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Abstract  

The basic parameters for calculations of radiative neutron capture , photon 

strength functions and nuclear level densities near the neutron separation energy 

are determined based on experimental data without an ad-hoc assumption about 

axial symmetry - at variance to previous analysis. Surprisingly few global fit 

parameters are needed in addition to information on nuclear deformation, taken 

from Hartree Fock Bogolyubov (HFB) calculations with the Gogny force, and the 

generator coordinator method (GCM) assures properly defined angular 

momentum. For a large number of nuclei the GDR shapes and the photon strength 

are described by the sum of three Lorentzians (TLO), extrapolated to low energies 

and normalized in accordance to the dipole sum rule. Level densities are 

influenced strongly by the significant collective enhancement based on the 

breaking of shape symmetry. The replacement of axial symmetry by the less 

stringent requirement of invariance against rotation by 180 degree leads to a novel 

prediction for radiative neutron capture. It compares well to recent compilations of 

average radiative widths and Maxwellian average cross sections for neutron 

capture by even target nuclei. An extension to higher spin promises a reliable 

prediction for various compound nuclear reactions also outside the valley of 

stability. Such predictions are of high importance for future nuclear energy 

systems and waste transmutation as well as for the understanding of the cosmic 

synthesis of heavy elements. 

 

 



I. Introduction 

The ongoing discussion, e.g. in this volume of 

Physica Scripta,  about shapes and shape changes 

in heavy nuclei, often concerning triaxial shapes 

far off stability, induces the question, how well the 

widely used ad hoc assumption about axial 

symmetry [1] in less exotic nuclei is based on 

sufficiently sensitive experimental results. Here 

experimental data for masses and level energies 

seem to be not very conclusive; thus it is appealing 

to regard other observables with respect to axial 

symmetry breaking. Triaxiality has long known to 

be important for the fission process [2, 3] as well 

as for odd nuclei [4]. At variance, energy spectra 

observed in even nuclei were for a long time 

interpreted assuming at least axial symmetry of the 

nuclear shape [5, 6, 1], There are some more 

recent instances from gamma ray spectroscopy in 

heavy nuclei where triaxiality has been claimed to 

be directly or indirectly observed with either 

triaxial wobbling phonon bands or the possible 

presence of chiral-symmetric bands [7]. But for 

the analysis of the experimental results and for the 

unambiguous identification of triaxial shapes from 

the energies of excited nuclear states complex 

theoretical considerations are needed. A similar 

statement can be made for multiple Coulomb 

excitation studies, influenced by axial shape 

symmetry and its breaking [8]. This had led to 

stating triaxiality already for some nuclei in the 

valley of stability [9, 10, 11, 12].  

In this paper we present an analysis of more 

directly observable manifestations of a deviation 

from axial symmetry. We regard not only energies 

of single transitions in selected nuclei, but we use 

very many levels distributed near the neutron 

separation energy and in the IVGDR range as 

signals. The splitting of the Isovector Giant Dipole 

Resonance (IVGDR) is used in text books as an 

indicator of axial deformation, but apparently an 

adjustment of several parameters for each 

individual isotope is needed [13]. In the work 

presented here this observable is reviewed under 

the assumption of broken axial symmetry; a 

description with only global parameters has been 

shown [14, 15, 16, 17, 18, 19, 20, 21] to be valid 

for many heavy nuclei in the range of 70<A<200; 

here we present novel results for the Nd-isotopes. 

An even stronger reduction of the number of 

parameters is found for the other topic of this 

work, the accordance of neutron resonance 

spacings and other level density data to a Fermi 

gas prediction, achieved by us without any 

parameter fitting. Observations obtained with 

more than 140 spin-0 target nuclei will be 

interpreted by broken axial shape symmetry. A 

common feature in the interpretation of these two 

experimental phenomena is the replacement of the 

assumption of axiality by the less stringent 

requirement of invariance against rotation by an 

angle π, ℛπ.  

Our findings have a strong impact on the radiative 

capture process, for which also the low energy tail 

of the dipole strength is of major importance, as 

noted recently for nuclei with mass number A>70 

[14]. This process plays an important role in 

considerations for advanced nuclear systems [22, 

23, 24] and devices aiming for the transmutation 

of radioactive nuclear waste. It also is of interest 

for the cosmic nucleosynthesis with fluxes of 

neutrons that high, that their capture reaches heavy 

nuclides beyond Fe [25, 26]. The experimental 

studies forming the basis for respective predictions 

can mainly be performed on nuclei in or close to 

the valley of beta-stability. Thus a small number 

of global parameters, as we show to suffice, are of 

great advantage. 

II. Quadrupole observables and axiality  
    

As basis for the discussion of the IVGDR we will 

first describe connections between nuclear shapes 

and electric quadrupole moments and transition 

rates with and without the assumption of axial 

symmetry. To demonstrate the importance of 

electromagnetic sum rules for the nuclear dipole 

strength, general features of the IVGDR will be 

presented. A departure of nuclear shapes from 

spherical symmetry was first indicated by a 



splitting of atomic transitions due to the form of 

the nuclear electromagnetic field [27]. Hyperfine 

structure measurements, improved in accuracy 

using laser techniques, as well as muonic X-ray 

studies, determined the ‘spectroscopic’ electric 

quadrupole (λ=2) moment Qs of the ground state 

[28] in nearly 800 odd nuclei. In addition, the 

reorientation effect in Coulomb excitation made 

Qs-values also available for excited 2
+
 and 4

+
-

states Qs (Iπ) in even nuclei. Mostly, the sign of 

Qs(2
+
) was determined to be negative [28] and the 

observed Qs were often not in agreement to 

predictions for single particle or hole 

configurations [1]. In a semiclassical picture of 

collective rotation [5] the intrinsic structure and 

shape for the ground state 0
+
 and the lowest 2

+
-

state r are assumed to be the same. For Qs<0 this 

picture suggests an apparently oblate shape to 

result from the rotation of a more prolate body 

with an ‘intrinsic’ quadrupole moment Qi = −
7

2
 Qs. 

Quantum mechanically the rotation about a 

symmetry axis is forbidden, and a projection on 

proper angular momentum in the laboratory frame 

is necessary. With a homogeneous distribution of 

the charge within the nuclear volume, the intrinsic 

electric quadrupole moment Qi of even nuclei is 

related to the difference in half-axis length ∆R 

between the symmetry axis of the shape R3 and the 

two short ones (in case of axial symmetry R1=R2) 

by setting [5]:   

  Qi ≡√
9

5𝜋
 𝑍𝑅2 𝛽 (1 + b · 𝛽) ;       

             𝛽 ≅
4

3
√
𝜋

5
 
∆𝑅

𝑅
≅ 1.057

∆𝑅

𝑅
         (1) 

 

For the axial case a single  deformation parameter 

β was introduced and the relation (1) between 

deformation β, Q0 and ∆R is widely applied when 

electromagnetic data are related to calculated 

nuclear (mass) deformations, usually characterized 

by β. For years b ≈ 0.16 was assumed [5, 29], but 

later an often used compilation of electric 

quadrupole transition widths [30] proposed b = 0 

as approximation. Besides this ambiguity in b 

several definitions proposed as deformation 

parameters in the literature [31, 8, 30, 32] may 

differ from the ‘standard’ definition as given here. 

Another observable for a deformation of nuclei is 

the splitting of the IVGDR and there the axis 

lengths are the quantity of importance. 

The enhancement seen in experimental data on 

electric quadrupole (E2) transitions from the 

ground state [30] indicates a strong excess above 

predictions for a transition to a configuration 

formed by exciting only few particles. In 

connection to the observed quadrupole moments 

mentioned above this was linked [1] to the 

breaking of spherical symmetry in quasi all heavy 

nuclei away from magic shells. The model of a 

rotating axially symmetric liquid drop with a 

quadrupole moment, representing an even nucleus, 

predicts one rotation related 2
+
-state with a 

‘collective’ i.e. enhanced E2-transition width. 

Then Qi (in fm
2
) is related to the reduced matrix 

elements (in e∙fm2
) for an electric quadrupole 

transition from this ‘rotational’ state r to the 

ground state [5, 1] by Eγ (in MeV):   
  

        
5

16𝜋
 Q𝑖
2 = |〈𝑟‖𝐄2‖0〉|2 = B(E2, 0 → 𝑟)     (2). 

  

The E2 ground state decay width Γr0 (E𝛾) (in 

MeV) is obtained from the general relation:  

  Γr0 (Eγ; E2) = 
4 𝜋

75

𝛼𝑒 𝐸𝛾
5

𝑔(ħ𝑐)4
 |〈𝑟‖𝐄2‖0〉|2;    

                      𝑔 =
2𝐽𝑟+1

2𝐽0+1
    (3) 

 

where αe, ħ and c are the fine structure constant, 

Planck’s constant and the velocity of light; J0 and 

Jr are the spins of the ground state and the excited 

level. The reduced transition probability B(E2) 

used in Eq. (2) describes the quadrupole transition 

between the ground and the lowest 2
+
-state. Qs

 
and 

B(E2) are observables, whereas the deformation β 

is a model parameter, and in the relation (1) to 

data one assumes a uniform axial charge 

distribution. One serious shortcoming of the axial 

rigid rotor model is the fact, that it only predicts 

one ‘collective’ 2
+
-state. Experimentally at least 



two 2
+
-levels with enhanced transitions to the 

ground state are observed in nearly all even nuclei. 

Then a sum of all ground state transitions appears 

[8] in Eq. (2). One possible explanation [29, 1] is 

the coupling of the nuclear rotation to a collective 

quadrupolar vibration around an axially deformed 

basis state.  

As an alternative origin of a second low energy 2
+
-

state a static triaxiality with the possibility of more 

than one rotation axis has been regarded [33]. For 

a confirmation we now refer to self-consistent 

microscopic calculations as a representation of the 

nucleus as an ensemble of Z+N=A nucleons in a 

compact volume V. We only regard calculations 

which are not based ‘ad hoc’ on the assumption of 

axiality and mention that already long ago it was 

pointed out [34], how a projection from the 

intrinsic system into the observer’s frame quasi 

automatically leads to triaxiality as result of a 

Hartree-Fock-Bogoliubov (HFB) calculation. As 

required by quantum mechanics, such a projection 

has to be made after the HF-variation, and this has 

the consequence that the expectation value for the 

triaxiality, i.e. the γ-mode, is different from zero: 

<γ> ≠ 0; semi-classically this is equivalent to a γ - 

oscillation centred at a finite γ. A first calculation 

[34] was performed for two heavy nuclei only, but 

a more recent one [32] is available for practically 

all heavy even nuclei between the neutron and 

proton drip lines. These constrained HFB 

calculations “are free of parameters beyond those 

contained in the Gogny D1S interaction” [32]. 

Assuming only ℛπ-invariance they find non-zero 

triaxiality for many nuclei, and in some cases the 

predicted standard deviation does not include γ = 

0. The use of constrained wave functions and a 

generator coordinate method allowed to project on 

good angular momentum as proposed before [34]. 

In view of an agreement to our earlier 

experimental findings [18, 16, 35, 19] we rely on 

these calculations and use the predicted γ–values. 

Following a suggestion made in an additional 

HFB-study [36] we reduce the β–deformation 

parameters: for nuclei which are only δ nucleons 

away from a shell (with δ≤10) a factor ε = 0.4 ± δ 

is applied to obtain   βeff =ε∙β.  The paper by 

Delaroche et al. [32] has an attachment which lists 

values for β and 𝛾  for more than 1700 nuclei as 

well as radius parameters, all derived from 

CHFB+GCM. From βeff, γ and the proton radius 

Rp three half-axes R1, R2, R3 for each nucleus were 

extracted; here we used their Eq. (3) for the three 

oscillator parameters, which are inversely 

proportional to the half-axes. This invokes the 

concept of an equivalent ellipsoid, which has the 

same charge Ze, volume V and quadrupole 

moment Qi as the nucleus. Using Eqs. (19-21) in 

the work of Kumar [8] (correcting for a missing 

factor of 2) the intrinsic ‘collective’ Qi can be 

obtained by: 

Qi = 
2𝑍

5
 ∙ √(2𝑅3

2 − 𝑅1
2 − 𝑅2

2)² + 3(𝑅1
2 − 𝑅2

2)²     

 𝑅𝑝
3 = 𝑅1 ∙ 𝑅2 ∙ 𝑅3 =

3π

4
𝑉      (4) 

Here we assume only ℛπ–invariance as well as 

identical distributions of protons and neutrons. In 

Fig. 1 the correlation between γ and Qi is depicted 

for nuclei in the minimum of the valley of stability 

and Z±1.  
 

  

 Fig. 1: Correlation between cos(3γ) and Qi in ≈ 130 

even nuclei with 60<A<250; the respective data are 

taken from a CHFB+GCM calculation [32] for nuclei 

in the valley of stability. The bar lengths represent the 

standard deviations in γ as given by these calculations 

and tabulated as supplemental material. 



 

In the rotation invariant ansatz [8] the deviation 

from axial symmetry is described by the parameter 

cos(3γ), which also defines the sign of Qi and 

which we use in Fig. 1. As in quantum-mechanical 

systems like nuclei only expectation values are 

accessible to measurements, cos(3γ) and Qi in the 

Figure are to be understood as such. In Fig. 1 a 

clear trend to triaxiality with decreasing Qi is 

obvious (cos(3γ)→0), whereas most well 

deformed nuclei show a clearly smaller deviation 

from axiality. The small number of nuclei which 

are oblate already at low Ex (cos(3γ) < 0) does not 

allow similar conclusions, and for very small Qi a 

triaxiality would be very difficult to distinguish 

from sphericity. The trend as indicated as blue 

dashed curve in Fig. 1 suggests an approximation 

of nuclear shapes by only one parameter Qi, with 

axiality depending on it. The clustering at Qi < 200 

fm
2
 and cos(3γ) ≲ 0.2 seen in Fig. 1 is significant 

and will play an important role for the discussion 

of IVGDR shapes in the numerous nuclei with 

intermediate Qi, often called ‘transitional‘.  

III. Photon strength and sum rules 

From very general conditions like ‘causality and 

analyticity’ together with dispersion relations the 

Thomson scattering cross section was generalized 

by quantum electro-dynamics [37] to shorter 

wavelength photons interacting with nuclei of 

mass number A=Z+N. This lead to the Gell-Mann-

Goldberger-Thirring (GGT) sum rule, predicting 

the cross section for the absorption of photons by 

nuclei, integrated up to the threshold for sub-

nuclear processes:  

  ∫ 𝜎(𝐸𝛾)𝑑𝐸 ≲
2π²(αℏ²)

m𝑁
[ZN/A + A/10] 

E𝑢

𝑜
           

               ≈ 5.97 [ZN/A+A/10] MeV fm²      (5)                         

    Eu= mπ c
2
  

Here mN and mπ stand for the mass of nucleon and 

pion, respectively. The first term in the sum is the 

“classical sum rule” of Thomas, Reiche and Kuhn 

(TRK, [38]) and the overshoot over it predicted 

and discussed [13] is contained in the second. This 

term has been shown to be accurate within 30% as 

approximated by assuming [39] “that a photon of 

extremely large energy interacts with the nucleus 

as a system of free nucleons”, and only above an 

upper energy Eu hadronic degrees of freedom 

become important. Eq. (5) comprises all multipole 

modes of photon absorption and includes the 

absorption by nucleon pairs and especially p-n-

pairs, which are strongly dissociated by photons 

with 20<Eγ<200 MeV. The respective “quasi-

deuteron effect” has been derived from the 

expression valid for the free deuteron by 

correcting for Pauli blocking [40].              

Fig.2: Cross section of photo-neutron production on 
208

Pb[41] in comparison to a Lorentzian for the 

isovector IVGDR (black and red dashed lines, see text) 

and the quasi-deuteron effect (blue dashed line). The 

sum of both contributions is given as drawn lines.  

Photo-neutron data are available [41] for 
208

Pb up 

to energies above mπc²; they are shown in Fig.2 

and compared on an absolute scale to a Lorentzian 

given by the first term in Eq. (5). The integral of 

this term agrees to the TRK sum, and also the 

expression for the absorption cross section 

corresponding to the quasi-deuteron mode [40] for 

Eγ > 20 MeV is given on absolute scale. The sum 

of both is depicted as well and the case of a 

constant width Γr is shown in black. The change 

which evolves from making it proportional [13] to 

the photon energy Γr ∝ Eγ/Er is demonstrated in 

red, but obviously the data above 25 MeV are 



clearly below this curve, and the disagreement of 

such a change to the data shows that the proposed 

width change with photon energy does not hold 

above the IVGDR. Another approach known as 

KMF model [42] was quoted to evolve from 

Landau theory of Fermi liquids and even proposes 

to make the width proportional to the square of the 

photon energy. A theoretical work [43] finds 

Fermi liquid theory not applicable to E1 modes in 

nuclei, such that the disagreement expected to 

become even greater in a comparison for 
208

Pb in 

this energy range; the situation is similar for the 

various other nuclei studied [40].  

Fig. 2 depicts a width Γr=3 MeV and pole energy 

Er=13.6 MeV, which were both predicted for the 

IVGDR [44] by an older HFB-calculation. The 

slight enhancement over the sum of the two 

curves, obvious in the figure close to 25 MeV, 

may be assigned to the Isovector Giant 

Quadrupole Resonance. The IVGDR is well 

described in the region below 20 MeV by the first 

term in Eq. (5), i.e. the classical electric dipole 

sum rule (TRK). Apparently the absorption above 

40 MeV mainly corresponds to the quasi-deuteron 

mode and its integral is close to the second term in 

Eq. (5). Our description using three Lorentzians 

(TLO) will be discussed now for nuclei away from 

the doubly magic 
208

Pb.  

IV. Isovector giant dipole resonances  

The photo-disintegration of nuclei as one of the 

first studied nuclear reactions has soon after been 

recognized as a manifestation of a collective 

excitation mode [45, 46]. The first theoretical 

descriptions for the oscillation of protons against 

neutrons were well describing medium mass 

nuclei [45] and the very heavy ones [46]. By using 

the concept of the droplet model these two 

approaches were unified and IVGDR centroid 

energies E0(Z,A) were reasonably well predicted 

[47] in the range 60<A<240. The predicted 

IVGDR pole energies were used [ju08] to derive a 

procedure based on three Lorentzians yielding a 

global parameterization of the electric dipole 

strength. Here, we follow that work and a 

symmetry energy J=32.7 MeV and a surface 

stiffness Q=29.2 MeV from the finite range 

droplet model [48] are used, but the nuclear radius 

is now taken as Rp, as in Eq. (4). Only one 

additional parameter, an effective nucleon mass 

meff = 800 MeV, had to be adjusted to give an 

overall fit to the IVGDR data for 70<A<200. 

These parameters are combined to predict E0, as 

was shown previously [14]; the difference in meff 

is related to the new choice of R=Rp as taken from 

the calculations [32]. 

The splitting of the IVGDR in the deformed 

lanthanide and actinide nuclei is obvious in the 

experimental data [48, 49]. Since long, the 

coupling of dipole and quadrupole degrees of 

freedom in heavy nuclei has been discussed [50, 

51, 29] and detailed calculations [52, 53] within 

various models have obtained reasonable fits to 

experimental data for selected nuclei. The 

parameterization to be presented here is much less 

ambiguous concerning the mode coupling, but it 

incorporates nuclear triaxiality explicitly using a 

description by a sum of  k=3 Lorentzians. In heavy 

nuclei in general, the apparent width of the 

IVGDR is determined by several components: 

  (a)  Spreading into underlying configurations,    

  (b)  Nuclear shape induced splitting,    

  (c)  Fragmentation and 

  (d)  Particle escape. 

From calculations for heavy nuclei using the 

Rossendorf continuum shell model [54, 55] the 

escape widths (d) in the IVGDR region were 

shown to be clearly smaller than the widening 

caused by damping or spreading as predicted by 

Eq. (6).  For the concept of fragmentation (c) of 

the configurations belonging to e.g. the IVGDR a 

calculation of these configurations is needed. The 

detailed shell model calculation [56, 20] for the 



nucleus 
208

Pb, which is based on a large number of 

configurations and the experimental energy 

resolution suggest a smooth description of the 

data. In addition, a detailed calculation [44] 

indicates the quality of a parameterization by 

Lorentzians for the IVGDRs, and this is supported 

by high statistics data [57] which do not justify a 

dependence of the width on photon energy. When 

a photon-energy independent Γ is used, an 

agreement to data above 25 MeV is reached as 

well; this was demonstrated in Fig. 2.  

In various papers [14, 17, 16, 18, 35] it was shown 

by the Dresden group that a Lorentzian description 

is possible also for nuclei away from closed shells 

with A>60, if proper account is made for the 

ground state deformations. Using that the 

resonance width Γ depends on EIVGDR only and 

thus smoothly on A and Z, it was demonstrated 

that accord to the classical dipole sum rule is 

reached to a surprising degree. Here, hydro-

dynamical considerations [58] predict the 

dependence of the damping width Γk of an IVGDR 

on its pole energy Ek in good agreement to 

experimental findings [59]. With one parameter 

adjusted to be equal for all heavy nuclei with 

A>70 one gets - if both are expressed in MeV: 
 

                      Γk ≈ cw Ek
1.6

   (6). 
 

Of course, the proportionality constant has an 

uncertainty related to the selection of nuclei, 

which are included in the fit. With the axis ratios 

from the CHFB calculations we get cw =0.045(3) 

from a fit to nearly all nuclides for which 

respective data exist [60, 61]; cw is no longer free, 

if the width prediction for 
208

Pb [44] is transferred 

to other nuclei. As the slope of a Lorentzian 

sufficiently far away form E0 is directly 

proportional to Γk its uncertainty directly enters in 

the radiative width and the large unsystematic 

scatter seen in the local fits [60, 13] yield strong 

arguments against their use. When a 

parameterization of the electric dipole strength in 

non-spherical nuclei is aimed for, the contribution 

(b) has to be treated sufficiently well. Lorentzian 

fits [13] to data performed for each nucleus 

independently cause a wide fluctuation of the 

apparent width with Z and A [60]; a non-

systematic variation of the damping is difficult to 

conceive within the spreading concept. A similarly 

erratic dependence of the integrated IVGDR 

strength on Z and A was also reported [13] to 

result from this approach of fitting the photo-

absorption data locally. In some cases the 

integrated cross section overshoots the smooth 

trend given by Eq. (5, first term, classical sum 

rule) by up to 100 %. Apparently the two 

problems named are closely related, as the 

resonance integral is proportional to the product of 

height and width. As proposed previously [14, 15, 

16, 17], a solution for this problem is found 

through the incorporation of nuclear triaxiality and 

this point will now be examined in further detail. 

In our ansatz the resonance energy E0 is modulated 

by using the ratios of the ωk, respectively their 

inverse, the axis lengths Rk from the CHFB+GCM 

calculation [32] discussed already; this 

information yields the three energies for the 

splitting of the IVGDR into three components of 

equal strength, centred at E0 [14]:  

 

  Ek = 
R0

Rk
∙ E0   (7) 

As will be seen in Fig. 3 the energy splitting 

between the three IVGDR components is 

comparable to their widths for many nuclei and 

thus a triple split should be introduced explicitly; 

this is especially indicated for nuclides with Qi ≲ 

200 fm
2
, which are not rare as the calculation 

depicted in Fig. 1 shows a clustering there. 

Although for more deformed nuclei the splitting 

between the two high energy components becomes 

smaller it should still be taken into account, at 

variance to what is often done. The increase of the 

width as predicted from Eq. (6) causes these two 

to have reduced height although all components 

have equal strength. Special care is needed for 

nuclei near closed shells as was argued for Fig. 1, 

the predicted β have to be reduced to βeff for nuclei 



near magic shells; the resulting predictions for the 

IVGDR curves then agree better to the data.  

 

These curves result from TLO with an integrated 

cross section equivalent to the classical sum rule, 

divided equally between terms for k=1-3 [16, 18, 

20, 62]. Thus the TLO-prediction for the 

absorption cross section into the isovector E1-

mode 𝜎𝑎𝑏𝑠
𝐸1,𝐼𝑉(𝐸𝛾) is obtained by summing over 

three components k=1,2,3:  

 

 𝜎 ≅ 5.97∙
𝑍𝑁

𝐴

2

3𝜋
∑

𝐸𝛾
2∙𝛤𝑘

(𝐸𝑘
2−𝐸𝛾

2)2+𝐸𝛾
2𝛤𝑘
2 fm² (8)                

Equivalence to the main term of Eq. (5) is obvious 

from the numerical normalization factor.   
  

The deformation induced modifications of Ek and 

the energy dependence of Γk are seen in Eqs. (6) 

and (7), and agreement to experimental IVGDR 

data, depicted in Fig. 3, is reached by using only 

two global parameters, meff and cw. In fact, the 

latter one is not really free: As mentioned in view 

of Fig. 3, it corresponds to the Γr for 
208

Pb, for 

which we get the same as predicted by a schematic 

calculation for the damping of dipole resonances 

formed from p-h states in a shell model [44]. 

Actually this calculation also justifies the use of a 

Lorentzian shape for the envelope over a very 

large number of close lying levels composing a 

doorway state. A different quantum aspect of our 

ansatz is related to the variance of the calculated 

deformation values (cf. Fig. 1) as also extracted 

from the HFB-calculations. In Fig. 3 not only the 

mean (i.e. expectation) values are used, but the 

quantal uncertainty is also depicted: Instantaneous 

shape sampling (ISS) was proposed [53] for this 

issue and we applied it as seen in Fig. 3; this has 

been already done for Mo isotopes [16].  

The HFB-calculations [32] used for information 

on nuclear radii and deformation are available also 

for nuclei outside the valley of stability and this 

opens a possibility for a global prediction of 

nuclear photon strength also for heavy (A>60) 

exotic nuclei. The absorption cross section at low 

energy, important for radiative capture, has to be 

derived by extrapolation; the reduction of β near 

magic shells as proposed here can be shown to 

have a minor influence for this. In any case the 

now applied predictions for the ground state 

triaxiality explains the IVGDR data without taking 

widths Γk and energies Ek from independent fits 

for each isotope. The agreement to the data for 

even Nd-isotopes to Eq. (8) is depicted in Fig. 3 

and the 3 pole energies Ek are indicated as black 

bars. 

     
Fig.3: Cross section of photo-neutron production on 

the even 
142

Nd (e) to 
150

Nd (a) in comparison to the sum 

of three IVGDR-Lorentzians (TLO, dashed blue). The 

drawn magenta curves show the effect of shape 

sampling. Data of two experiments are overlaid: 

squares [63,⧯] or crosses [64,𝗑], respectively. 



The resulting parameterization [18, 19] had been 

tested thoroughly [16, 17, 18, 21, 24] on many 

experimental data available for the IVGDR 

widths, energies and strengths in various stable 

nuclei. In this paper we have added a prediction 

for the chain of Nd isotopes, for which new data 

[64] were published recently.  

  

The interaction of heavy nuclei with photons of 

energy above the neutron separation energy Sn is 

mostly resulting in reactions of type (γ,xn), and the 

experimental data points are electronically 

readable from a compilation [61]. The newly 

available quasi-monochromatic photon beams 

open unprecedented experimental possibilities. 

Several facts have to be regarded when judging the 

quality of older experimental photo-neutron data: 

1.  Considerable discrepancies were reported for 

experiments performed at different laboratories 

[65]. A reduction in the order of 10(4) % was 

found to be necessary for data obtained at Saclay 

[65, 66, 17, 67]; in our plots this was accounted 

for.  

2.  In a number of cases the (γ,p)-channel exhausts 

a portion of the photo-absorption cross section 

[60, 16, 13]. 

3. Most of the data were obtained by using quasi-

monochromatic photon beams with a rather large 

energy resolution not much smaller than the 

predicted width of the IVGDR distribution. As it is 

often not well known experimentally we follow a 

proposal [66, 67] and assume it to be 0.6 MeV. 

Items 2 and 3 influence the representation of the 

IVGDR peak region, but they do not have a 

significant effect on the tail a few Γ below the pole 

where the contribution from the isovector E1 

strength to radiative neutron capture is strong. 

Fig.  4 shows results for the Nd-chain; results of a 

similar analysis for the Mo’s have been published 

previously [14, 16]. There it was shown, how the 

possible influence of all open channels on the 

extraction of the absorption cross section from the 

existing data can be tested by Hauser-Feshbach 

calculations and the code TALYS, which may 

have to be modified to incorporate the photon 

strength as derived by TLO. As the radiative 

neutron capture data discussed later are from the 

region of unresolved resonances, as are the photo-

neutron data, it is indicated to use data averaged 

over photon energy to extract strength functions fλ 

from them; as shown [68] long ago, these can 

describe photon absorption as well as the 

electromagnetic decay.  

V. Photon strength in the IVGDR and below 

The multipole strength functions fλ(Eγ) are related 

to the average photon absorption cross section in a 

given energy interval ∆E by:   

    (9) 

The strength functions fλ (Eγ) are supposed to be 

direction independent and they are thus used for 

excitation as well as decay processes relating 

photon scattering to radiative capture and 

photonuclear processes [68]. Using that fλ is 

direction independent and thus also related to the 

electromagnetic decay widths of the resonant 

levels R in the interval ∆ one gets:  

     (10). 

The quantum-mechanical weight factor geff will be 

discussed below. DR denotes the average level 

spacing at the upper of the two levels connected 

by Eγ=ER−Ef and for constant fλ(Eγ) a decrease of 

the average resonance widths with increasing level 

density ρR =1/DR is expected. Then a decay takes 

place between levels which are both excited and 

there is no simple way to study them starting from 

target ground states. But the average quantity fλ is 



insensitive to details of the nuclear spectrum and 

we approximate any electromagnetic transition 

strength of energy Eγ by fλ(Eγ) to be independent 

of the energies  ER and Ef ; this assumption is 

called Axel-Brink hypothesis [69, 70].  

For even nuclei with J0=0 the geff  in Eq. (10) are 

identical to the quantum-mechanical weight factor 

as used in Eq. (3) with spins J0 of the ground state 

and Jr of the excited level. For J0 ≠ 0 the fλ used in 

Eqs. (9) and (10) are identical and this is based on 

two facts:  
 

(a) Photon absorption into a mode λ populates m 

members of a multiplet with m=min(2λ+1, 2J0+1). 

The observed strength corresponds to the cross 

section summed over the multiplet and this is 

described by an effective spin factor:  

                (11) 

(b)  The ground state widths Γ0r of each member 

of the multiplet are equal.  
 

Both conditions were shown to be fulfilled in 

many heavy nuclei [68]; they follow from the 

assumption of weak coupling between the odd 

particle and the collective mode λ. In contrast to 

Eq. (9) there is no spin weight factor g in the 

numerator of the expressions Eq. (5) and (8) 

quantifying the sum rule and the IVGDR cross 

section. For zero ground state spin it is 

compensated by the factor 3 in the denominator 

[38]. In the case of scattering by a target with non-

zero ground state spin J0 the observed strength 

corresponds to the cross section summed over a 

multiplet as described with Eq. (11) and the 

statistical factor which would have to appear is 

2λ+1; in such nuclei the IVGDR is a triplet 

corresponding to λ=1 (or a doublet for J0 = ½). 

  

The TLO-calculations for odd-A nuclei as shown 

in Figs. 4b and 4d were performed on the basis of 

these considerations and obviously they agree to 

the experimental data similarly well as is the case 

for even-even nuclei. In nonzero spin nuclei 

deformations and radii are from averaging the 

respective predictions [32] for the even 

neighbours; for near shell nuclei the deformation 

was reduced as for Figs. 1 and 3. A semi-

microscopic HFB calculation [71] is also shown in 

Fig. 4; it assumes two resonance parts only with 

the same width. Each of them represents half of 

the total strength – a surprising choice in view of 

three oscillation axes, but apparently leads to a 

better fit to the data.    

    
Fig 4: TLO predictions (blue continuous curve) for the 

IVGDR in 
146

Nd (a) to 
143

Nd (d), in logarithmic scale 

with the pole energies shown in black. The measured 

cross sections of photo-neutron production are shown 

as squares [63,⧯] or crosses [64,𝗑] respectively; their 

decrease at low energy may be a threshold effect. The 



dashed magenta curves depict results of a different 

HFB-calculation [71, 72] assuming two poles only.     

VI.   Radiative neutron capture  

The radiative capture of neutrons is of special 

interest for numerical simulations related to 

nuclear power equipment and for network 

calculations of astrophysical element production. 

The good agreement of the low IVGDR energy 

slopes to our ‘triple Lorentzian’ (TLO) using 

theoretical information on nuclear deformation  

including triaxiality [32] suggests the use the 

corresponding photon strength function also for 

other electromagnetic processes like radiative 

neutron capture. In the following discussion we 

present a schematic scheme with approximations: 

Above separated resonances Porter-Thomas 

fluctuations are reduced such that they can be 

neglected by averaging over a large number of 

neutron resonances r for which we assume Γγ≪Γn. 

In a semi-classical approximation [73, 74] one 

gets for the capture cross section  

             σc(En) ≡ 〈σ(n, γ)〉𝑟                                     (12) 

≅ 2𝜋² ƛ𝑛
2 ∑ (2ℓ𝑛 + 1) ∫ 𝑓1(Eγ) Eγ

3𝜌(Eb, Jb)
𝐸𝑟
0𝐽𝑏

dE𝛾   

In this approach the neutron angular momentum 

ℓ∙ħ = pn ∙ RA is calculated classically and any ℓ-

dependent neutron strength enhancement is 

neglected. In Eq. (11) the photon widths Γγ are 

contained in the strength functions averaging in 

both intervals ∆R and ∆f  for all resonances r and 

final states f ∈ ∆f = [0,Sn+Er]. For a first test of the 

“triple Lorentzian” strength function (TLO) for the 

case of radiative neutron capture the investigation 

can be limited to even-even target nuclei with spin 

0. Then, the statistical factor, which accounts for 

the number of spin states reached by the γ-decay, 

may be set to 3 with sufficient accuracy. For such 

nuclei as studied by resonant neutron capture 

experiments [75, 72] the level density ρ(Sn) is 

reasonably well known near Sn with a mean 

accuracy of less than 20%. As the level density in 

the final nucleus enters strongly in Eq. (12) we 

have performed a critical review [76] of the 

studies predicting it in a Fermi gas picture.  

Fig. 5 depicts the integrand in Eq. (12) versus the 

photon energy – based on the approximations 

listed – and thus shows the sensitivity of eventual 

predictions of radiative capture yields on the 

components of the dipole strength. Apparently it 

peaks as low as at ≈ 3 MeV; below, the factor 

Eγ
2λ+1 reduces the transition rates and above the 

density of levels to be reached becomes small. At 

this low energy the level density was estimated by 

a constant temperature model, such that the figure 

gives a schematic view on the situation only. The 

sensitivity of the radiative capture cross section 

against f1(Eγ) can be quantified by forming the 

ratio between the two dashed curves in Fig. 5. As 

was shown [76], the level density in heavy nuclei 

depends on their symmetry and an eventual 

breaking of it. This is assumed for the TLO-

approach and this aspect will be discussed now.  

 

 

Fig 5: For the 4 nuclei 
78

Se, 
168

Er, 
196

Pt and 
240

Pu (top 



to bottom) the dipole strength f1(Eγ) in GeV
-3

 is 

depicted vs. the photon energy in MeV. The sum of 

three Lorentzians for the IVGDR (lowest blue curve) is 

shown together with the added contributions from 

minor (middle curve in magenta; [21]) dipole strength; 

the total sum appears in black as top curve. The 

dashed curves represent the sensitivity of the radiative 

capture against fE1(Eγ), (TLO, lower blue curve) and 

for the total f1(Eγ) (black top curve), cf. Eq. (12). 

VII. Level densities and collective enhancement 
   

a. Intrinsic state density  

Nuclear level densities ρ(Ex, J𝜋) determine the 

final phase space for predictions of compound 

nuclear cross sections and decay rates. In a 

compilation [72] of data extracted from nuclear 

spectra and neutron capture resonance spacings it 

was shown that when they are parameterized in 

various ways, this may lead to inconsistent 

predictions. Hence the need of calculations based 

on fundamental principles, which rely on very few 

free parameters only, is indicated. Here a clear 

distinction has to be made between the intrinsic 

quasiparticle state ωqp(Ex) and the level density 

ρ(Ex,J) in the observer’s system. An analytical 

approach often used for the calculation of ωqp 

based on Fermi gas theory was proposed [77] to be 

better combined to a simple exponential 

dependence on energy for low excitation, where 

nuclei can no longer be considered a gas of 

Fermions. At variance to that work [77] we use the 

concept of a transition between a phase of 

nucleons paired to bosons and an unpaired gas. 

For atomic and molecular gases a ‘critical’ 

temperature tpt = ∆o∙e
C
/π = 0.567∙∆0 (with the Euler 

constant C=0.5772) was defined, which can also be 

applied to nuclei [78, 79, 80]. In the low energy 

(Ex < Ept = ã∙tpt² + Ebs) regime we use  

    

        ω𝑞𝑝(𝐸𝑥) = ω𝑞𝑝(0) 𝑒𝑥𝑝 (
Ex

Tct
)  (13); 

this corresponds to a constant temperature (CTM) 

model. 

For energies above Ept the Fermi gas expression 

[81, 77] holds:  

   ω𝑞𝑝(𝐸𝑥) =
√𝜋∙𝑒𝑥𝑝(2√ã(Ex−Ebs))

12 ã
¼
(Ex−Ebs)

5
4⁄

  (14). 

The parameter ã relates energy and temperature of 

a Fermi gas; it is often (confusingly) called level 

density parameter and even used as a variable to 

be fitted. We keep it fixed and derive the backshift 

energy Ebs by subtracting the mass Mld given by a 

liquid drop formula from the measured mass Mexp: 

 Ebs= Mexp − Mld + Eco   (15). 

The backshift Ebs represents the energy between 

the Fermi gas zero and the ground state of finite 

nuclei, and it corrects for the nuclear binding in 

shells. Expression (15) assures that shell effects, as 

well as pairing, are treated equally for even and 

odd nuclei in the Fermionic regime (Ex≥ Ept). In 

Ebs we include a pairing condensation term Eco = 
3

2𝜋2
 ã ∆0 

2  [80]. To avoid any fitting here we use an 

approximated pairing parameter ∆(Ex=0) = ∆0 =12∙A
-1/2

 

and for ã we insert the nuclear matter value (with 

Fermi energy 𝜀𝐹  = 37 MeV):  

 ã = ãnm = 
𝜋2A

4𝜀𝐹
≅

A

15
   (16). 

This approach [82] characterizes the Fermi gas by 

a gap ∆(t) falling with rising temperature 

parameter t down to 0 at a ‘critical’ temperature 

tpt. The general features of this phase transition are 

evaluated by canonical thermodynamics for 

nuclear matter, and again we have no free fit 

parameter. It was shown [79] that the expression 

given by Eq. (14) for ωqp in the Fermi gas regime 

– initially derived neglecting pairing [81, 77] – is a 

good approximation for the formalism derived 

with a micro-canonical inclusion of pairing, if Ept 

is back-shifted by the condensation energy Eco, 

which already appears in infinite Fermionic 

systems and which is independent of A. 

Unfortunately, that work [79] neglects the shell 

correction present in finite nuclei, but we find no 

significant differences in ω𝑞𝑝(Ex ≳ Sn) when 

including it. As in earlier work [77] the energy 

dependence of the state density is assumed to be 

exponential for lower energies, i.e. in the pairing 



dominated phase below the phase transition point. 

This finds support in a recent analysis of level 

density data [77, 80, 83, 84]; we adjust 𝜔qp(0) as 

the state density at the lower end of the 

interpolation just above the ground state and it can 

be fixed there locally by regarding known spectral 

data (Ex < ∆0, J), similar as has been done 

previously [35, 85, 86]. We also tested a global 

approximation by setting 𝜔qp(0)=0.3/∆o for the 

state density at the lower end of the interpolation 

region, and this has a minor effect for Ex ≳ Ept, as 

in most nuclei Ept is smaller than the neutron 

binding energy Sn.  

 

This is shown in Fig. 6, which also depicts the 

variation of Ebs versus A, which is especially 

strong near closed shells. It also becomes obvious, 

that in the Fermi gas regime Ebs is closely 

correlated to Ept and thus also to ωqp(Ex); it is 

hence the quantity of higher importance for a level 

density prediction as Sn, at variance to a previous 

assumption [77]. 
 

Fig 6: Phase transition energy Ept for nuclei in the 

valley of stability vs. A (full curve in black) in 

comparison to values for Sn (dashed in red) and the 

shell correction energy Ebs (lower curve in blue dots), 

all in MeV.  

To demonstrate the energy dependence of the state 

density formalism presented here, results for 
81

Sr 

and 
113

Cd are given in Fig. 7.  

Fig.7: For the state density ωqp(Ex) in the spin ½-

nuclei 
81

Se and 
113

Cd  the prediction is shown together 

with respective data from Ripl-3 [72] obtained using 

discrete levels (black ⧯) [75] as well as resonance 

spacings (below vertical arrow); both are converted 

into state density 𝜔 by inverting Eq. (19). A change in 

slope at the phase transition energy Ept is clearly seen 

(diagonal arrow). The dotted curve in blue depicts Eqs. 

(13 to 16).   

One sees in the figure, that an apparent nuclear 

temperature Tapp =
ω

𝜕ω/𝜕𝐸
, differs from Tct of 

Eq. (13) and this results in a change in the slope of 

ω(Ex) at Ept. A slope change is well-known for the 

entropy at a 2
nd

 order phase transition; in finite 

nuclei it is expected to be washed out, but in a 

rather old neutron scattering study [87] such a 

break was experimentally observed (in arbitrary 

units only – unfortunately). Close to magic nuclei 

the large (negative) shell correction results in a 

large break at the now large Ept, but for weakly 

bound nuclei Ept becomes smaller. For 

completeness: the temperature as defined for a 

Fermi-gas t =√(𝐸𝑥 − 𝐸bs)/ã, [77, 1, 79] is 

smaller than Tapp by up to 35%.   

 

 

b. Collective enhancement  

The quantities to be compared to observed level 

spacings have to be derived from ωqp(Ex) by a 

projection on fixed angular momentum J in the 

observer system. The proposal was made [81, 77, 

88, 89] to consider the M-substate distribution of 

ωqp(Ex) as Gaussian with width σ around M = 0 

and to differentiate at M = J+½ with respect to M. 



The redistribution of the quasi-particle M-states 

into levels of distinct spin J as incorporated here 

implicitly assumes [89] the nucleus to be exactly 

spherically symmetric. This assumption leads to a 

spin dependent level density [90, 1, 79, 91, 92, 93, 

80, 72]:   
 

    ρsph(E𝑥, J) ≅
2J+1

 √8𝜋 σ3
𝑒
−
(J+½)2

2𝜎2 ωqp(E𝑥)  

                 
small J
→     

2J+1

 √8𝜋 σ3
ωqp(E𝑥)       (17). 

 

For the spin dispersion factor σ² a Thomas-Fermi 

approximation to the shell model predicts [94] a 

value σ²≈√2A , which is smaller by nearly a factor 

of 3 as compared to the one from the ‘statistical’ 

moment of inertia ℑst with 𝜎² ≅
𝕴𝒔𝒕∙T

ħ2
, and ℑst 

assumed to be equal to the ‘standard’ rigid rotor 

value [5, 90] ℑrig=⅖∙MAR0²(1+⅓β) with MA and 

R0 standing for nuclear mass and radius. Even 

when spherical symmetry was not assured for the 

nuclei studied, Eq. (17) has found widespread use 

[77, 95, 79, 91, 94, 80, 93, 72], often with ℑrig   

inserted.  

   

Eq. (17) neglects strongly mixed collective modes 

which are pulled from their original quasi-particle 

energy down into the low excitation region. A 

proposal [82] to account for the broken spherical 

symmetry causing a large rotational collectivity 

yields a level density increase by a factor σ
2 

(i.e. ≈ 

A/5) as compared to Eq. (17). This enhancement 

of level densities results from the build-up of a 

rotational band on each intrinsic quasi-particle 

state: The total level spectrum, for a given angular 

momentum, is therefore obtained by summing over 

a set of intrinsic states rather than by a 

decomposition of the level spectrum, as for a 

spherical system [90]. The resulting increase was 

included in some work on heavy nuclei [88, 89, 

96] by an additional term for ‘collective 

enhancement’. But still an agreement with 

observations was not reached without a significant 

enlargement of the ‘level density parameter’ [72, 

86] as compared to the nuclear matter value ã. It 

was eventually adjusted in a fit, a method which 

we consider highly questionable. In addition, an 

excitation energy dependence of ρ was introduced 

[91] − at variance to the Fermi gas, which we 

accept as proper description of the statistics in 

highly excited nuclei.  

 

In view of the quite common triaxiality [32] and 

the related 3-fold splitting observed in the IVGDR 

for nuclei with A>50 – as described previously 

[18, 19] and in sections IV and V – we disregard 

case a. Instead we studied the effect of allowing 

the breaking of various symmetries in the Fermi 

gas regime and at Ept. Especially the absolute 

value of predicted level densities is expected to 

increase due to additional degrees of freedom. 

Surprisingly, this topic was rarely [97] taken up by 

subsequent studies, most of which only regarded 

axially deformed or spherical nuclei. Actually, it 

can be generalized to even allow the breaking of 

any symmetry; in the limit of low J, large σ and 

negligible Eyr one obtains [90] approximate 

formulae for one parity:  

a. spherical case: 𝝆(Ex, J𝝅) → 
2 J+1

2∙√8𝜋 σ³
 𝜔qp(Ex)  

b. axial symmetry ⇒  𝝆 → 
2 J+1

2∙√8𝜋 𝜎
 𝜔qp(Ex)     (18) 

c. non-axial (triaxial) ⇒  𝝆 → 
2 J+1

2 ∙ 4
 𝜔qp(Ex) 

d. no reflection symmetry ⇒ 𝝆 → 
2 J+1

2
 𝜔qp(Ex) 

By the transition from case c to case b (nuclear 

body is symmetric with respect to one axis) a 

decrease of the level density by √π/2 ∙ σ ≳ 4 (for 

A≈160) is expected in the limit of small J; a 

reduction by √π/2 ∙ σ
3 ≳ 80 is the result of a 

change from case c to case a (Eq. (18c) to Eq. 

(17)), valid for the level density of completely 

spherical nuclei [82, 90, 1]. The size of these 

factors indicates that the dependence of the 

absolute level density on the symmetry of the 

nuclei is appreciable, whereas in cases c and d the 

size of the deformation does not enter in the low J 



limit. This limit is important as it is the case of 

levels populated in the capture of slow neutrons by 

even nuclei, which is the source of accurate level 

density data at Sn. It is obvious from Eqs. (17 to 19 

and 21) that the deformation parameters β and γ 

only effect ρ(Ex, J𝜋) by the spin cut-off term, 

whereas the symmetry class is of greater 

importance.   

The inclusion of broken axial shape symmetry is 

considered in the present study and Eq. (18c) 

follows a proposal made long ago [90]: For an 

equilibrium shape that possesses all the rotational 

degrees of freedom of a three-dimensional body 

and thus completely violates rotational symmetry, 

in the sense that it is not invariant with respect to 

any rotation of the coordinate axes, such a 

rotational band on top of every intrinsic state 

involves (2J+1) levels with total angular 

momentum J. Each of these levels is itself (2J+1)-

fold degenerate, corresponding to the different 

components M.  
 

For broken spherical symmetry (𝑅1,2 ≠ 𝑅3) a 

collective rotation becomes possible. Then (and 

also for 𝑅1 ≠ 𝑅2) any rotation results in an yrast 

band with Eyr(I) and no levels with spin I exist 

below this energy. In the extension of Eqs.(18 b-d) 

to larger spin values a cut-off is induced similar to 

the one in Eq. (17), but it now results from this 

yrast energy Eyr(I). The yrast state is quasi the 

ground state for all levels with spin and parity I𝜋 

formed by combining the collective angular 

momentum I and the intrinsic M-state distribution 

like in Eq. (17). Assuming that the excitation 

energy Ex is large as compared to the collective 

energy Eyr(I) one gets [82, 77, 90]:   

 

     ρ(Ex, I𝜋) = 
2I+1

2 ∙ 4
  ωqp(E𝑥 − E𝑦𝑟(I)) 

            ≈ 
2 I+1

2 ∙ 4
   ωqp(E𝑥) ∙ 𝑒

− 
Eyr(I)

T𝑒𝑓𝑓    (19).  

      

Here one approximates the energy dependence of 

ωqp(Ex) by the constant temperature formula from 

Eq,(13) with Tct = Teff. Compared to Eq. (17) an 

increase in ρ(Ex, I𝜋) is found, which was already 

seen in Eq. (18c). The resulting astonishingly 

very simple expression for small J given there is 

also given in the book by Bohr and Mottelson [1, 

cf. Eq. (4-65b)]. The numerical factors 2 and 4 are 

related to parity conservation and to the invariance 

with respect to rotations by 180° about any axis. 

The latter should hold for quadrupole interactions 

[1], but may possibly be broken in the presence of 

octupole deformation.  

As pointed out earlier [76], various assumptions 

are made and they are listed here albeit not all of 

them have a large influence for our conclusions: 

1. Quasi-particle states are evenly spaced (at least 

on average) at the Fermi energy, not varying with 

neutron excess N−Z.  

2. The pairing parameter ∆(Ex=0) is approximated 

by ∆0=12∙A
-1/2

, independent of J and N−Z.   

3. For the control of ã the Fermi energy is taken to 

be independent of N−Z, εF = 37 MeV. 

4. The influence of shell effects is controlled by 

Ebs(Z,A), found by subtraction of the experimental 

mass from liquid drop values. 

5. At variance to earlier work [91, 72, 80, 93, 94] 

the shell correction is directly applied to the 

backshift energy Ebs [77, 95, 96]. 

6. A certain ambiguity concerns the back shift 

energy Ebs= Mexp − Mld + Eco  and hence the liquid 

drop model parameters used for the calculation of 

Mld. We concentrate on a proposal [97] which 

accounts for the shell effect on masses explicitly. 

It also regards deformation effects and obtains a 

good fit for ground state masses. It does not treat 

the breaking of axial symmetry, but its influence 

on ground state masses was calculated to be very 

small for most heavy nuclei [48, 98].  

Replacing our favourite choice by the one from 

[94] increases the level density for actinide nuclei 

by nearly an order of magnitude, whereas the use 

of ref. [48] has the opposite effect. A recent liquid 

drop model fit to masses [99] based on fitting a 



volume and a surface term independently without 

a shell correction term delivers nearly equal ρ(Sn, 

J𝜋) as compared to our  choice, but another new 

liquid drop model (LDM) fit including a curvature 

term [100] leads to a significant over-prediction 

for actinide nuclei.   

 

VIII: Level densities for arbitrary spins 

Another point needing regard is the determination 

of ℑ. Here an example for a very nearly axial 

nucleus is instructive: In 
238

U the yrast band is 

well described only above spin 20 by the standard 

value for ℑrig , whereas near the ground state 

the level scheme indicates energies to be higher 

by ≈ 60% [101]. To get the spin integrated level 

density ρ(Elab) many spins have to be summed and 

thus we discuss in the following the influence of 

spin and we concentrate on the triaxial situation, 

Eq. (18c). To evaluate ρ(Elab,J) for J≫0 two facts 

will be discussed separately:  

1. In the case of an intrinsic ground state spin J0 

the vector equation Ĵ= Î + ĵ leads to Ei = Ex - Eyr   

and in Eq. (19) a replacement is indicated: 

          ρ(Ex, J𝜋) = m ∙ ρ(Ei, I𝜋)    (20). 

Here m=min (2I+1, 2j+1) represents a weak 

coupling similar as leading to Eq. (11).     

2. Levels containing an elevated collective angular 

momentum I move out of the reference region and 

this is accounted for by the generalized cut-off 

factor e
−
Eyr

T𝑒𝑓𝑓
 already used in Eq. (19). Here the 

spin dependence of the yrast energy 𝐸𝑦𝑟  on 

angular momentum has to be known. For the axial 

case the usual rotational expression E𝑦𝑟(𝐼) = 

ħ2∙I(I+1) 

2∙ ℑ
 is fine, but for broken axial symmetry we 

propose to replace I∙(I+1) by I+c∙I². Axiality is 

represented by c=1 whereas c=0 leads to a linear 

increase of Eyr with I, similar to nuclei with large γ 

[33, 32]. A look at yrast level energies in the 

tables attached to the CHFB work [32] we have 

used for the IVGDR analysis suggests to identify c 

with cos(3γ). This leads to a modification of Eq. 

(19) and Eyr is now approximated by: 

      Eyr = 
ħ2∙(I+c∙I²) 

2∙ 𝕴𝒂𝒑𝒑
;  c = cos (3γ) (21a). 

From absolute excitation energies in the above-

mentioned tables [32] we derive a rough estimate 

for the moments of inertia in dependence of γ and 

a reduction of ℑapp to 

       ℑapp= 
1+64∙𝑐²

65
 ∙ 50/MeV (21b) 

is suggested; the numbers 64/65 and 50 should be 

considered a first estimate and may well be 

changed in further study. Our very simplified 

schematic attempt to cover most heavy nuclei is 

much less sophisticated than a recent paper on the 

spin distribution of nuclear levels [102]. Like our 

work that study uses the framework of the spin 

cut-off model, but it is limited to A<60 and it does 

not consider the breaking of axiality. In our 

approach the reference to the yrast level with spin 

4 is made in view of its presentation in the CHFB 

tables [32] and as important component in the sum 

of Eq. (22), which is centred at I= 4−6. The 

change by more than 20 from the limit c=0 to the 

other extreme c=1 is drastic, but the table reaches 

from quasi spherical triaxial to strongly deformed 

nuclei. Thus we set ℑapp to be not just related to 

rotation but it parametrises smoothly the transition 

from a nucleus with a high energy 1
st
 excited state 

to one with a rotation like band starting from a 

very low 2
+
 state. In certain sense this gradual 

change is an analogue to the blue curve in Fig. 1 

depicting the transition from nuclei with near zero 

Qi and cos3γ to those with large quadrupole 

deformation and axial symmetry. The deformation 

dependence of ℑapp resembles the one of ℑirrot [5], 

but it approaches ℑrig in the axial limit c→1, as 

assumed in previous work [90].  

The modifications used in Eq, (19-21) originate 

from axial symmetry breaking and result in an 

identical low spin limit like in Eqs. (18). The sum 

over spin I leading to the total (spin integrated) 



level density ρ(Ex) is likely to be also influenced 

by it. We could show by numerical tests with Eq. 

(21) and the new choice for ℑapp and Eyr that the 

subsequent Eq. (22), which is nearly identical to 

the proposal made previously [90], holds for this 

‘true triaxial’ case with ℑapp:  

   ρ(Ex)  = ∑ ρ(E𝑥, I)
∞

I=0
     (22a) 

 
ρ(Ex)

ωqp(E𝑥)
 ≅ 
3

4
 ∙∑ (2 I + 1) ∙

∞

I=0
 𝑒
− 
Eyr(I)

T𝑒𝑓𝑓     (22b) 

   ≈
3∙T𝑒𝑓𝑓

1MeV
√
π ∙ ℑ𝑎𝑝𝑝

1eV∙ℏ²
≈3∙σsco√𝜋T𝑒𝑓𝑓  (22c) 

In variance to previous work [90] we replace in Eq. 

(22b) a 3-fold product by a factor 3 as account for 

triaxiality; our estimation for this equation by Eq. 

(22c) is accurate within 15% (cf. Table I). It shows 

an increase of ρ(Ex) over ωqp(Ex) growing from ≈4 

up to more than 15 when going from c=0 to c=1, 

i.e. for nuclei with small γ and large Qi. For this 

‘axial’ limit the increase of ρ(Ex) vs. ρsph(Ex) is still 

there, but smaller than for ρ(Ex,I), as apparent from 

comparing lines b and a in Eq. (18). This 

difference is the result of our approximate account 

for the change with triaxiality in Eq. (21), close to 

what is observed in collective nuclear excitations. 

Here the now proposed decrease of ℑapp with γ and 

the lower slope in Eyr(I) in Eq. (21) play an 

important role via the exponential spin cut-off. The 

increase of ρ(Ex, J𝜋) due to the breaking of axial 

symmetry is included in Eq. (22) and the ratio 
ρ(Ex)

ωqp(E𝑥)
 is a measure of a collective enhancement. 

Our way to estimate it results in an approximately 

linear dependence on Teff and √ℑ; instead of 

adjusting ã by a fit we use the nuclear matter value 

ãnm. Table I shows the resulting γ-dependence of 

the estimations made in Eqs. (21) and (22). 

Compared to a previous estimate of 2-3 for this 

ratio ([80], including a rotational enhancement) we 

predict a clearly larger enhancement due to the 

increase in the number of degrees of freedom. 

 

  

 

 

 

 

 

 

 

                                                                    

 

 

 

 

 

 

Table I: Collective enhancement in dependence of 

triaxiality γ resulting from the approximations in 

Eqs. (21-22) and  corresponding to Teff=500 keV. 

This is also true for the last line representing large 

axial deformation and a rotational yrast line. But it 

was shown [11] that even for large Qi a small 

triaxiality γ is observed experimentally – in 

accordance to theory [33, 32]. The 6
th

 column 

indicates a strong variation of the spin cut off 

parameter σsco and we compare our ansatz to 

experimental data.  

 

IX. Comparison to experimental data 

a. Level densities 

At first, a comparison will be presented for the 

energy region near the neutron separation energy 

Sn, for which good data are available from 

compound resonances for neutron capture in the 

eV and keV range. If even target nuclei are used 

and the neutron energy is low enough, only levels 

with spin ½
+
 are observed and average level 

distances D(E, J𝜋)=1/ρ(E, J𝜋) deliver level density 

information. One may thus use Eq. (18c) if no 

extra proof of axial symmetry conservation exists; 

triaxiality is the more general assumption and thus 

needs no confirmation. For 132 nuclei with A>70 

      γ E(4+)  
ℑ𝑎𝑝𝑝

ℏ²
    

ρ(Ex)

ωqp(E𝑥)
 √
𝕴𝒂𝒑𝒑∙T

ħ2
 

   [deg]   [MeV] [1/MeV] (22b)  (22c)   σsco 

   30.00    2.56     0.78     1.09     2.35    0.62 

   28.09    2.19     1.28     1.42     3.01    0.80 

   26.15    1.29     2.78     2.72     4.43    1.18 

   24.18    0.83     5.28     4.56     6.11    1.62 

   22.14    0.59     8.78     6.60     7.88    2.10 

   20.00    0.45   13.28     8.70     9.69    2.58 

   17.71    0.36   18.78   10.81   11.52    3.06 

   15.19    0.30   25.28   12.92   13.37    3.56 

   12.29    0.26   32.78   15.01   15.22    4.05 

     8.61    0.22   41.28   17.10   17.08    4.54 

     0.00    0.20   50.00   19.17   18.95    5.04 

 



the average distance of respective s-wave neutron 

capture resonances is available [75]. As for spin ½ 

the small J limit in Eq. (18) is lower by a few % 

only as compared to the full expression, it is 

interesting to compare experimental data to this 

limit, as was done in Fig. 7.  

 
 

Fig. 8: Average level densities (Sn ,½
+
) in nuclei with 

51<A<253 as observed in neutron capture by spin 0 

target nuclei. Data (Ɨ) were compiled in RIPL3 [75, 

72]; they are compared to our parameter-free 

prediction with an effective shell correction from a 

liquid drop calculation [97]. The lowest line (dashed 

green) corresponds to assumed axiality, whereas the 

drawn blue line depicts the triaxial calculation. A 

possible increase of 𝜌 may result from an increased ã 

due to surface effects (red dashed line) discussed [76] 

previously.  

 

Fig. 8 depicts the results from using Eq. (18b&c) 

to measurements available for 132 nuclei and 

obviously many of the experimental points lie 

close to the prediction. This accord over many 

orders of magnitude on absolute scale is reached 

without any fitting, if the idea of axial symmetry is 

given up for heavy nuclei in the valley of stability. 

Our prediction is based on a widely used LDM fit 

[97] and it yields reasonable agreement to 

experimental level densities near Sn and this may 

well be regarded as an additional indicator for its 

quality. Applying a damping of the numerator in 

Eq. (14), as proposed previously [95], leads to an 

improved agreement for A~200, but reduces the 

prediction near A~100. The also proposed rise of 

ã by 25% to account for surface effects leads to a 

small increase only, as shown in the figure. To 

significantly increase ρ(E,I) a much stronger rise 

of ã is needed, as has been applied in the past [80, 

72] to compensate the ignored triaxiality. 

Another experimental information [80, 72] on 

ρ(Z,N,Ex,J𝜋) stems from ensembles of discrete 

levels with equal spin populated in nuclear 

reactions at low Ex and counting them  up to an Ex, 

above which completeness is no longer assured. 

To test our approach for odd-n nuclei we selected 

2 spin ½-isotopes with a satisfactory number of 

levels [72]. From counting bound levels, as well as 

resonances just above Sn , plots of ω(Ex,J) were 

produced and depicted in Fig. 7. As their spins are 

known, only 2 obvious assumptions are needed to 

obtain ωqp(Ex) from the data on ρ(Ex,J) by using 

Eqs. (19-20): 
  

1.  Parities are equally distributed.  

2. The spin cut off factor σsco in the exponential 

term can be taken from systematics [93].  
   

This procedure of applying the spin dependent 

factors to the data allows energy differences 

between states of different spin to be shown in the 

same plot. But also spin integrated level densities 

can be regarded with respect to our predictions as 

made in Eqs. (20-22). They may be obtained in 

compound nuclear reactions from observing the 

yields of decay gamma rays from properly defined 

excitation regions. In experiments at the Oslo 

cyclotron the energy of one ejectile from a binary 

reaction is determined magnetically and the decay 

pattern is disentangled by a multi-detector device. 

The dependence of ρ(E) on the excitation energy 

is covered in small steps, but the absolute 

normalization has to come from other sources. At 

the low end the density of discrete levels is used in 

a way similar as we fix the CTM regime at the low 

energy. One example of special interest is shown 

in Fig. 9: Two well deformed nuclei, both with 

mass 238, but different ground state spins 2
+
 and 

0
+
 are compared to each other and to predictions. 



As their Ebs are different, also their phase 

transition energies are so (3.8 and 4.6 MeV) and 

their intrinsic state densities ωqp(Ex). And their 

level density ρ(Ex) is collectively enhanced by 

≈16 for both (see Table I) and by the additional 

spin factor 2j+1=5 from Eq. (20) for 
238

Np. In sum 

they are apart by a factor of 17±3, a value similar 

to the experimental finding.   

 
Fig. 9: Level densities (Ex ) in 

238
U(lower data) and 

238
Np(top) as observed in the reactions 

238
U(d,dx𝛾) 

[103] and 
237

Np(d,px𝛾) [104]. Data (Ɨ, Ɨ) are compared 

to our parameter-free prediction with an effective shell 

correction from a liquid drop calculation [97]. The full 

red curve depicts the calculation for
 238

Np whereas the 

blue full curve corresponds to 
238

U. Results of 

respective HFB calculations [105], summed for both 

parities, are depicted as dotted curves in magenta and 

green, respectively.   

Hence the good agreement of our prediction to 

both data sets is remarkable and this finds support 

by less agreement with the HFB calculations 

[105], which are taken from the RIPL-3 project 

[72], listed as observables ρobs.  

A similar comparison will now be presented for a 

completely different type of nucleus: For 
92

Mo the 

TLO analysis of IVGDR-data indicated triaxiality 

with γ≅30° [16] in accord to CHFB [32] and this 

is supported by the agreement shown in Fig. 10. 

Above Ex = 2.5 MeV our prediction for the 

collective enhancement of 3.6 (cf. Table I) is close 

to the observation of the Oslo group [106, labelled 

‘rec’ in the webpage], which do not reach the 

phase transition energy of 8.7 MeV, as predicted 

by us. The less convincing agreement with 

respective HFB predictions [go08, ca09] indicates 

a need to further improve such calculations, e.g. 

by application of the generator coordinate method 

(GCM) to have the proper angular momentum 

projection as required by quantum mechanics.
 

 

Fig. 10: Level densities (Ex) in 
92

Mo; experimental 

data [Ɨ, tv16] are compared to our parameter-free 

prediction depicted by the blue line. Results of 

respective HFB calculations [105, 72] are shown as 

the wiggly red curve.  

 

In our theoretical reference [32] GCM is included; 

here we only use the broken axial symmetry as 

indicated by Eq. (18c). To quantify the estimations 

made in Eqs. (21 and 22) theoretical information 

on triaxiality and on 4
+

yrast was considered; the 

latter is also given in the supplementary material. 

 

b. Average radiative widths   

 

It was pointed out previously [107] that strength 

information can be extracted from capture data 

directly by regarding average photon widths Γ̅𝛾. 

These are proportional to the ratio between the 

level densities at the capturing resonances r – 

included in f1(Eγ), as already used in Eq. (12) – 

and at the final states b below Sn reached by Eγ = 

Er - Eb, and depend in addition on the photon 

strength in the low energy tail eventually 

extrapolated from the IVGDR. It is known that Γ̅𝛾 

does not vary with Er [107, 68] and hence it can be 



approximated for Jr =1/2
+
 by summing over all 

final bound levels b∈∆b, i.e. over ∆b = [0, Sn + Er]: 
 

 Γ̅𝛾 = ∑  Γ𝛾
𝑟→𝑏 ≅ 𝜌(𝐸𝑏 , 𝐽𝑏) ∙ 〈𝛤𝛾

𝑟→𝑏〉 ∙𝑏∈∆𝑏 ∆𝑏    

       ≅ ∫
𝜌(𝐸𝑏,𝐽𝑏)

𝜌(𝐸𝑟,𝐽𝑟)∆𝑏
 𝑓
1
(𝐸𝛾) 𝐸𝛾

3
 d𝐸𝛾   (24). 

 

Average radiative widths were derived by a 

resonance analysis of neutron data taken just 

above Sn and tabulated [75] for 115 even-odd 

nuclei with 51 ≤ A ≤ 253. These average widths Γ̅𝛾  

allow a combined test of predictions for photon 

strength and level densities, and respective data 

are shown in Fig. 11.  

                               

Fig. 11: Average radiative widths as determined 

experimentally for nuclei populated by radiative 

neutron capture by spin 0 targets with A>50 shown in 

black [⧯, 75] are compared to calculations. The 

combination of the complete dipole strength described 

in sections V to VIII with the level density as given in 

section IX is depicted as drawn blue curve and the red 

dashes indicate an increase of 𝜔qp(0) by 3.   

 

Radiative capture into spin-0 targets through the s-

channel (ℓn=0) is considered only, such that the 

spin cut off in Eq. (19) can be neglected and the 

approximation in Eq. (18c) is valid. As shown in 

Figs. 11 and 12, the agreement between prediction 

and data is satisfactory and we identify the 

following ingredients to be important:  
 

1. A shell correction based on a LDM [97],        

    

2. TLO with deformation values from HFB [32], 
 

3. level densities enhanced by broken axiality. 

 

There are local discrepancies – especially just 

below 
208

Pb – probably related to the neglect of 

shell effects (other than Ebs(Z,A)) in the proposed 

ansatz for the level density and the apparent 

disagreement for A < 70 may have a similar 

origin. The comparison to existing experimental 

data for 〈Γγ〉 as depicted in Fig. 11 uses the photon 

strength as discussed in sections III to V and the 

level density obtained from the parameterization 

described in section VII. This is at variance to 

previous work which only covered limited 

numbers of nuclides and used parameters for ρ(Ex) 

locally adjusted [107, 108, 109, 110, 111]. The 

good accordance to experimental data on absolute 

scale as shown in Fig. 11 enables an evaluation of 

the importance of various approximations applied: 

A decrease of ωqp(0) by a factor of 3 modifies 〈Γγ〉 

by 20 to 50 % when regarding nuclei with A ≈ 70 

resp. A ≈ 240 and this shows that the agreement 

may be improved by an introduction of local 

information, not included in our prediction, which 

is explicitly based on global properties only.  

A large effect is expected from the coupled 

mode (2+∗3−)1-, studied theoretically [6] since 

long, but for its strength only scarce data 

scattered in A and Z are available [112], which 

has been used as a guide here. The increase of 

〈Γγ〉 by magnetic dipole strength was indicated 

[109], but in a recent review [113] this strength 

was demonstrated to be significantly smaller. As 

shown there it is concentrated in isoscalar and 

isovector components of a giant magnetic 

resonance expected near Sn and thus outside of the 

overlap peak in Fig. 5. Also the magnetic strength 

of a scissors mode is discussed there being much 

closer to this peak and of some importance for an 

enhancement of 〈Γγ〉. But still, it appears that, 

similar to non-nuclear systems, electric dipole 

modes dominate radiative nuclear processes. The 

increase due to the inclusion of minor strength 

[21] has been estimated for an average over A to 

increase 〈Γγ〉 by less than 1.5. 



 c. Average radiative capture cross sections 
       

As pointed out [114], the folding of experimental 

neutron capture cross sections as well as those 

given by Eq. (12) with a Maxwellian distribution 

of neutron energies is straightforward. In view of 

the fact that D ≫ Γr ≳ Γrγ the Maxwellian 

averages around 30 keV are formed incoherently 

with neglect of Porter-Thomas fluctuations: 

 

 

By only regarding the radiative capture by spin-

zero targets effects related to ambiguities of spin 

cut-off or dispersion parameters and angular 

momentum coupling are suppressed, but still the 

data vary by about 4 orders of magnitude in the 

discussed range of A – and are well represented by 

the TLO-parameterization used here together with 

the proposed ansatz for ρ (A, J𝜋, Ex), as is obvious 

from Fig. 12. The overall agreement on absolute 

scale and over more than three decades is 

remarkable; a discrepancy observed in the region 

of A > 230 may well be related to an over-

prediction low energy components in state density 

or strength function, which have a large 

importance for high nuclear masses.   

Fig. 12: Maxwellian averages of measured cross 

sections for radiative neutron capture into even nuclei 

with J=0 and 50<A<250 (⧾,[115, 116]) for kTAGB = 

30 keV. They are plotted vs. ACN in comparison to 

calculations based on Eq. (25) with TLO (dotted curve) 

and including the minor components (full curve). The 

level densities are determined as given in section VII. 

This and other local effects originating from 

details of the shell structure cannot all be treated in 

this paper, the main topic of which is the 

importance of triaxiality in heavy nuclei.    

 

   X. Summary and outlook   

 

Admission of axial symmetry breaking of heavy 

nuclei improves a global description of Giant 

Dipole Resonance (IVGDR) shapes by a triple 

Lorentzian (TLO). When theoretical predictions 

are used for the A-dependence of pole energies 

from droplet model [47] and spreading widths 

based on one-body dissipation [58], the TRK sum 

rule is obeyed quite well [14, 18]. Our new 

analysis of data for Nd isotopes based on a 

prediction for their triaxial deformation [32] 

demonstrates this also for cases with rather small 

splitting of the IVGDR. These were previously 

assumed to indicate a large spreading width and 

this makes an extension to energies outside of the 

IVGDR questionable.  

Another effect – hitherto not emphasised as such – 

also indicates a breaking of axial symmetry in 

nearly all heavy nuclei: Without any fit of 

parameters the scheme based on non-axiality 

reproduces observations for level densities in 

nuclei with A > 50 surprisingly well on an 

absolute scale.  Here the Fermi gas prescription is 

only used above a phase transition at the critical 

temperature, the pairing condensation energy is 

included in the backshift and the collective 

enhancement due to symmetry breaking is 

included. Some influence on the intrinsic state 

density ωqp(Ex) as well as on the level density 

ρ(Ex) was found to emerge from the choice made 

for Ebs, by which  the Fermi gas zero is fixed with 

respect to the nucleus’ ground state. Here an 

uncertainty arises from the various LDM fits to 

ground state masses and this, together with an 

ambiguity in the moments of inertia indicates a 

need for comparisons of our fit-parameter free 

  〈σ(n, γ)〉kT ≅ 

2

√𝜋
 
∫ 𝜎𝑐(𝐸𝑛) 𝐸𝑛·𝑒

−𝐸𝑛/𝑘𝑇 d𝐸𝑛
∞
0

∫  𝐸𝑛·𝑒
−𝐸𝑛/𝑘𝑇 d𝐸𝑛

∞
0

      (25). 



ansatz to experimental data. We present here some 

such comparisons showing good agreement for the 

choice proposed by us.  

This leads to the conclusion that the combination 

of the TLO-based photon strength approach to the 

‘triaxial’ Fermi gas formalism for level densities 

predicts neutron capture in the range of unresolved 

resonances – including Maxwellian average cross 

sections compiled recently [115] for 〈En〉=30 keV 

– reasonably well. A good understanding of the 

radiative capture of fast neutrons is an important 

part for any theoretical attempt in the direction of 

the transmutation of nuclear reactor waste [22, 23, 

24]. We predict level densities in actinides well 

and we showed that TLO produces a good 

description of IVGDR data for 
197

Au [15]; our 

approach may be a guideline for predictions for 

radiative capture of fast neutrons by actinide 

nuclei.  

Five points are made here again:  

1. The triple Lorentzian (TLO) description of 

IVGDRs and their low energy tail agree well to 

data without any modification by extra energy 

dependence. Deformation and triaxiality values 

are taken from CHFB-calculations [32] with the 

generator coordinate method assuring good 

angular momenta by a proper spin projection.  
 

2. A direct account for broken symmetries leads to 

a good agreement of the TLO-predictions to 

experimental IVGDR shapes in accord to the TRK 

sum rule without any fit parameters other than an 

effective mass for resonance energies and one 

parameter to fix their widths versus Ex; both are 

global for all heavy nuclei studied [19].  
 

3. By admitting broken axial symmetry the rather 

common procedure to predict level densities is 

modified such that agreement to data on absolute 

scale is obtained without an adjusted ‘level density 

parameter’ and ad hoc assumptions on collective 

enhancement made previously [72].   

 

4. The predictions for average radiative widths and 

Maxwellian cross sections are sensitive to three 

not fully controlled ingredients: The state density 

ωqp(0) near the ground state of the final nucleus, 

the moments of inertia and the extraction of the 

back-shift energy from liquid drop model  fits. 

5. Low energy dipole strength induced by modes 

other than the IVGDR has some influence on 

capture yields [21], and further experimental 

studies would help to better quantify this.  
 

 XI. Conclusions  
 

The breaking of axial symmetry in excited heavy 

nuclei is an important feature for the analysis of 

giant dipole resonance data presented here once 

more. Previously this breaking was indicated for 

nuclei in the valley of stability in a few theoretical 

and experimental studies only and many other 

experiments were not sensitive to it. We now show 

its value for a description of level densities in their 

dependence on energy and angular momentum as 

obtained for nuclei in the valley of stability and 

this is important for predictions on compound 

nuclear reactions. For more than 100 spin-0 target 

nuclei with A>50 resonance spacing data and 

average capture cross sections are well described 

by formulae with only a surprisingly small number 

of freely adjusted parameters, which turn out to be 

global i.e. A-independent, when a breaking of 

axial symmetry is accepted. Its application also for 

exotic nuclei seems attractive and the new global 

ansatz derived in the present work has the 

potential to yield good predictions for radiative 

neutron capture, which are important for nuclear 

astrophysics and for the transmutation of nuclear 

waste.  
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