
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

A new measuring concept to determine the lift force for distorted 
bubbles in low Morton number system: Results for air/water

Ziegenhein, T.; Tomiyama, A.; Lucas, D.;

Originally published:

June 2018

International Journal of Multiphase Flow 108(2018), 11-24

DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2018.06.012

Perma-Link to Publication Repository of HZDR:

https://www.hzdr.de/publications/Publ-26508

Release of the secondary publication 
on the basis of the German Copyright Law § 38 Section 4.

CC BY-NC-ND

https://www.hzdr.de
https://www.hzdr.de
https://doi.org/10.1016/j.ijmultiphaseflow.2018.06.012
https://www.hzdr.de/publications/Publ-26508
https://creativecommons.org/share-your-work/cclicenses/


A new measuring concept to determine the lift force for distorted 

bubbles in low Morton number system: Results for air/water 

T. Ziegenheina,*, A. Tomiyamab, D. Lucasa 

a Helmholtz-Zentrum Dresden-Rossendorf e.V., 01314 Dresden, Germany 

b Graduate School of Engineering, Kobe University, 1-1, Rokkodai, Nada, Kobe 657-8501, Japan 

* Corresponding author. Tel.: +49 3512602503; fax: +49 3512603440.  

E-mail address: t.ziegenhein@hzdr.de (Thomas Ziegenhein). 

 

Abstract 

The lift force, which strongly influences the spatial bubble distribution, is one 

of the most important non-drag forces. However, measurements in systems 

with a low Morton number are limited. In the present work, a time-averaging 

measurement method with which this gap can be closed is discussed. The 

experimental setup is kept as simple as possible, avoiding any moving parts. 

The single bubble movement through a linear shear field was observed three-

dimensional over 75 minutes. In total, 85 measurement points cover 13 bubble 

sizes at 7 different shear rates. The results reveal that former empirical 

correlations obtained from experiments and simulations in predominantly high 

Morton number systems are applicable. In this context, the characteristic 

length scale that is used to describe the lift force needs to be carefully defined. 

From the present results, the major axis seems to be the most reasonable choice 

for wobbling bubbles. However, the major axis might be dependent on the flow 

properties, which leads to a flow dependent lift force formulation. 
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 Introduction 

Bubbly flows play an important role in many industrial production processes, safety 

engineering, as well as in natural phenomena. Since the bulk flow in such applications is 

usually non-uniform, so-called non-drag forces strongly affect the flow-structure. As one of 

the very important non-drag forces, the lift force on bubbles in shear fields is studied 

intensively since the 70’s of the last century. In pipe flows, specifically in the field of nuclear 

safety engineering, the effect was early noticed by observing gas accumulations near the 

walls (e.g. by Rouhani (1976)). However, the impact on the flow structure is manifold. In 

general, the lift force tends to stabilize or destabilize a flow regime, depending on the sign of 

the lift coefficient (Lucas et al. 2005). Despite its importance, the lift force is yet not well 

understood; even, reliable measurements are limited under industrially relevant conditions. 

The present work aims to fill this gap by studying a new measurement concept for low 

Morton number systems and non-laminar background flows. 

For spherical bubbles, the lift force is connected to the lift force of rigid spheres under certain 

flow circumstances; indeed, for the asymptotical solution of an inviscid bubble in viscid 

fluids and finite shear rates the lift coefficient is �2 3� �� times the coefficient of a rigid sphere 

(Mei & Klausner 1994) (Legendre & Magnaudet 1997). However, the complexity is increased 

as being away from asymptotic conditions (Legendre & Magnaudet 1998) and hardly 

describable when the assumption of spherical bubbles is not valid any more. 

Kariyasaki (1987) showed that the lift force is different for large, deformable bubbles by 

using the well-known rotating belt experiments. He was able to demonstrate that large 

bubbles travel in the opposite direction in a linear shear field compared to small bubbles. 

This sign change could be reproduced in numerical simulations (e.g. Ervin & Tryggvason 

(1997), Bothe et al. (2006), and Dijkhuizen et al. (2010)) and experimentally by Tomiyama 

et al.  (2002), Aoyama et al. (2017) as well as by Lucas & Tomiyama (2011). For a systematic 

description, attempts were made to split the problem in a shear-induced and shape-induced 

part. For the later, the direct numerical simulations by Naciri (1992) and Adoua (2009) 

should be noted, who revealed a very complex behavior of the lift force depending on the 

Reynolds number, aspect ratio and shear rate. 

To fulfill the purpose of measuring the lift force for deformable bubbles that are traveling on 

chaotic paths in low Morton number systems, an averaging procedure is needed. The 

established method of evaluating the path inclination of single bubbles, which is used for the 

evaluation of experiments (e.g. Tomiyama et al. (2002)) and for Direct Numerical 

Simulations (DNS) (e.g. Bothe et al. (2006)), is not applicable. Indirect measurement 

concepts that are for example proposed by Kulkarni (2008) and Lucas & Tomiyama (2011) 

are not exact or are not able to quantify the lift force. 

The time-averaging procedure and the corresponding force equilibrium described in the 

present work are feasible for low Morton number systems and turbulent conditions. 
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Moreover, a very simple experimental setup is used with which a linear shear field can be 

generated without using moving parts. Finally, the results are critically discussed and 

compared to previous measurements and simulations. 

For the evaluation of the lift force, we use the formulation of Zun (1980) based on the 

formulation for rigid spherical particles by Lawler (1971) 

 ��	
� � 
��������� 
 ����� � ���������		. (1) 

Deionized water as the continuous phase and filtered air as the dispersed phase are used. 

For interpreting and comparing the results to previous work, we use the following set of 

dimensionless numbers 

��	 � Δ��� �! , ��# � Δ���#�! , $% � �&'()� * , $%# � �&'()�#* ,+� � �*,Δ�
��!- 		. (2) 

The modified Eötvös ��# and Reynolds number $%# are calculated with the major axis of the 

bubble �#. All volume flow rates are given at atmospheric pressure, 1.013 bar, and room 

temperature, 20°C. The measurements cover the following range:	0.62 0 �� 0 3.83,	1.18 0��# 0 11.1,	760 0 $%# 0 2185, and	+� � 2.63 ⋅ 10677. 

 Experimental setup and measuring concept 

To simplify the evaluation of the lift coefficient, linear shear fields are in the focus. In low 

viscid fluids, however, a linear shear field is not easy to create. In particular, shear that is 

generated at walls hardly creates proper shear fields, which excludes the usage of rotating 

belts as used in previous measurements. Using pumps to create pressure gradients to drive 

a flow with a linear shear field is complicated and needs a very elaborate experimental setup. 

Moreover, pumps and other moving parts can contaminate the fluid due to abrasion and can 

create undesired oscillations in the system. Moreover, the experimental setup needs a very 

large amount of fluid due to long running-in distances. To overcome these problems, we 

drive a circulating flow in a rectangular bubble column by bubbles (Figure 1). An elongated 

vortex is generated in the whole column by the bubbles generated at one side. Inside the 

vortex, an almost linear shear field over a wide area is obtained due to the geometry of the 

column, which was designed by Computational Fluid Dynamics (CFD) simulation 

beforehand. The lift force is studied with bubbles generated at the opposite side traveling 

through the linear shear field of the vortex. 

We used deionized water that was replaced every four hours. The bubbly flow that drives 

the fluid was generated with four 0.6 mm needles. For the lift force evaluation, single bubbles 

were generated using various needles. With this method, bubbles in the range from 2.45 to 

6.4 mm diameter of an equivalent volume sphere were constantly generated at gas volume 

flows up to	11	89-/9;<. The shear rate was varied in the range of 2.1 to 2.8 1/= by varying 

the gas volume flow rate of the driving bubbly flow from 0.6 l/min to 1.2 l/min. In total, 13 

bubble sizes at 7 shear rates were evaluated. However, the results of the highest shear rate 
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for the six largest bubbles were sorted out since the bubble paths were too close to the 

driving bubbly flow. Overall, 85 measuring points are taken into account. Per measuring 

point, the flow was measured five times each 15 minutes with a gap of about 10 minutes in 

between. The measurements were consecutively conducted over 7 weeks. 

In order to correct the perspective of the camera and to evaluate the flow in three 

dimensions, the bubbles were stereoscopically recorded by using two Red Lake Motion Pro 

cameras with a 70 mm f3.6 Sigma lens for the front and a 50 mm f1.4 Nikkor lens for the side 

view. The bubbles were automatically identified by using a modified Canny edge detector. 

The bubble velocity was determined by tracking the bubbles over 10 pictures. Both methods 

are described in our previous work (Ziegenhein et al. 2016) in detail. The liquid velocity field 

was measured with Particle Image Velocimetry (PIV). For this purpose, the  flow  was  seeded  

with  20-50  µm  Rhodamine  imprinted  PMMA  particles  from microParticles  GmbH.  The 

particles were illuminated by a double-pulsed, two dimensional laser light sheet from the 

side. The time difference between the pulses was 1/2500 s; the double pulse was generated 

every 0.2 s. The flow field differed slightly when different bubble sizes for the lift force 

evaluation were generated at the side so that for all 85 measuring points the liquid velocity 

field was measured. The bubbles that are traveling through the measurement area were 

masked for the PIV measurements as described in our previous work (Ziegenhein & Lucas 

2016). The bias sampling that occurs due to the presence of bubbles before the measuring 

plane and due to the shadows of the bubbles in the measuring plane (Ziegenhein & Lucas 

2016) was considered but negligibly small. The PIV measurements were executed in an extra 

step after the bubbly flow measurements so that the single bubbles with which the lift force 

was measured were not contaminated with the Rhodamine tracer particles. 

 

Figure 1 Experimental setup 
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2.1 Liquid Velocity field 

The time averaged liquid velocity field generated by the driving bubbly flow is shown for 0.8 

l/min in Figure 2. The bubbles for the lift force evaluation, which are generated at the left 

side of the column, rise up through the downward flow section of the elongated vortex. The 

driving bubbly flow on the right side generates a constant shear field with respect to the 

vertical liquid velocity at different heights. Due to the nature of the vortex, however, the 

horizontal velocity is not constant over height. The horizontal liquid velocity is crucial for 

the horizontal slip velocity and will be taken into taken account for the lift force evaluation. 

 

 

 

Figure 2 Liquid velocity field in the center of the column for a gas volume flow of the 

driving bubbly flows of 0.8 l/min. 

Important for the evaluation of the lift force is a flat velocity profile in depth. On one hand, it 

simplifies the force balance since the depth direction can be neglected when a time average 

is applied. On the other hand, it is vital to guarantee that bubbles do not cluster at certain 

positions. For example, when a center-peaked downward velocity profile is present, large 

bubbles with a negative lift coefficient would be pushed to the wall due the lift force. 

Consequently, asymmetrical wall effects disturb the wake structure distinctly and as a result, 

no meaningful measurement would be possible. By shifting the PIV measurement step-by- 

step out of the center (Figure 3) a sufficiently flat liquid velocity profile was proven. 
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Figure 3 Liquid velocity profiles in depth direction at two different Position at a height of 

Y=600 mm. 

The turbulence is moderate and linearly increasing with increasing flow rates of the driving 

bubbly flow. The turbulent kinetic energy (Figure 4) is determined by the free surface of the 

bubble column and the driving bubbly flow. Moreover, local differences can be observed with 

a minimum in the center of the vortex and an anisotropic behavior in the downward flow 

region. 

  
Figure 4 Root mean square (rms) of the two normal fluctuation components u’ (horizontal 

direction) and v’ (vertical direction) for a gas volume flow of the driving bubbly flow of 0.8 

l/min. 

2.2 Bubble Generation 

The bubbles for the lift force evaluation were generated with needle spargers and a mass 

flow controller including a control unit to maintain a constant gas volume flow. To constantly 

generate large bubbles, plastic caps in which the bubbles coalesced before leaving the 

sparger were used. This method is relatively simple but can produce a wider bubble size 

distribution due to transient instabilities. However, because of the long measurement time 

and the needed large amount of bubbles a mechanical bubble generator was not applicable. 

Despite outliers were identified based on the diameter of an equivalent volume sphere 
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(Figure 5 left), the major axis distribution is still very wide (Figure 5 right) due to wobbling 

effects. The major axis in this work is defined as the longest axis of the bubble projected on 

the front view, which is substantially larger than the horizontal axis for wobbling bubbles. 

Previous work under laminar conditions used the perpendicular axis to the flow. However, 

under laminar conditions the major axis, the perpendicular axis to the flow and the 

horizontal axis are equivalent since the bubbles are not wobbling or meandering. In 

turbulent conditions, the instant perpendicular axis to the flow is not known and the 

perpendicular axis to the time averaged flow as well as the horizontal axis is not meaningful. 

Under the assumption that the major axis and the instantaneous perpendicular axis to the 

flow are similar, we decided to use the major axis as a dominant length scale. This choice is 

supported by a very good agreement between the present results and previous work as will 

be discussed in the result section. 

  
Figure 5 Bubble size distribution (left) and major axis distribution (right) for different 

sparger sizes and setups.  

2.3 Gas phase velocity 

The gas phase velocity is determined by tracking the bubble center. The bubbles were 

recorded and tracked in sets of 10 successive pictures recorded with 250 frames per second 

with a gap of 1 second between the sets. The time-averaged results are illustrated in Figure 

6. As a first impression from the vector plots, the shear field of the liquid velocity can be 

nicely observed and the small bubbles of 2.97 mm size (�� � 0.28� tend to move to the left 

side whereas the larger bubbles of 4.23 mm size  (�� � 
0.01� are traveling more or less 

straight upwards. For evaluating the lift force, the bubble velocity was determined only along 

the averaged path, which is described in the next section. The mapping on a mesh shown in 

Figure 6, which is just for illustrations, was not used. 
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Figure 6 Illustrated time averaged bubble velocity for 2.97 mm bubbles (left) and 4.27 mm 

bubbles (right) for 0.8 l/min gas volume flow of the driving bubbly flow. 

Knowing the bubble velocity and the liquid velocity field, the vertical slip velocity can be 

calculated easily (Figure 7). The results fall on the semi-empirical correlation of Bozzano & 

Dente (2001) that was formulated for clean conditions. Since the slip velocity would be 

smaller the more the flow is contaminated (Ishii & Zuber 1979), the results indicate that the 

deionized water used was sufficiently clean. 

 

Figure 7 Measured slip velocity of the bubbles in vertical direction compared to the terminal 

velocity calculated from different models. 

2.4 Path averaging 

Wobbling bubbles under non-laminar conditions have chaotic pathways through a more or 

less chaotic turbulent shear field. Since the flow field around the bubble is hardly 

measureable, an averaging procedure has to be applied. A suitable averaging framework is 

the two-fluid approach of Ishii & Hibiki (2006). The gas phase and the liquid phase are 

modeled as interpenetrating continua represented with a void fraction. The resulting 

momentum equations can be solved numerically on a grid. This procedure is the basis for 

determining the lift coefficient in the present work. The void fraction, liquid velocity, and gas 
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phase velocity field are measured. Under the assumption of negligible pressure forces on the 

gas phase the force equilibrium on the averaged gas phase is zero so that the lift force can be 

calculated. 

The void fraction field is determined three-dimensionally in the measuring volume. For this 

purpose, an isotropic grid with a distance from point to point of 0.1 mm is used, resulting in 

a 30 million-cell grid. On this grid, every measured bubble is represented by a three-

dimensional ellipsoid including the bubble’s inclination. If a grid point is inside a bubble, a 

counter on this point is increased by one. After dividing the counter by the amount of 

pictures taken, a representative three-dimensional void fraction is obtained. An isosurface 

of the resulting ensemble averaged void fraction, which is equal to a time-averaging 

procedure, is shown in Figure 8. 

 

 

Figure 8 Isosurface at > >?@A⁄ � 0.46	of the three-dimensional void fraction for a bubble 

size of 2.97 mm and a driving bubbly flow of 0.8 l/min. 

In order to formulate a reasonable force balance equation, the maximum void fraction path 

is searched. This path is the connection of the maxima in different horizontal xz-slices along 

the y-axis. For this purpose, the three-dimensional mesh was coarsen by averaging over 

10x10x10 cells resulting in a 1 mm grid size. The maxima were afterwards connected 

through a spline interpolation to get a reasonably smooth path. 
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Figure 9 The averaged bubble path obtained from the three-dimensional void fraction shown 

in Figure 8. 

2.5 Calculating the lift coefficient 

The necessary set of forces in the framework of the time averaging procedure (indicated with 

a bar over the variables) needs to be defined at first. In this context, we consider the 

buoyancy force, the virtual mass, the drag, the wall, and the turbulent dispersion forces; 

other effects like the Basset force or turbophoresis are neglected. In spite of this relatively 

simple set of forces, some assumptions need to be made. At first, the turbulent dispersion 

force is up to now not well defined, different models can be found in literature that take 

different effects into account. However, regarding the time averaged turbulent dispersion 

force all formulations depend on the spatial gradient of the void fraction. The turbulent 

dispersion force therefore does not need to be considered along the maximum void fraction 

path since it is connecting the time averaged local maxima. Hence, the first assumption can 

be written as: 

�DE'FGHIJ������, � ����KKKKKKKKKKKKKKKKKKKKKKKKKKKKKLMNMAOPQ � 0		. (3) 

Since the maximum void fraction path is in the center of the column, the wall forces do not 

need to be considered. Further, we assume that the model coefficients of the forces are (time 

averaged) isotropic, except for the virtual mass force coefficient, which is in line with 

previous lift force measurements. Next, we assume that the slip velocity is not correlated to 

moderate shear rates, which was shown by Dijkhuizen et al.  (2010) by Direct Numerical 

Simulations (DNS). This assumption can be written as: 
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����R |�� 
 ��|
KKKKKKKKKKKKKKKKK � ����R

KKKKK 	|�� 
 ��|KKKKKKKKKKKK		. (4) 

Last, we assume a weak correlation between the model coefficients and the flow parameters. 

This is commonly used in all two-phase simulations that include an averaging or filtering 

process for turbulence. Looking at the lift force formulation in one direction, the averaging 

process for a constant liquid density is written as  

	�������,T 
 ����,T�	 ⋅
���,T�R

KKKKKKKKKKKKKKKKKKKKKKKKKKKKK

� ��& U�� , �����,T 
 ����,T�	 ⋅
���,T�R V

+ ��KKK U��& U�����,T 
 ����,T�	,
���,T�R V + �����,T 
 ����,T�KKKKKKKKKKKKKKKKK	���,T�R

KKKKKKKV	, 

(5) 

with ��& the Covariance. Using the assumption from Equation (4), this can be rewritten as 

��KKK	�����,TKKKKK 
 ����,TKKKKK����,T�R
KKKKKKK

� �������,T 
 ����,T�	 ⋅
���,T�R

KKKKKKKKKKKKKKKKKKKKKKKKKKKKK 
 ��& U�� , �����,T 
 ����,T�	 ⋅
���,T�R V		. 

(6) 

With the assumption of a weak correlation between the lift coefficient and the product of the 

slip velocity and shear rate, the covariance term is zero and the averaged lift force is equal 

to the lift force calculated from the single time averaged components. 

The assumptions made simplify not only the force formulation, but also the measurements. 

In particular, the gas and liquid phase properties can be measured separately. Overall, the 

force balance that is used along the bubble path can be written as: 

	��KKK�������KKKK 
 ����KKK� � ��������KKK�
� Δ��� + XYZ�� [����KKK[� +

3
4	
1
� KKKK	�G��\����KKKK 
 ����KKK\�����KKKK 
 ����KKK�. 

(7) 

  

The virtual mass coefficient,	XYZ, is an anisotropic tensor with only values different from 

zero on the main diagonal. The values for XYZ are calculated as suggested by (Tomiyama 

2004), which were close to	0.5. The drag coefficient,	�G, is taken from the correlation of 

Bozzano & Dente (2001). 

The force balance is only applicable along the averaged path obtained from the three-

dimensional void fraction. The local lift coefficient is now simply calculated from Equation 

(7). For this purpose, the liquid velocity determined in the interrogation areas of the PIV 

discretization is interpolated to the path positions. The gas phase velocity as well as the 

bubble size is calculated by a weighted average in a 5 mm sphere around the path positions. 

The time-averaged values are determined by averaging over all bubbles inside this sphere. 
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The weight for averaging inside the sphere, which is defined between 0.2 and 1, is the 

distance to the path position; the closer the bubble is to the path position the higher the 

weight. 

 Results 

3.1 Local results 

Solving the force balance from Equation (7), the lift force can be determined locally along the 

averaged path. Examples of these paths with a representation of the slip velocity are shown 

in Figure 10 a) for three different bubble sizes. The examples have a positive, vanishingly 

small, and negative lift coefficient, which can be clearly seen from the slip velocity vectors 

pointing in different directions. The slip velocity in horizontal direction (Figure 10 b)) is the 

crucial component for calculating the lift coefficient (Figure 10 c)). The shear rate ��T �R⁄  

(�T is the liquid velocity in vertical direction and R the horizontal coordinate), which causes 

a horizontal lift force, is dominant compared to	��A �]⁄  (Figure 10 d)). The other shear rates 

are a factor of 100 smaller than	��T �R⁄ . 

The slip velocity in horizontal direction is small compared to the slip velocity in vertical 

direction, which demands a high resolution of the determined liquid and bubble velocity. The 

wobbling of the bubbles causes a very high instantaneous horizontal velocity, which is the 

reason for the very long measuring time. The measuring time is further increased because 

the time-averaged bubble velocities required for force equilibrium, Eq. (7), are obtained by 

averaging the instantaneous velocities of bubbles near the averaged path. Therefore, 

measured bubbles away from the path, which are the majority, are not considered. All in all, 

the measurement of a small slip velocity from a high fluctuating bubble velocity and the 

usage of two different measurement methods for the bubble velocity (PTV) and liquid 

velocity (PIV) at separated times, are the key points of the present method. In general, the 

used measuring time is not sufficient to resolve locally the lift force, which is indicated by the 

fluctuating lift coefficient over height in Figure 10 c). Averaging the results along the path 

improves the statistics and meaningful results are obtained. 

Wobbling bubbles rise in quiescent water in more or less stable pathways, which can 

substantially influence the forces acting on them (Tomiyama 2004). When the background 

flow was not present, this behavior of bubbles rising in chains was also observed for the time 

averaged bubble paths. However, with the turbulent background flow, pattern-like steady 

oscillations in the bubble paths, slip velocities, and lift coefficient results were not observed. 

Therefore, it can be assumed that the bubbly flow is truly random and the averaging process 

is reasonable. 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 10 Results along averaged bubble paths for three bubble sizes. a) The averaged path 

with the slip velocity as vector, for a better representation the x component of the slip 

velocity was multiplied by 5. b),c),d) The slip velocity in x-direction, the local lift coefficient 

and the shear rate, respectively, on the averaged path with the y-coordinates as parameter. 

3.2 Shear rate dependency and reproducibility 

By varying the gas volume flow rate of the driving bubbly flow, seven different shear rates 

were investigated in the range of 2.1 and 2.8 1/= (Figure 11). The measurements of 

Tomiyama et al. (2002) under laminar conditions and for high Morton numbers revealed no 

dependency on the shear rate. DNS in lower Morton number systems (Dijkhuizen et al. 2010) 

likewise revealed no dependency on the shear rate. However, the DNS results scatter too 

much for a definite statement. Recent measurements of Aoyama et al. (2017) show a slight 

dependency for Reynolds numbers below 10. A clear dependency of the lift coefficient on the 

shear rate was also not observed in the present experiments with Reynolds numbers around 

1000. Nonetheless, the present results tend to scatter too so that a trend might be covered 

in the statistical uncertainty. 
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Figure 11 Lift force results for different shear rates and different major axes. 

If no dependency of the lift coefficient on the investigated shear rates is assumed, the results 

for the same bubble sizes can be used to assess the reproducibility of the experiments. For 

this purpose, we excluded extreme outliers like the result for ��# � 1.71 at a shear rate at 

around 2.575 1/= shown in Figure 11; however, only one outlier per bubble size was 

excluded. Such outliers are caused by the long time measurement campaign of seven weeks 

and that almost all data points shown in Figure 11 are obtained at different days. Even with 

great care and a daily calibration of the setup, operational errors or other trivial errors are 

hardly avoided over a 35 days measurement campaign that need to be very exactly executed. 

In Figure 12, the results are shown with respect to the Eötvös number calculated with the 

diameter of an equivalent volume sphere as length scale. While the six single measurements 

for smaller bubbles lie close together, the results scatter very much for the larger bubbles. 

This large scatter is simply caused by insufficient statistics. While we tracked 60,000 bubbles 

of the smallest bubble size in the 75 minutes measuring time per measuring point, we 

tracked only 4,000 bubbles for the largest bubble size. The reason for this smaller bubble 

count is that the bubble diameter is increasing with the cube root regarding the bubble 

volume. However, the gas flow rate was limited since we observed during the PIV 

measurements a distinct influence on the vortex structure when large bubbles at relatively 

high frequencies were generated. 

To assess the repeatability over the complete measuring campaign, we measured the lift 

coefficient around �� � 1.75 three times with different sparger setups at the beginning, in 

the middle and the end of the campaign. The 18 measuring points are reasonably close 

together in Figure 12 so that it can be assumed that the measuring conditions like water 

quality were not changing. Further, to determine the sign change of the lift force, two 

measurements were executed at the expected Eötvös number of around 2.4. 
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Figure 12 Results of the lift force measurements compared to results from literature for 

different Morton numbers. For the Tomiyama correlation, the Wellek (1966) correlation is 

used to calculate the spherical equal bubble size for their system of glycerol-water mixtures. 

3.3 Comparison to the literature 

 

Figure 13 Comparison of the present results with literature with respect to the bubble 

Reynolds number. 

For the further evaluations, the results are averaged over the different shear rates since no 

dependency of the shear rate is expected as discussed in the previous section. In particular, 

this averaging helps to increase the statistics for the large bubbles. 
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A dependency of the lift coefficient of the used system is clearly observable in Figure 12. This 

dependency is underlined in Figure 13 by comparing the present results to the results of 

Aoyama et al. (2017) with respect to the bubble Reynolds number. With a decreasing Morton 

number, the flow around the bubbles becomes more and more turbulent. While Aoyama et 

al. observed the sign change for the lift force around a Reynolds number of 150 for	+� �2.51 ⋅ 106^, the sign change from the present measurement is already around 1000 for	+� �2.63 ⋅ 10677. However, similarities can be clearly seen. The lift coefficient seems to be 

linearly changing around the sign change with the Reynolds number. Moreover, the 

measurements seem to approach the spherical bubble model of Legendre & Magnaudet 

(1998) for positive lift coefficients. This might be the reason why we do not see a plateau in 

our measurements at small Eötvös numbers as observed by Tomiyama et al. (Figure 14). The 

smallest bubbles in our measurements at +� � 2.63 ⋅ 10677 are simply still too deformed to 

reach the spherical bubble regime; Tomiyama et al., however, reached this limite in their low 

Morton number experiments. 

In addition to the dependency of the Reynolds number, the disagreement of the different lift 

force measurements in Figure 12 is caused by a complex correlation of the major axis and 

the used system. Bubbles with the same Eötvös numbers have a different major axis at 

different Morton numbers. The major axis, however, might be strongly connected to the lift 

force. If the modified Eötvös number, which is calculated with the major axis as the length 

scale, is used the agreement between the present measurements, the measurements of 

Tomiyama et al. and the DNS of Dijkhuizen et al. is good (Figure 14). It should be noted that 

only the horizontal axes from the DNS of Dijkhuizen et al. and the experiments of Tomiyama 

et al. are known and it is assumed that the horizontal axis is equal to the major axis at this 

point. This assumption is reasonable for the experiments of Tomiyama et al. since no 

wobbling at the combinations of Morton and Eötvös numbers they used occur. However, in 

the systems used for the DNS, wobbling or path instabilties are likely so that the major axis 

is underestimated by the horizontal axis, which might be the reason for the general 

underestimation of the DNS results in Figure 14. 
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Figure 14 Comparison of the present results with correlations from literature. 

The measurements of Aoyama et al. revealed a complex behavior of the lift coefficient 

regarding the Morton number with respect to the modified Eötvös number. The slope and 

the sign change are changing distinctly when the Morton number is varied. It seems that the 

sign change is moving to smaller bubble sizes with decreasing the Morton number. However, 

this trend is reversed somewhere between +� � 2.51 ⋅ 106^ and	+� � 2.63 ⋅ 10677 since 

our results show a sign change at	��# _ 6.1. As discussed by Aoyama et al. (2017), the 

findings of Lucas and Tomiyama (2011), who determined the sign change in steam/water 

systems, support that this upward trend is going on for Morton numbers lower than	+� �2.63 ⋅ 10677. Nevertheless, all lift force measurements show a strong linear trend around the 

sign change, which might be also the most interesting area for engineering applications.  

The steadily descending trend of the lift force with increasing ��# seems to be flatten out for 

the larger bubbles. However, besides that the statistics for the large bubbles are not 

satisfactory, a certain wall influence for the large bubbles should be considered at this point. 

With a major axis of almost 10 mm for the largest bubble, a 50 mm deep test facility might 

not be sufficient to assume negligible wall effects on the wake structure. Nevertheless, the 

same behavior of a flat trend of the lift coefficient for larger bubbles after a steep descend 

was observed in the experiments by Dijkhuizen et al. (2010) in contaminated water, too. 

 Discussion and Conclusions 

An averaging procedure to determine the lift force for low Morton systems and turbulent 

conditions is discussed in the present work. This procedure was applied to single bubbles 

ascending in a linear shear field created by a bubbly flow in a bubble column. Such a ‘bubble 

pump’ setup has the advantage that no moving parts are required and therefore a very 
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simple measurement concept is obtained. Further, the buoyancy of the bubbly flow is a 

volumetric force with which sufficiently strong linear shear fields in low viscosity systems 

can be produced. In total, 85 measuring points are considered for 13 bubble sizes in the 

range of 2.45 to 6.4 mm equivalent volume sphere diameter and 7 shear rates in the range of 

2.1 to 2.8 1/=. 

The results show a clear dependency of the lift force with the bubble size in low Morton 

number systems under turbulent flow conditions. A dependency of the shear rate on the lift 

coefficient was not found. Taking the major axis of the bubbles as characteristic length, the 

results agree very well with the results obtained by Tomiyama et al. (2002) in highly viscous 

systems and the results of the DNS of Dijkhuizen et al.  (2010). The results of Aoyama et al. 

(2017) reveal a complex connection of the lift coefficient and the Morton number. 

Nevertheless, the major axis as the characteristic length scale for the lift force phenomena 

seems to be a reasonable choice. 

Since the diameter of an equivalent volume sphere is used to describe the bubble forces, a 

model for the major axis is needed. For this purpose, the existing aspect ratio correlations 

can be used if a rotational ellipsoid for the bubble shape is assumed. For example, Tomiyama 

et al. used the correlation of Wellek et al. (1966) for contaminated systems. In our previous 

work (Ziegenhein & Lucas 2017) we examined the bubble shape of six different bubble 

column setups under different flow conditions. We found that the Wellek correlation is 

underpredicting the major axis for clean air/water system under realistic conditions. Our 

and the Wellek correlation are compared with the present results by using the formulation 

�# � � `1 + a	�� b 	, (8) 

in Figure 15. As expected, the Wellek correlation underpredicts the major axis, but also our 

correlation obtained with the same water quality still underpredicts the present results. A 

reason for this deviation is that we found in our previous work (Ziegenhein & Lucas 2017) a 

slight flow dependency of the bubble shape, especially for smaller bubbles. Our correlation 

might be suitable for bubble columns at medium void fractions, but not for single bubble 

experiments. A proper fit to the present setup with linear shear fields would be obtained 

with	a, c � 0.7. 
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Figure 15 Relation between the Eötvös number and major axis with respect to  

Equation (10) 

The small differences in the bubble shape are crucial for the lift force, in particular for the 

sign change. The Wellek correlation would predict a sign change around 5.8 mm diameter of 

an equivalent volume sphere. Our correlation for bubble columns under operating 

conditions around 5.2 mm. In fact, the present results deliver a sign change at 4.8 mm. By 

considering an influence of the flow field on the bubble shape, the lift force is indirectly 

dependent on the flow. In pipe flows with strong gradients, the bubble shape might be even 

locally changing resulting in complex modelling issues. In this context, a lift force correlation 

formulated with the modified Eötvös number and a bubble shape correlation obtained under 

relevant conditions is up to now the most reasonable choice. 

The present results are in particular vital for the model development of numerical 

simulations since a great number of validation experiments are executed in air/water. For 

such work, the regime in which the lift force correlation is obtained should be evaluated by 

considering the Reynolds number. Specifically, the plateau of constant lift coefficients, as for 

example predicted by the Tomiyama correlation, is reached in low Morton number systems 

at far smaller Eötvös numbers than usually assumed. 

Overall, the proposed method for the lift force measurement in turbulent conditions 

produced reasonable results. Due to the simplicity, this setup might be used for difficult to 

handle systems since it has no moving parts and does need only a small amount of fluid. In 

future studies the thickness of the setup will be enlarged to measure larger bubble sizes. 

Further, the measuring time for large bubbles will be increased to improve the statistics. To 

get a complete picture of the lift force, further measurements should be executed to close the 

gap between the present measurements with log+� _ 11 and the measurements of Aoyama 

et al. with a Morton number up to log+� _ 6.6, which can be realized with the present setup. 
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