt = 1.4 · 106 S/m which is typical for X5CrNi18-10. The tube works as po-193

tential divider – only a part of the current passes through the mercury/copper.194

195

Figure 8a shows the general flow structure. Assuming infinitely long lateral196

current leads and neglecting external magnetic fields, we expect exactly such197

D
6
0

50 50 40 30 90 50

D
6
6

Hg
Hg HgCuCu D

1 2

x

y

Figure 7: Sketch of the experiment of Zhilin et al. [54]. The experiment is modelled with

thick lateral current collectors which are 3 m long. The red dimensions are estimated. The

working section (blue) with the symmetry axis x is filled with liquid mercury.
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Figure 8: Electro-vortex flow at I = 200 A (a) and measured axial velocity at the cylinder

axis as given by Zhilin et al. [54] (b).

a symmetric flow. Further we expect the velocity along the cylinder axis to198

be approximately uniform in the middle of the test section (see black curve in199

fig. 8b) as long as the current is not extremely low. The simulated curve for200

I = 200 A fits very well to the measured velocity values (black dots). A certain201

deviation can be explained by the many unknown experimental parameters;202

especially the length of the rod has a certain influence on the magnitude of the203

flow.204

The experimental result for I = 100 A shows a clear velocity peak shortly205

behind the rod (fig. 8b, red dots). This observation can have several reasons:206

the jet is oscillating, the jet expands along its way or it is deflected to the side.207

As the velocity peak is pronounced especially at low currents, a deflection due to208

exernal magnetic fields is the most probable explanation. Here again, relevant209

information about magnetic background fields and positioning of the feeding210

cables is missing.211

6. Summary and outlook212

We have developed a solver for electro-vortical flow, using a mesh mapping213

method. Arbitrary solid and fluid conductors are fully coupled. Electric poten-214

tial and current density are solved on a global mesh, and copied to the fluid215

mesh. This parent-child mesh technique is much faster than the classical segre-216
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gated approach. A PCG solver with an improved regularisation technique for217

the Poisson equation of the electric potential helps avoiding numerical errors.218

The magnetic field is computed fully parallel using Biot-Savart’s law. This was219

shown to be efficient at least up to 64 processors. Calculating Biot-Savart’s law220

only on the boundaries and solving a corresponding induction equation in the221

fluid region speeds up the magnetic field computation drastically. The solver222

was validated using the commercial software Opera and by comparison with223

experimental data.224

The solver presented can easily cope with up to 1 million cells. For larger225

simulations, a multigrid method or a coarser grid for the magnetic field com-226

putation might be necessary. Further, the solver shall be compared to recent227

experimental data. For a meaningful comparision to experimental data, all228

dimensions of the setup and all conductivities of the conductors as well the229

placement of the feeding lines and possible magnetic background fields must be230

known. Only in that case a computation of the experimentally investigated case231

can successfully be performed. We aim to use the solver to study electro-vortex232

flow in liquid metal batteries [55, 13] and aluminium reduction cells [56] as well233

as for related experiments [57, 58].234
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