
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

Local Lorentz force and ultrasound Doppler velocimetry in a vertical 
convection liquid metal flow

Zürner, T.; Vogt, T.; Resagk, C.; Eckert, S.; Schumacher, J.;

Originally published:

November 2017

Experiments in Fluids 59(2018)1, 3

DOI: https://doi.org/10.1007/s00348-017-2457-0

Perma-Link to Publication Repository of HZDR:

https://www.hzdr.de/publications/Publ-25952

Release of the secondary publication 
on the basis of the German Copyright Law § 38 Section 4.

https://www.hzdr.de
https://www.hzdr.de
https://doi.org/10.1007/s00348-017-2457-0
https://www.hzdr.de/publications/Publ-25952


Experiments in Fluids manuscript No.
(will be inserted by the editor)

Combined local Lorentz force and ultrasound Doppler velocimetry in a
vertical convection liquid metal flow

Till Zürner · Tobias Vogt · Christian Resagk · Sven Eckert · Jörg Schumacher

Dated: August 14, 2017

Abstract We report velocity measurements in a vertical tur-
bulent convection flow cell that is filled with the eutectic
liquid metal alloy gallium-indium-tin by a combined use
of local Lorentz force velocimetry (LLFV) and ultrasound
Doppler velocimetry (UDV). We demonstrate the applica-
bility of LLFV for a thermal convection flow and reproduce
a linear dependence of the measured force in the range of
micronewtons on the local flow velocity magnitude. Further-
more, the presented experiment is used to explore scaling
laws of the global turbulent transport of heat and momen-
tum in this low-Prandtl-number convection flow. Our results
are found to be consistent with theoretical predictions and
recent direct numerical simulations.

1 Introduction

Despite numerous technological applications, such as in ma-
terial processing (Davidson, 2001; Asai, 2012; Shevchenko
et al, 2013) or in liquid metal batteries (Kelley and Sadoway,
2014), convective flow phenomena in liquid metals are still
much less well studied than in air or water (Chillà and Schu-
macher, 2012). The velocity measurement cannot rely on
standard optical methods such as particle image velocime-
try (Adrian and Westerweel, 2011) or particle tracking and
requires alternative methods. Ultrasound Doppler velocime-
try (Takeda, 1986; Brito et al, 2001; Eckert and Gerbeth,
2002) and X-ray radiography (Boden et al, 2008) are two
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non-invasive methods for opaque liquid metal fluids in lab-
oratory experiments.

However, the high electrical conductivity of liquid met-
als with values larger than 106 S/m opens the possibility of
inductive measurement methods. One such technique is Lo-
rentz force velocimetry (LFV; Thess et al, 2007, 2006). Here
the flow is subjected to an outer magnetic field of a perma-
nent magnet, which generates motion-induced eddy currents
in the liquid metal (see Fig. 1). These currents give rise to
Lorentz forces in the fluid by interacting with the applied
outer magnetic field. The forces are directed opposite to the
flow and act as a brake to fluid motion. At the same time,
due to Newton’s Third Law, a force in the range of micro-
to millinewton acts on the permanent magnet which can be
measured by precision methods (Heinicke et al, 2012). It has
the same magnitude as the sum of all Lorentz forces in the
liquid, but is directed in the opposite direction – the magnet
is in effect dragged along with the flow. The LFV technique
does not require any contact with the liquid, which makes
it especially interesting for chemically aggressive or hotliq-
uids such as steel melts.

The Lorentz forceFL in a fluid volumeV is given by

FL =

∫

V
j(r)×B(r)dV , (1)

with B being the magnetic induction (or magnetic field) and
j the current density. The current density itself is connected
by Ohm’s law to the velocity fieldv and the magnetic field
B, namely byj = σ(−∇∇∇ϕ + v×B) with ϕ being a scalar
potential. Dimensional analysis results in the following re-
lation

FL ∼ σUB2V , (2)

whereσ is the electrical conductivity of the liquid metal,U
is a typical flow velocity amplitude, e.g. a root mean square
or a mean velocity, andB = |B|.
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Fig. 1: Schematic of the flow measurement techniques. LFV uses the magnetic fieldB of a permanent magnet to induce eddy
currentsj in the flow, which in turn generate forcesF in the fluid and on the magnet. UDV sends an ultrasonic burst into the
fluid and measures the position of a particle ensemble at a timet by recording its echo. After a short time interval∆ t a second
measurement detects a shift in position by∆x along the axis of the UDV sensor (in this case thex-axis). The longitudinal
velocity component is thenvx = ∆x/∆ t.

This scaling (2) is valid for the quasistatic approxima-
tion of magnetohydrodynamics (Davidson, 2001), where the
retroactive effect of the induced magnetic field on the eddy
currents can be neglected. The linear dependence of the force
on the velocity fieldv has been successfully used, among
others, in liquid metal duct flows (Wang et al, 2011), for
electrolytes with weak electrical conductivity (Vasilyanand
Froehlich, 2014; Wiederhold et al, 2016) and for the flow
in a rotating tank with significant velocity changes (Sokolov
et al, 2016). In the latter two examples the LFV method has
been pushed to the limits of applicability, i.e. to a regime
where the assumption of the quasistatic approximation breaks
down or the liquid exhibits an electrical conductivity thatis
too small. To maximize the measured force signal most of
these experiments have used a magnetic field that penetrates
the whole cross-section of the duct and measured the total
volume flux. Another approach is to restrict the fluid volume
subjected to the magnetic field to a small area. The result-
ing force on the magnet is then only influenced by the local
flow in that volume. This approach is calledLocal Lorentz
Force Velocimetry (LLFV) and can be used to e.g. probe the
flow profile of liquid metal in a duct (Heinicke, 2013) or
in a continuous casting mould experiment (Hernández et al,
2016). The resolution of LLFV is clearly determined by the
size of the magnet that probes the induced Lorentz forces.
All examples that were mentioned so far have one thing
in common. There is a well-defined (mean) flow direction
and/or the velocity magnitude is sufficiently large since the
momentum transfer into the flow proceeds directly via sus-
tained shear or pressure gradients.

The motivation for the present work is twofold. Firstly,
we want to explore the applicability of LLFV to thermal

(or natural) convection. These flows exhibit in general much
smaller Reynolds numbers since they are driven by temper-
ature differences that generate high shear rates via thermal
plumes. In our case at hand velocities magnitudes will be
thus rather of the order of mm/s than cm/s or m/s. This re-
sults via (2) in much smaller force signals, which make the
measurement process as a whole much more challenging.
We will also investigate whether the induced Lorentz forces
influence the local velocity. In this respect, we want to ex-
plore a further limit of this contactless method of velocity
measurement in opaque fluids.

Secondly, we take this opportunity and measure the tur-
bulent transport laws of heat and momentum in a further liq-
uid metal flow that has not been explored experimentally
in this parameter regime. Vertical convection with opposite
side walls that are held at a temperature difference∆T has
recently received a new interest as a further testing case for
scaling theories of turbulent transport (Ng et al, 2013, 2015;
Shishkina, 2016). Liquid metals are very good heat con-
ductors which positions them into the class of low-Prandtl-
number convection flows. For both reasons, the vertical con-
vection is well suited as a benchmark experiment.

Furthermore, we will show that the large-scale flow struc-
ture (also known as large-scale circulation or LSC) in this
setting remains relatively simple with one mean flow roll
that extends across the whole convection cell. This is in
stark contrast to the well-known case of Rayleigh-Bénard
convection (RBC), where a fluid layer is heated from be-
low and cooled from above. RBC exhibits mostly transient
flow structures, which are subject to reversals and cessations
(Brown and Ahlers, 2006; Zhou et al, 2009). This unpre-
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Table 1: Properties of eutectic GaInSn at 25◦C (Plevachuk
et al, 2014).

Composition percentage Ga 67.0 wt-%
Composition percentage In 20.5 wt-%
Composition percentage Sn 12.5 wt-%
Mass density ρ = 6.3×103 kg/m3

Kinematic viscosity ν = 3.3×10−7 m2/s
Thermal diffusivity κ = 1.0×10−5 m2/s
Isobaric heat capacity cp = 365 J/(kg K)
Electrical conductivity σ = 3.2×106 S/m
Volumetric expansion coefficient α = 1.2×10−4 1/K

dictability makes RBC less practicable for benchmarking
our measurement method.

Our LLFV measurements are complemented by apply-
ing ultrasonic Doppler velocimetry (UDV). In this method
an ultrasonic burst is sent into the liquid. The burst is gen-
erated by a piezo-crystal in a transducer, which is either in
direct contact with the liquid or sends the signal through the
wall of the fluid container. The burst travels along the contin-
ued centreline of the transducer and is reflected by small par-
ticles suspended in the liquid. The returning echo is recorded
by the transducer (see Fig. 1). The elapsed time between the
emission of the burst and the return of the echo can be con-
verted into a position along the ultrasonic beam by know-
ing the speed of sound of the liquid. Originally, UDV deter-
mined the flow velocity from the Doppler shift of the echo
from the original frequency (Takeda, 1986). For reasons of a
fast data processing, this has been changed into a procedure,
where multiple successive measurements are correlated and
the shift in particle position is converted into the flow ve-
locity. The result is a one-dimensional, one-component ve-
locity profile along the beam axis of the velocity compo-
nent parallel to the beam. UDV has been successfully ap-
plied in a variety of rotating and non-rotating liquid metal
flows (Tasaka et al, 2016; Vogt et al, 2014, 2013; Eckert and
Gerbeth, 2002; Brito et al, 2001).

The outline of the manuscript is as follows. Section 2
will discuss the experimental setup and lists all important
parameter definitions. It is followed by a short discussion of
typical velocity profiles and time series as well as the LSC
flow. Section 4 summarizes our findings for the LLFV be-
fore switching to the global transport laws of heat and mo-
mentum in section 5. We summarize our results and give a
brief outlook.

2 Experimental Setup

The experiments are conducted in a closed rectangular cell
of width 150 mm, thickness 30 mm and height 148 mm (see
Fig. 2a). The narrow side walls consist of heat exchang-
ers made from copper. They are heated or cooled, respec-

tively, using water from separate thermostats. All other walls
are made of PMMA. The cell is filled with the eutectic al-
loy gallium-indium-tin (GaInSn). Table 1 summarizes some
important material parameters according to Plevachuk et al
(2014). The coordinate system is positioned at the centre
of the top surface withz in vertical upward direction and
x pointing horizontally towards the cooling plate.

The temperature difference∆T between the copper plates
is measured using two K-thermocouples at the centre of each
copper plate, their tip being in contact with the liquid.T1

is the temperature at the hot plate andT2 at the cold plate.
The entire cell is thermally insulated using Styrofoam plates
and insulation wool. Additionally a Styrofoam box is placed
around the whole experiment to prevent air circulations to
influence the force measurement. To determine the heat flux
across the cell, two additional K-thermocouples measure the
temperature of the in- and outgoing waterTin andTout of the
cooling heat exchanger. The volume fluxV̇ of the cooling
water is measured using an axial turbine flow sensor.

The LLFV measurement system consists of a cubic per-
manent magnet of side length 5 mm, which is placed on
a parallel spring. The deflection of the spring through the
force acting on the magnet is measured by a laser interfer-
ometer. The system is placed on top of the cell with the mag-
net 5 mm above the liquid and centred atx = y = 0 mm (see
Fig. 2b). The forceFx on the magnet is measured with a sam-
pling frequency of 6.3 Hz along thex-axis, which coincides
with the expected flow direction of the LSC at this point.

The UDV measurements are performed along three lines.
We use 8 MHz transducers with a piezo-element of 5 mm
diameter. The first sensor UDV1 measures the velocityvx

along thex-axis, 5.5 mm below the top surface of the liquid.
It is placed in a hole through the cooling cooper plate and
is in direct contact with the liquid metal. The second and
third sensors, UDV2 and UDV3, are placed on top of the
cell, such that the beam line is 4 mm away from both side
walls. They measurevz along thez-axis. Both sensors are
installed on the outside of the cell so that here the acous-
tic coupling to the fluid is realized through the 4mm thick
wall. All three sensors are centred in they = 0 plane. Simul-
taneous measurements of multiple sensors are done using
a DOP3010 velocimeter and measurements of single sen-
sors utilize aDOP2000 velocimeter bySignal Processing
SA. The spatial resolution along the beam line is. 0.35 mm.
The time resolution depends on the number of emissions that
are used to calculate one velocity profile and the frequency
of the emissions. The latter is called the pulse repetition fre-
quency (PRF) and is set to 500 Hz. For joint measurements
of LLFV and UDV the time resolution is 0.64 s with 300
emissions per profile. If UDV is used alone, the time resolu-
tion is 0.54 s with 250 emissions per profile.

From these measurements the following dimensionless
numbers are derived, using the thermophysical properties
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Fig. 2: Experimental setup. (a) Sketch with inner cell dimensions in mm. (b) Side view with sensors and sketch of the LSC
for T1 > T2. The ultrasonic beams are indicated as grey lines.

of GaInSn at the mean temperatureT0 = (T1 +T2)/2 (Ple-
vachuk et al, 2014). The Rayleigh numberRa is calculated
from the measured temperature difference∆T = T1−T2 and
the cell widthL = 150 mm. It is given by

Ra =
αg∆TL3

νκ
, (3)

with α, ν andκ being the volumetric expansion coefficient,
the kinematic viscosity and the thermal diffusivity of GaInSn,
respectively. The variableg stands for the acceleration due
to gravity. The second important parameter is the Prandtl
numberPr, which is given by

Pr =
ν
κ
≈ 0.033. (4)

The Nusselt numberNu is the quotient of the total heat
flux Q̇ through the cell, compared to the purely diffusive heat
flux Q̇κ . Neglecting any heat losses to the surrounding, the
total heat flux is equal to the heat received by the cooling
water of the heat exchanger:

Q̇ = c̃pρ̃V̇ (Tout−Tin) . (5)

c̃p and ρ̃ are the specific heat and mass density of water
(Çengel, 2008). The diffusive heat flux is given by

Q̇κ = κcpρA
∆T
L

, (6)

wherecp andρ are the specific heat at constant pressure and
mass density of GaInSn andA=(148×30)mm2 is the cross
section of the cell. Thus we get

Nu =
Q̇

Q̇κ
=

c̃pρ̃
κcpρ

V̇L
A

Tout−Tin

∆T
. (7)

The Reynolds numberRe is calculated from the one-dimen-
sional velocity profiles of the UDV-measurement. For every
time t a characteristic horizontal velocityUx is derived: The

absolute velocities measured by UDV1 are averaged over
the intervalx ∈ [−40,+40]mm. Similarly, a vertical charac-
teristic velocityUz is calculated from the velocities recorded
by UDV2 and UDV3 in the intervalz ∈ [−115,−35]mm.
Thus,

Ux(t) =
〈

|vx(x, t)|
〉

x∈[−40,+40]mm, (8)

Uz(t) =
〈

|vz(z, t)|
〉

z∈[−115,−35]mm. (9)

In these intervals, we expect the LSC to be generally par-
allel to the measurement axis of the respective sensor (see
also Fig. 3). A global characteristic velocityU is calculated
by using the velocities of all three sensors in their respective
intervals. However, the horizontal sensor UDV1 is counted
twice in this average, since we have two vertical sensors but
only one horizontal sensor (this emulates an additional hori-
zontal sensor along the bottom of the cell). These three char-
acteristic velocities are then used to calculate a horizontal,
vertical and global Reynolds number

Rex =
UxL

ν
, Rez =

UzL
ν

, Re =
UL
ν

, (10)

respectively.

3 Large-scale circulation and velocity statistics

In Rayleigh-Bénard convection (RBC) a flow only arises
when the Rayleigh number exceeds a critical value. Below
that point any perturbation of density stratification is sta-
bilised by dissipative forces due to kinematic viscosity and
thermal conduction in the fluid. This is not the case for ver-
tical convection. For even the smallest temperature differ-
ence between opposing side walls a convective flow devel-
ops (Batchelor, 1954). The hot fluid near the heated plate has
a lower density than the cold fluid on the other side of the
cell. This density gradient generates buoyancy forces and the
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Fig. 3: Flow profiles measured by the UDV sensors atRa =

1.6× 106. Thick black lines: Mean velocity profile over
1770 snapshots. Thin grey lines: Typical velocity snapshot.
Light grey areas: Depth-intervals for the calculation of char-
acteristic velocities and probability density functions.

fluid on the hot side rises up, while it sinks down on the op-
posite side of the cell. These up- and downwelling flows hit
the top or bottom of the cell, respectively, and are redirected
in the horizontal direction. They finally combine into one
coherent circulation, the LSC, across the whole cell, which
is the dominant flow feature of vertical convection, in par-
ticular in a closed cell of aspect ratio 1. The flow direction
is canonically prescribed without cessations and reversals
as known from RBC (Brown and Ahlers, 2006; Zhou et al,
2009).

Figure 3 shows the time averaged velocity profiles mea-
sured by the UDV probes forRa = 1.6× 106. The direc-
tions of the flow (indicated by arrows) confirm the existence
of the LSC: We see a positivevz component near the hot
wall (UDV2) and negativevz values for the cooling plate
(UDV3). The horizontal flow near the top (UDV1) flows
from the hot to the cool side of the cell and closes the circu-
lation.

It has to be mentioned that sensors UDV2 and UDV3,
which measure indirectly through the cell lid, have a sig-
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Fig. 4: (Colour online) Time averaged velocity profile ¯vz(z)
(left) of the velocity fieldvz(z, t) (right) measured by UDV2
at Ra = 6.2×106. The right contour plot gives the colour-
coded velocity over time and position. The white line in the
right plot is the trajectory (11) of a particle moving with
v̄z(z) across the cell. The top 10 mm of the velocity field are
omitted from the contour plot.

nificant dead zone close to the sensor, where the signal is
unusable due to excessive noise. This is caused by the for-
mation of multiple acoustic echoes within the lid. These
strong echoes have to decay first, before the much weaker
signals from the particles in the fluid can be detected. In our
case this makes the UDV2 and UDV3 signals unusable for
z &−15 mm. The UDV1 sensor is in direct contact with the
liquid metal and has a much smaller dead zone (. 5 mm).
This is unavoidable due to the ringing of the piezo crystal in
the sensor.

Each of the three averaged velocity profiles in Fig. 3
is plotted together with an exemplary profile from a single
snapshot. In addition to the random fluctuations present in
these snapshots, there are persistent flow structures of higher
or lower speed than the mean flow. They can be seen as
slanted lines in Fig. 4. These structures move roughly with
the mean velocity of the flow:

We consider a fluid element that moves with the time-
averaged velocity ¯vz(z) = 〈vz(z, t)〉t across the cell. In a time
step dt it covers a distance

dz = v̄z(z)dt .

If v̄z(z) is not zero in the considered interval ofz (i.e. the
fluid element moves constantly in one direction), we can
solve this equation:

dz
v̄z(z)

= dt ⇒
∫ z

z0

dz′

v̄z(z′)
=

∫ t(z)

t0
dt ′ = t(z)− t0

t(z) = t0+
∫ z

z0

dz′

v̄z(z′)
. (11)



6 Till Zürner et al.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
D

F
[

(m
m
/s

)−
1
]

UDV1 Ra

2.0 × 10+6

6.3 × 10+6

2.2 × 10+7

−10 −5 0 5 10
velocity fluctuations [mm/s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
D

F
[

(m
m
/s

)−
1
]

UDV2 Ra

1.9 × 10+6

6.2 × 10+6

2.1 × 10+7

Fig. 5: Probability density function (PDF) of velocity fluc-
tuations measured by UDV1 (top) and UDV2 (bottom). The
black lines are normal distributions with the standard devia-
tion of each PDF (see table 2) and a mean of zero.

Table 2: Statistical values of the PDFs in Fig. 5. The rela-
tive standard deviation (RSTD) is normalized by the mean
value. The excess kurtosis in the last column is defined as
the standardized fourth-order moment minus a value of 3
for the normal or Gaussian case.

Ra Mean RSTD Skewness Excess
[

106
]

[mm/s] kurtosis

UDV1 2.0 2.67 0.25 −0.094 1.713
6.3 7.75 0.15 −0.176 0.491

21.7 17.20 0.14 0.122 0.050
UDV2 1.9 4.61 0.20 −0.040 5.068

6.2 8.67 0.18 −0.078 −0.217
21.5 19.63 0.18 0.043 0.141

Herez0 andt0 = t(z0) are the starting position and time, re-
spectively. The trajectory(t(z),z) is plotted in Fig. 4 as a
white line. It matches closely the angle of the patterns in the
velocity field. That means, these flow structures are trans-
ported by the mean velocity of the flow.

In the following, we want to investigate the statistical
properties of the fluctuations around the mean velocity pro-
file. Fig. 5 shows the probability density functions (PDF)
of the velocity fluctuations. The PDFs are calculated from
1.6× 107 samples measured over 2.6 hours by the UDV1
and UDV2 sensors (here the time resolution of the UDV
measurement was decreased to 0.14 s with 50 emissions per
profile). Again, only velocities from the central depth inter-
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Fig. 6: Time series of experimental data forRa = 1.1×107.
Top: Rayleigh number. Middle: Force signalFx of the LLFV
system. Bottom:vx at x = 0 mm, measured by UDV1. At
t = 0 min the the bottom plate is heated up toRa= 1.1×107

and cooled back down toRa= 0 att = 30 min. The force and
velocity signals settle aftert ∼ 20 min.

vals were used (see Fig. 3). The fluctuations are calculated
around the time average for every position separately. Ta-
ble 2 lists the statistical properties of the PDFs. Addition-
ally, normal distributions with the standard deviation of each
PDF are plotted in Fig. 5.

For increasingRa the PDFs get closer to the shape of
a normal or Gaussian distribution. In particular the excess
kurtosis approaches zero (and thus the value of a normal
distribution) from initially large values: At lowRa the fluc-
tuations drop off faster, than for highRa. While the stan-
dard deviation (STD) increases, the relative STD (RSTD),
normed by the velocity mean, stays relatively constant. Only
for UDV1 we see a considerably larger RSTD at the lowest
Ra. This means, that the fluctuations of the flow grow in the
same manner as the average flow speed. The skewness does
not show any particular trends. The changes in its values are
more likely a sign of as still insufficient sample size in order
to determine this specific even-order moment.

In conclusion, we can confirm by UDV measurements
that the basic flow structure is one convection roll spanning
the whole cell and persisting for allRa. The velocity fluctu-
ations grow linearly with the average speed, but approach a
normal or Gaussian distribution for increasingRa.

4 Local Lorentz force velocimetry

For the comparison of UDV and LLFV measurements, ex-
periments were performed at differentRa. Fig. 6 shows an
exemplary time series for an experimental run atRa = 1.1×
107. First, both sides of the cell were set at the same temper-
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Fig. 7: Comparison of the characteristic horizontal veloc-
ity Ux (8) and forceFx (LLFV) for Ra = 4×105 to 3×107.

ature and the zero signal of the force sensor was measured.
Then, the temperature of the heating thermostate was raised
to set the desired Rayleigh number. Once a stable tempera-
ture distribution in the cell had been reached the LLFV and
UDV signals were recorded for about ten minutes. Subse-
quently, the heating temperature was lowered to the initial
state and a second zero signal was recorded. The two zero
measurements allowed us to correct any linear drifts in the
force signal. In these experiments we investigated Rayleigh
numbers in the range ofRa from 4×105 to 3×107.

Fig. 7 shows the dependence of the horizontal forceFx

of the LLFV on the characteristic horizontal velocityUx (8)
measured by the UDV1 sensor just below the cell top. For
velocities of the order of 10 mm/s we measured forces of
∼ 4 µN. A power-law fit to the data using orthogonal di-
rection regression shows, that the forceFx ∝ U1.09

x grows
linearly with Ux. This result is consistent with the expecta-
tions from all previous studies on LLFV. It shows that LLFV
is also sensitive enough even for such low velocities and
proves applicability of LLFV in convection flows.

Difficulties arise however when LLFV is used for long
term measurements of multiple hours. For such low-mag-
nitude forces, we saw drifts in the signal which are of the
same magnitude as the measured forces. For short periods of
time these drifts are generally linear and can thus be com-
pensated by zero measurements as described above. How-
ever during longer experiments, running for multiple hours,
these drifts can vary in time, which makes them impossi-
ble to properly compensate using zero measurements before
and after the experiment. Multiple reasons for these drifts
can be given. For example, parasitic electromagnetic fields
from surrounding devices, very small shifts in alignment to
the vertical axis and, particularly in an experiment drivenby
temperature differences, the change of the surrounding air
temperature can have an influence on the characteristics of

105 106 107 108
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100

101
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N

(

2.8 × 10+6
)

Ra−0.93±0.07, Ra < 107

Fig. 8: Dependence of the interaction parameterN on the
Rayleigh numberRa. A power-law, which is indicated by
the solid line, was fitted to the points withRa < 107.
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Fig. 9: Comparison of the characteristic horizontal veloci-
tiesUx (8) measured by UDV1 with and without the pres-
ence of the magnetic field of the LLFV system.

the force sensor. With so many environmental influences it
was not possible to consistently identify and disentangle any
single cause for these signal drifts. While it is possible touse
LLFV effectively with forces in the range of µN, as has been
done by e.g. Wiederhold et al (2016), it is for now limited to
shorter-term measurements.

A sufficiently strong amplitude of the Lorentz force will
influence the local fluid motion. This effect is well known
and is utilized in flow control of liquid metals (Davidson,
2001; Asai, 2012). To quantify the influence of the mag-
netic field on the flow, we calculate the interaction parameter
which is given by

N =
σB2l
ρUx

. (12)
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QuantityB is the maximal field strength in the fluid, in our
case 5 mm away from the magnet surface. This value was
measured using a Gaussmeter to beB = 63 mT. The scalel
is a characteristic length of the magnetic field in the liquid.
For this we estimated the penetration depth of LLFV to be
l = 5.7 mm (see appendix A for further details). ForN ≪ 1
the deformation of the flow field by the induced Lorentz
forces can be neglected. However, onceN reaches or sur-
passes unity, the flow may be altered. Since natural convec-
tion exhibits low velocities andN ∝ 1/Ux this potential al-
teration of the flow has to be investigated.

Figure 8 shows, thatN > 1 for Ra < 107. At the thresh-
old of N = 1 we can also see a change in the scaling of
N(Ra). This scaling can be linked directly to the flow veloc-
ity, sinceN ∝ 1/Ux. However, when comparingUx for the
cases with and without the influence of the magnetic field
from the LLFV system in Fig. 9, there is no significant de-
viation in this range ofRa.

The reason that there is no visible change in scaling for
theFx(Ux) relation in Fig. 7 is, thatUx is measured in-situ.
That means, the LLFV measures the resulting velocity that
is actually present, no matter whether it is altered by the
probing magnetic field or not. In case of forced convection,
where the characteristic velocity is prescribed, one can ex-
pect to see a deviation of the force scaling forN > 1; the
flow speed near the LLFV sensor would then be altered and
not match the prescribed velocity any more. Clearly, LLFV
is limited here, keeping in mind, that this method was origi-
nally designed for integral flow measurements.

5 Scaling laws of turbulent heat and momentum
transfer

We now examine the behaviour of the transport of heat and
momentum by the convective flow. The results presented in
this section were recorded without the presence of the LLFV
measurement system and the accompanying magnetic field
since long-term experimental runs were required. At the be-
ginning of the experiments the cooling and heating ther-
mostats were set to the same temperature for a zero mea-
surement. Then the heating temperature was raised stepwise
to establish multiple temperature differences∆T across the
fluid. Each experiment at a given∆T was conducted for
about one hour. The dimensionless numbersRa, Nu, Re, Rex

andRez were determined as described in section 2. With a
cooling temperature of 15◦C and a maximum heating tem-
perature of 63◦C we were able to cover a range ofRa =

3×105 to 3×107, i.e. two orders of magnitude. Errors are
given as standard deviations. Power law fits use orthogo-
nal distance regression to account for uncertainties in both
quantities on the abscissa and ordinate.
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Ra0.31±0.01

Fig. 10: Scaling of Nusselt number with Rayleigh number.
The solid line indicates the power law fit.

5.1 Heat transport

Figure 10 shows the dependence of the Nusselt numberNu
on the Rayleigh numberRa. We only display results for
Ra > 2×106, because for lowerRa the temperature differ-
ence of the in- and outgoing cooling water was smaller than
the accuracy of the temperature measurement. A power-law
fit to the data results in a scaling ofNu ∝ Ra0.31. The same
exponent was found by multiple DNS simulations (Ng et al,
2015; Yu et al, 2007), even though these were conducted
for air (Pr = 0.71). The differentPr in the simulations and
our experiment lead only to higher absolute values ofNu in
the simulations, but the scaling is the same. The exponent
of 0.31 was explained by Ng et al (2015) as a superposition
of 1/4 and 1/3 scaling laws, which can be derived theoret-
ically for the laminar (Shishkina, 2016) and turbulent case
(Ng et al, 2013), respectively. To conclude this paragraph,
our findings are consistent with those from numerical sim-
ulations of vertical convection. Interestingly, the scaling ex-
ponent of RBC in a liquid metal flow atPr = 0.021 is found
to be smaller with values of about 0.26, while atPr = 0.7
the exponent is 0.29 (Scheel and Schumacher, 2016).

5.2 Momentum transport

The scaling ofRe, Rex andRez with Ra is displayed in Fig. 11.
The global Reynolds numberRe follows a power law of
Re ∝ Ra0.54. This is a combination of the different behaviours
of the vertical and horizontal flows in the cell.

For the vertical Reynolds numberRez we see a scaling of
Rez ∝ Ra0.45. This is close to a 1/2-scaling as found in pre-
vious numerical simulations by Shishkina (2016), where a
maximum vertical velocity was used to calculate a Reynolds
number. The deviation in the exponent might stem from the
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Fig. 11: Scaling of three Reynolds numbers with Rayleigh
number: GlobalRe (diamond, solid line), horizontalRex (tri-
angle right, dashed line) and verticalRez (triangle up, dash-
dotted line).

averaging effect over the cross-section of the ultrasonic beam.
This result is also very close to RBC in liquid metal flow in
the direct numerical simulations by Scheel and Schumacher
(2016).

The horizontal Reynolds numberRex instead follows a
Rex ∝ Ra0.67 power law, which is very close to an exponent
of 2/3. So far little attention has been given to this velocity
component, partly because most numerical studies employ
periodic boundary conditions in vertical direction, instead
of simulating a closed cell (Ng et al, 2013, 2015).

The absolute values ofRez are generally larger thanRex:
The fluid is accelerated vertically in a thin layer near the
copper plates. Once it reaches the top or bottom of the cell,
the flow is redirected in horizontal direction and widens to
a broader layer. Since the horizontal motion is driven by the
vertical acceleration, this widening reduces the flow veloc-
ity. However, because of the stronger growth ofRex with Ra
these velocities converge to a common value. Fig. 11 shows,
thatRex ∼ Rez, whenRa > 107. We expect thatRex loses its
Ra0.67 scaling past this point and instead follows the same
scaling law asRez.

6 Conclusion

In the present study, we investigated the behaviour of ver-
tical convection in a liquid metal. Local Lorentz force ve-
locimetry and ultrasound Doppler velocimetry were used in
combination to measure the flow structure, which consists
of a single large scale convection roll. Velocity fluctuations
were seen to be transported by the large scale circulation and

approach a normal (or Gaussian) probability density func-
tion for increasingRa.

By a direct comparison of LLFV and UDV measure-
ments, the linear response of LLFV to low velocity flows
was confirmed. Even though the interaction parameterN in
the present work partly exceeded unity, a comparison with
the undisturbed flow showed little deviation. However, this
may change for higherN or other flows and has to be consid-
ered carefully in every application. We nonetheless showed
that the liquid metal convection flow is accessible by LLFV
and thus a further contactless measurement method is avail-
able. Our analysis demonstrated also that particularly shorter-
term measurements would be appropriate which are required
in many of the potential applications. One has to keep in
mind that small velocity magnitudes are translated into forces
of the order of micronewtons in a high-precision force mea-
surement system and that the LLFV system has to be in close
proximity to the liquid. Possible extensions of LLFV to so-
called time-of-flight measurements by the usage of two iden-
tical probes (Dubovikova et al, 2016) or arrays of probes
would be possible and could reduce the numerous system-
atic error sources. It is thus clear that we have explored a
further limit of LLFV

We also studied the turbulent transport properties in ver-
tical convection. The global heat transport follows a scal-
ing law Nu ∝ Ra0.31 for a range of Rayleigh numbers of
2×106< Ra< 3×107. The momentum transport in vertical
direction scales asRez ∝ Ra0.45 and the horizontal momen-
tum transport asRex ∝ Ra0.67 for 3× 105 < Ra < 3× 107.
The resulting global Reynolds number has a dependence of
Re ∝ Ra0.54. These power laws agree well with previous
numerical investigations of vertical convection in fluids of
higher Prandtl number such as air. Given that the simula-
tions and experiments have been condcuted in different geo-
metrical settings, we can conclude that the scaling in vertical
convection seems to be less sensitive with respect to geom-
etry effects and Prandtl number. Further vertical convection
experiments will however be necessary to substantiate this
conclusion. The study of heat and momentum transport of
thermal convection in liquid metals as low-Prandtl-number
fluids in general promises a better understanding of transport
mechanisms and may help to refine theoretical models.

The high electrical conductivity also allows in principle
the local manipulation of convective flows by external mag-
netic fields. While this work focussed on LLFV as a mea-
surement method, which ideally leaves the flow unchanged,
stronger magnetic fields can alter the flow structure and in
turn the transport properties. Especially for Rayleigh-Bénard
convection, with its much more complex flow structures than
vertical convection, this can lead to substantial changes in
the flow structure. Such insights could be used for flow con-
trol of liquid metal flows in the presence of parasitic mag-
netic fields or by explicitly applying magnetic fields.
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A The penetration depth of LLFV

An important question is how far LLFV can reach into the liquid, i.e. up
to what depth the fluid velocity is influenced by the measurement. We
calculate this penetration depth for an infinite half-spaceV = {r ∈R

3 :
z ≤ 0} filled with liquid metal under the quasistatic approximation. We
assume a stationary one-dimensional flow fieldv(r ) ≡ vx(z)ex, which
is probed by the magnetic fieldB(r ) of a permanent magnet outsideV .
The Lorentz forceFL acting on the whole fluid is given by (1). Inserting
Ohm’s lawj = σ (−∇∇∇ϕ +v×B) gives

FL = σ
∫

V

(

v(r )×B(r )
)

×B(r )dV +σ
∫

S
ϕ(s)B(s)×n(s)dS . (13)

Here we used Stokes’ theorem and∇∇∇× (ϕB) = ∇∇∇ϕ ×B in V . S = {s∈
R

3 : z = 0} is the surface ofV with the surface normaln = ez. The
electric scalar potentialϕ only has to be known on the surface. It is
determined by the equations

∇∇∇2ϕ(r) = ∇∇∇ ·
(

v(r )×B(r)
)

in V ,

n(s) ·∇∇∇ϕ(s) = n(s) ·
(

v(s)×B(s)
)

on S,

stemming from the conservation of charge∇∇∇ · j = 0 and the boundary
condition of the eddy currents,n · j = 0. These equations can be solved
using the Green’s function of the three-dimensional Poisson equation
G(r , r ′) = −1/(4π |r − r ′|) (Stefani and Gerbeth, 1999; Vladimirov,
1972):

ϕ(s) =
∫

V

(

v(r ′)×B(r ′)
)

· (s− r ′)
2π |s− r ′|3

dV ′−
∫

S
ϕ(s′)

n(s′) · (s−s′)
2π |s−s′|3

dS′ .

(14)

Sinces,s′ ∈ S we haven · (s− s′) = 0 and the second term vanishes.
We now renames→ s′ andr ′ → r in (14), insert it into (13) and swap
the volume and surface integrals of the second term

FL =
∫

V
vx(z)

[

σ
(

ex ×B(r)
)

×B(r)

−σ
∫

S

(

ex ×B(r )
)

· (s′− r)
2π |s′− r |3

(

ez ×B(s′)
)

dS′
]

dV .

The integrand has the formvx(z)w(r ): The velocity profile is weighed
by a sensitivity functionw (all terms within the square brackets) that is
independent of the flow profilevx(z) and dependent on the geometry,
the magnetic field and the flow direction. Sincevx is independent ofx
andy, the respective parts of the volume integration only apply to w:

FL =
∫ 0

−∞
vx(z)w̃(z)dz , w̃(z) =

∫ ∞

−∞

∫ ∞

−∞
w(r)dxdy .

We now specify the permanent magnet as a cubic magnet with side
length 2l and magnetizationM = Mez parallel to one of its sides. Its
centre is atrM = (0,0,h), whereh > l. The magnetic field in the fluid
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Fig. 12: Weight-function ˜w(z) normalized byσ µ2
0M2 (left)

and cumulative relative contributioñP(z) (right) for 2l =
5 mm andh = 7.5 mm.

is (Furlani, 2001)

B(r ) =−
µ0M
4π

B̂(r − rM , r ′)
∣

∣

∣

l

x′=−l

∣

∣

∣

l

y′=−l

∣

∣

∣

l

z′=−l
,

B̂(r , r ′) =











Artanh
(

y−y′

|r−r ′ |

)

Artanh
(

x−x′

|r−r ′ |

)

−arctan
(

(x−x′)(y−y′)
(z−z′)|r−r ′|

)











.

It exhibits the following symmetries:By/z(x,y, z) = By/z(−x,y, z) and
Bx(x,y, z) =−Bx(−x,y, z). With these symmetries it can be shown, that
w̃y = w̃z = 0 since the integrands are antisymmetric inx and/orx′, so
that the integrals overx andx′ vanish. This leaves only a force compo-
nentFL,x in flow direction with the weight-function

w̃x(z) =−σ
∫ ∞

−∞

∫ ∞

−∞

[

By(r )2+Bz(r)2

+

∫ ∞

−∞

∫ ∞

−∞

Bz(r )(y′− y)
2π |s′− r |3

By(s
′)dx′ dy′

]

z′=0
dxdy .

Here we also used thatBy(x,y, z) = −By(x,−y, z) to eliminate another
term in the surface integral. This formula applies for all magnetic fields
that have the same symmetries as listed above (e.g. for a magnetic
dipole inz-direction). These integrals have to be evaluated numerically.
Here they are calculated using the trapezoidal rule on gridsfor x, y, x′

andy′ that cluster near the magnet positionxM = 0 andyM = 0. 121
points per integral were distributed over a domain of±70 mm for ev-
ery integration. The result is displayed in Fig. 12.

The strongest contribution of the flow toFL is near the surface
and the sensitivity rapidly decreases with increasing depth. w̃ is always
negative, which is not immediately apparent from the surface integral.
This means the Lorentz force opposes the flow, as was expected. To
quantify a penetration depth of the LLFV we calculate the cumulative
relative contribution to the final signal with increasing depth

P̃(z) =

∫ 0
z w̃(z′)dz′

∫ 0
−∞ w̃(z′)dz′

, z ≤ 0. (15)

We see in Fig. 12 that 90% of the LLFV-signal come from the fluid
layer with a thickness of 5.7 mm below the top wall. This valueis used
as a length scale for calculating the interaction parameterN in sec-
tion 4.
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