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Abstract

This paper presents an overview of results for the geostatistical anal-
ysis of collocated multivariate data sets, whose variables form a com-
position, i.e. the components represent the relative importance of the
parts forming a whole. Such data sets occur most often in mining, hydro-
geochemistry and soil science, but the results gathered here are relevant
for any regionalised compositional data set. The paper covers the basic
definitions, the analysis of the spatial codependence between components,
mapping methods of cokriging and cosimulation honoring compositional
constraints, the role of pre- and post-transformations like log-ratios or
multivariate normal score transforms, and block-support upscaling. The
main result is that log-ratio scores can and should be analysed jointly
with multivariate geostatistics techniques, in which case the system data-
variograms-cokriging enjoys an intrinsic consistency, delivering the same
results regardless of which log-ratio transformation was used to represent
them. Proofs of all statements are included in an appendix.
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1 Introduction

Geostatistics is the name commonly given to a set of tools and concepts for
modeling data exhibiting codependence related to the spatial proximity of their
sampling locations. Two-point geostatistics was based on the concept of co-
variance/correlation function. A covariance (correlation) function describes the
evolution of the covariance (correlation) exhibited by two variables geograph-
ically a lag distance h apart, as a function of multiples of this lag. Under
reasonable assumptions (ergodicity, spatial stationarity, some sort of anisotropy
and Gaussianity, eventually after a point-wise transformation), such a function
can be estimated and modelled from geo-referenced data sets, and further used
to obtain maps (interpolations or simulations) of the studied variables. Since
the founding works of Matheron (1963, 1965, 1971), Geostatistics has become
a standard method in many fields of geosciences (Journel and Huijbregts, 1978;
Cressie, 1991; Chilés and Delfiner, 1999; Wackernagel, 2003).

A data set is compositional if it is formed by several variables which jointly
describe the relative weight, importance or influence of a set of components
forming a system. It is well-known in the geosciences (Chayes, 1960) that
compositional data are affected by the spurious correlation problem, namely
that the apparent correlation between two components of the system depends
on what other components are considered in the system. As a consequence
the common interpretation of correlation is no longer valid, that is, correlation
does not represent a valid measure of linear association between two compo-
nents. This carries over to geo-referenced compositions, as their spatial auto
and cross-correlation functions are as spurious as correlation coefficients are for
non-regionalized compositions (Pawlowsky, 1984).

Attending to certain consistency principles and basic mathematical tractabil-
ity, Aitchison (1982) proposed to deal with compositional data after a log-ratio
transformation. His methodology was first applied to regionalized composi-
tions by Pawlowsky (1986). Several case studies were presented afterwards
(Pawlowsky-Glahn and Burger, 1992; Pawlowsky, 1989; Pawlowsky-Glahn et al.,
1995; Lark and Bishop, 2007; Morales Boezio, 2010; Ward and Mueller, 2012;
Morales Boezio et al., 2012; van den Boogaart and Tolosana-Delgado, 2003;
Ward and Mueller, 2013; Sun et al., 2014), however the geostatistical com-
munity has not yet accepted log-ratio methods, even after the appearance of
a monograph (Pawlowsky-Glahn and Olea, 2004), further theoretical develop-
ments (Pawlowsky-Glahn, 2003; Tolosana-Delgado, 2006; Tolosana-Delgado and
Boogaart, 2013) and at least one practical guide (Tolosana-Delgado et al., 2011).
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Apart from practical reasons (lack of implementation of the proposed methods
in commercial software), some theoretical concerns might also explain that re-
luctance: the possible effect of the particular log-ratio transformation chosen,
the alleged bias of estimates obtained, the supposed lack of upscaling models
and block kriging methods, and the widespread tradition of applying a gaus-
sian anamorphosis (or normal scores transform). This contribution presents a
comprehensive discussion of the fundamentals of log-ratio methods for geosta-
tistical applications, attending to each one of these issues. An illustration case
study is collated through the text, to illustrate the concepts, methods and tools
together with their theoretical discussion.

Section 2 introduces this illustration case study. Section 3 reviews the
grounding ideas, principles, concepts and operations of compositional data anal-
ysis relevant for geostatistical applications. Section 4 summarizes the common
geostatistical practice and existing alternative methods for the spatial modeling
compositional data, particularly focusing on their problems and caveats. Sec-
tion 5 introduces several ways to specify the spatial dependence between the
components of a regionalized composition, and the links between them. Section
6 presents some considerations on cokriging and cross-validation, while Section
6.2 discusses the usages of the conditional distribution for cosimulation and esti-
mation of non-linear quantities, such as block cokriging for compositional data.
Proofs of the relevant statements are referenced to previous works or included
in the first appendix. A second appendix includes a concise, practical workflow.

2 Illustration: the K-Pit data set

The K-Pit is a high-grade iron ore deposit (Angerer and Hagemann, 2010) of
Banded Iron Formation (BIF) type, in the Archean Koolyanobbing Greenstone
Belt, Western Australia. The deposit is located 360km east of Perth in the
Southern Cross Province of the Yilgarn Craton. The greenstone belt strikes
northwest and is 35km long and 8 km wide, approximately. It is composed of
folded sequences of amphibolites, meta-komatiites and intercalated metamor-
phosed BIF (Griffin, 1981). This particular deposit occurs where the main BIF
horizon is offset by younger striking faults (Angerer and Hagemann, 2010). It
consists of several mineralogical-textural types, including hard high-grade mag-
netite, hematite and goethite ores and medium-grade fault-controlled hematite-
quartz breccia, as well as hematite-magnetite BIF.

Three domains, 202 (west main domain), 203 (east main domain) and 300
(hematite hanging wall), were selected as they can be considered reasonably
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homogeneous from a mineralogical point of view: the iron-rich facies is dom-
inated by hematite in all of them, with minor contributions of magnetite or
goethite/limonite.

This study focuses on the geostatistical modelling of the percentages of
Al2O3, Fe, Mn, P and SiO in 2495 samples of support 2m long from 226 drill
holes within the 3 zones. Their conventional statistics are shown in Table 1.

Table 1: Traditional statistics of the K-Pit data set
Minimum Maximum Mean Variance Skew

Al2O3 0.023 25.000 0.836 2.672 7.347
Fe 18.040 69.521 61.979 20.521 -3.124
Mn 0.001 1.694 0.054 0.008 8.655
P 0.003 0.663 0.121 0.004 1.219
SiO2 0.170 46.580 3.582 23.441 3.240
Sum 45.490 82.015 66.572 7.841 0.253

3 Compositional data analysis

3.1 The concepts of composition

A data set is compositional whenever its variables inform of the relative contri-
bution of a set of components forming a whole. “Relative importances” cannot
be negative numbers. It is often said that their total sum is bounded by a
unit constant κ, such as 100%, 1 or 106ppm, although this is not a necessary
condition. If we denote by z = [z1, z2, . . . , zD] a vector of D components, then

zi ≥ 0 and
D∑
i=1

zi ≤ κ . (1)

The set SD of all points of D-dimensional real space RD satisfying these condi-
tions is called the D-part simplex. The sum equality is fulfilled if all components
of the whole are being considered, as the sum of contributions of an exhaustive
partition must account for “everything”.

If the sum is considered informative and is always below κ, it is possible to
complement the composition with a further (D + 1)-th component, the fill-in
variable

zD+1 = κ−
D∑
i=1

zi. (2)
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This option is particularly interesting if the fill-in variable has a physical inter-
pretation, as happens with the K-pit case study.

If the composition does not satisfy the constant sum constraint, but its total
sum is deemed uninformative, then the constraint can be forced by applying the
closure operation, denoted as C[·] and defined as

C[z] = 1∑D
i=1 zi

z, (3)

effectively removing the uninformative variability from the total sum. This
indeed opens the door to a more general definition of composition: if two vectors
x and y of positive components are such that C[x] = C[y], they are said to
be compositionally equivalent, and the class of all vectors y compositionally
equivalent to x is called a composition (Barceló-Vidal, 2003). In fact, analyzing
the original vector x or its closed version C[x] should give the same results,
being compositionally equivalent. This case occurs, for instance, in the study of
geochemical surveys with partial leachates or of vegetal matrices, because the
total sum may then be related to sample preparation issues or of the age of the
plants.

Sometimes, compositional data are expressed in non-dimensionless units
(mg/L, mol/Kg, meq/L) which do not appear to satisfy either of the two cases.
For instance, this is often the case in groundwater reservoir quality studies. In
those cases it should be still possible to conceive a meaningful change to di-
mensionless units (mostly Kg/Kg or mol/mol) in which one could decide which
of the two preceding cases apply. In many of these cases (van den Boogaart
and Tolosana-Delgado, 2003), the theory of compositional analysis ensures that
final results with dimensionless units or with the original units are mutually
consistent.

When only a subset of components is considered, one speaks of a subcom-
position. Typically, subcompositions are reclosed to recast their information
relative to the total that the selected variables represent. Building/closing a
subcomposition is routinely done in geology when representing 3 components of
a composition in a ternary diagram.

To work with compositional data Aitchison (1986) proposed two principles,
subcompositional coherence and scale invariance, that should be satisfied by
any meaningful method of analysis in order to avoid the risks of spurious cor-
relation. Subcompositional coherence implies that results obtained analysing a
subcomposition cannot contradict those obtained analysing the whole composi-
tion. Scale invariance proposes that results should be the same for a composition
z and any scaled version pz, such as the composition resulting from a change of
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units from % to ppm. Both conditions imply working with ratios. This holds
for all three cases of compositions mentioned: with informative total sum, with
uninformative total sum, and with non-dimensionless units.

3.2 Geometry

The simplex SD, the sample space of compositions, can be given an inner prod-
uct space structure (Pawlowsky-Glahn and Egozcue, 2001). The operations
addition and scalar multiplication in the underlying vector space structure are
given by the operations of perturbation (⊕ Aitchison, 1982) and powering (�
Aitchison, 1982), defined respectively as

a⊕b = C[a1b1, a2b2, . . . , aDbD],

λ�a = C[aλ1 , aλ2 , . . . , aλD]. (4)

An inner product (Pawlowsky-Glahn and Egozcue, 2001) on this vector space
is given by

〈a,b〉A =
1

D

D∑
i>j

log
ai
aj

log
bi
bj
. (5)

This induces a metric, called the Aitchison distance (Aitchison, 1986)

dA(a,b) =
√
〈a	 b,a	 b〉A =

√√√√ 1

D

D∑
i>j

(
log

ai
aj
− log

bi
bj

)2

. (6)

In his seminal works about compositional data analysis, Aitchison (1982,
1986) defined the additive log-ratio transformation (alr), the centered log-ratio
transformation (clr), and their inverses, respectively, as

alr(z) = log
z−D
zD

= J · log z = ya, alr−1(ya) = C [exp[ya; 0]] , (7)

clr(z) = log
z

D
√
z1z2 · · · zD

= H · log z = yc clr−1(yc) = C [exp(yc)] , (8)

where z−D is the original composition without the last component, [ya; 0] is
a vector expanded with a zero component, logarithms are applied component-
wise, and

J = [I(D−1)×(D−1);−1D−1],

H = ID×D −
1

D
1D×D. (9)

In these and the following expressions, subscripts of a matrix or vector indicate
their size, and I is the identity matrix. Note that the row and column sums of
H are equal to 0, which makes the clr coefficients sum to zero too.
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With the introduction of the inner product space structure, it was recognized
that alr-transformed scores are nothing other but coordinates of compositions
with respect to a non-orthogonal basis, and clr-scores are coefficients in a gen-
erating system of SD. In general terms, a composition and its coordinates in
any basis are related by

y = Ψ · log z, z = C
[
exp(Ψ− · y)

]
, (10)

where Ψ is a (D − 1)×D-matrix whose rows sum to zero

Ψ · 1D = 0D−1, (11)

and Ψ− is its Moore-Penrose generalized inverse. Note that both matrices J

and H satisfy these conditions. The columns of Ψ− are the clr-transformed
coefficients of the vectors of the orthonormal basis used.

Following this realization, Egozcue et al. (2003) proposed using orthonormal
coordinate systems, to avoid having to work with generalized inverses. If the
coordinate system is orthonormal, then matrix Ψ satisfies

Ψ ·Ψt = I(D−1)×(D−1), Ψt ·Ψ = H. (12)

It follows that Ψ− = Ψt, and the isometric log-ratio transformation (and its
inverse) can be defined as

y = ilrψ(z) = Ψ · log z, (13)

z = ilr−1
ψ (y) = C

[
exp(Ψ− · y)

]
. (14)

Readers interested in details about these operations and transformations are re-
ferred to Tolosana-Delgado et al. (2005) where some simple cases are presented.

Seen as mappings between spaces, the log-ratio transformations all have a
geometric interpretation. The component-wise logarithm log(·) is a transforma-
tion from RD+ onto RD. The clr(·) is a transformation from SD ⊂ RD+ onto the
hyperplane H ⊂ RD orthogonal to the vector 1D. The matrix H is thus the
orthogonal projection onto this subspace. Finally, the ilr(·) is a transformation
from SD ⊂ RD+ onto RD−1. The properties of Eq. (12) indicate that the matrix
Ψ is an isometry on H (van den Boogaart and Tolosana-Delgado, 2003).

3.3 Basic statistics

In what follows, let Z = [Z1, Z2, . . . , ZD] denote a random composition.
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Classical first and second order moments for a compositional data set can
be defined through the clr or any other log-ratio transformation. If superscripts
indicate the transformation used, mean and variance are given by

µc = E [H · log(Z)] , Σc = Var [H · log(Z)] ,

µa = E [J · log(Z)] , Σa = Var [J · log(Z)] ,

µψ = E [Ψ · log(Z)] Σψ = Var [Ψ · log(Z)] .

Here the superscript c stands for clr, a for alr and ψ for an ilr transformation
Since the matrix H is a projection (i.e H2 = H), the clr-variance matrix Σc is
singular.

As an alternative to the use of a log-ratio transformation, Aitchison (1986)
proposed the calculation of the compositional centre

m = C(exp(E [log(Z)])) (15)

and the variation matrix T = [tij ] with elements

tij = Var

[
log

Zi
Zj

]
= Var [log(Zi)− log(Zj)] = Var [clri(Z)− clrj(Z)] . (16)

One of the typical concerns of analysts when starting with the log-ratio
approach to compositional data is to ensure that statistical results do not depend
on the transformation used. It is well-known that the four means given before
are compatible, that is (proposition 3 in the appendix)

clr−1(µc) = alr−1(µa) = ilr−1
ψ (µψ) = m ∈ SD. (17)

Similarly, all spread measures convey exactly the same information, and are
related though the fundamental equations

Σψ = Ψ ·Σc ·Ψt Σc = Ψ− ·Σψ ·Ψ−t (18)

Σψ = −1

2
Ψ ·T ·Ψt Σc = −1

2
H ·T ·H, (19)

where Ψ−t denotes the transposed Moore-Penrose generalized inverse of Ψ.
Note that these expressions are valid for any basis, even a non-orthogonal one
(for example an alr when taking Ψ = F), but at the price of having to deal with
a more complex notation. Note also that this identity holds globally, for the
entire composition considered, and not for individual parts. These statements
are proved in, proposition 4 of the appendix.
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3.4 Illustration: basic statistics

From a compositional point of view, the statistics of Table 1 are unsatisfac-
tory, because they are not subcompositionally coherent. The set of alterna-
tive basic compositional statistics and diagrams for the K-pit data set are
summarized in Table 2 and Figure 1, showing a very low variation entry for
Fe-Rest, mirrored by a low-variance density plot of log(Fe/Rest). This is an
indication of a high proportionality between both parts, which suggests that
the Rest is probably dominated by the Oxygen and OH−-groups forming the
various Fe-oxides present. In fact, the mass relation 63.2246:34.0875 on the
geometric mean is almost equivalent to a 1:2 molar relation Fe:O, exactly of
(63.2246 × 15.9994) : (34.0875 × 55.845) = 0.53. The kernel density estimate
of log(Fe/Rest) shows that most of the samples have a Fe:O molar relation be-
tween 2:5 and 2:3. Figure 1 shows very strong closure effects in the raw data
(e.g., upper triangle scatterplot of Fe vs. SiO2), but also strong boundaries on
the relation between several alr-transformed variables (alr.Al2O3-alr.SiO2, for
instance), where the alr’s were taken with respect to the Rest. The data are
obviously not normally distributed.

Table 2: Compositional statistics of the K-Pit data set: centre (closed geometric
mean) and variation matrix

Al2O3 Fe Mn P SiO2 Rest
centre (%) 0.4844 63.2246 0.0344 0.1068 2.0623 34.0875

Al2O3 0.0000 1.0032 1.1167 1.0516 1.5451 0.8975
Fe 1.0032 0.0000 0.8876 0.3459 1.1731 0.0123
Mn 1.1167 0.8876 0.0000 0.7287 1.8846 0.8002
P 1.0516 0.3459 0.7287 0.0000 1.5046 0.3043

SiO2 1.5451 1.1731 1.8846 1.5046 0.0000 1.1529
Rest 0.8975 0.0123 0.8002 0.3043 1.1529 0.0000

3.5 The normal distribution on the simplex

As in the case of a real variable or a real vector, it is possible to define a nor-
mally distributed random composition characterized by a given compositional
center m and a given variation matrix T. A random composition is said to
follow a normal distribution on the simplex, denoted as NSD , if its log-ratio
transformed scores follow a joint multivariate normal distribution, i.e. with
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Figure 1: Scatterplots of the K-Pit data set: raw data (uppper triangle) and
alr-transformed data with respect to the Rest (lower triangle). Kernel density
estimates of the alr-transformed data are included in the bottom line. Note the
strong effects of the closure and the positivity constraints.
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probability density

fZ(z) = (2π|Σψ|)(1−D)/2 exp

[
−1

2
d2
M,T(z,m)

]
,

d2
M,T(z,m) = ilrψ(z	m)t · [Σψ]−1 · ilrψ(z	m) (20)

where the log-ratio Mahalanobis distance d2
M,T(z,m) denotes the log-ratio Ma-

halanobis distance, and Σψ is obtained from T by Eq. (19). The normal
distribution on the simplex is a fundamental tool in geostatistics for compo-
sitional data, to define a Gaussian regionalized composition. Although this
definition makes use of a specific ilr transformation to compute the probability
density, the resulting probabilities themselves do not depend on the choice of
log-ratio transformation , as long as the transformation is one-to-one. Even an
alr or a clr could be used, the latter with a slightly more complicated notation.
Propositions 5 and 6 in the appendix give formal proofs of these statements.

4 Conventional multivariate geostatistical prac-
tice for compositions

It is assumed here that the reader is familiar with current cokriging (simple,
ordinary, universal) and cosimulation techniques, their differences and similari-
ties (see e.g. Myers, 1982; Chilés and Delfiner, 1999; Wackernagel, 2003; Cressie,
1991) as well as with the matrix notation introduced by Myers (1982).

The focus of classical geostatistics is to estimate the value of a vector of P
space-dependent (real-valued) variables Z(x) = [Z1(x), Z2(x), . . . , ZP (x)], as a
linear function of neighbouring observations {z1, z2, . . . , zN} with zi = Z(xi)

measured at locations {x1, x2, . . . , xN} within a domain D of the geographical
space,

φi(z
∗
i (x0)) = y∗i (x) =

N∑
n=1

P∑
j=1

wnijφj(zj(xn)) =

N∑
n=1

P∑
j=1

wnijyj(xn), (21)

where and φi(·), i = 1, 2, . . . , P can be non-linear functions: logarithms for log-
normal kriging, or more typically a Gaussian anamorphosis or normal score
transform (Chilés and Delfiner, 1999; Rossi and Deutsch, 2014) forcing the
yj(xn) scores to exactly show an empirical normal marginal distribution. Gaus-
sian anamorphosis is particularly critical for simulation, as most algorithms
assume the unknown scores given the available data to have a joint conditional
normal distribution.
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Table 3: Problems and caveats of geostatistical approaches to regionalized com-
positional data sets (see text for details).

method transformation ensures singular
y∗i > 0

∑
i y
∗
i = κ kriging matrix

kriging none no no no
kriging anamorphosis yes no no
compositional kriging yes yes no

cokriging none no yes yes
cokriging anamorphosis yes no no
cokriging log-ratio yes yes no

When Z(x) is a regionalized composition, we would like the (co)kriging
systems to yield valid compositions everywhere in the domain, that is, the
(co)kriging estimates satisfy the conditions stated in Eq. (1). However (as
summarised in Table 3), kriging and cokriging are not convex operators (Chilés
and Delfiner, 1999), thus nothing forces their results to remain bounded by the
data or any constraints on them. This implies that negative predictions are
possible, as are total sums larger than 100%; see e.g. Pawlowsky-Glahn et al.
(1995) or Pawlowsky-Glahn and Olea (2004). Simulation algorithms do tend to
generate even larger violations of these constraints, as they often add some vari-
ability around the (co)kriging predictions. Gaussian anamorphosis might ensure
positivity if cleverly chosen (i.e., similar to a logarithmic transformation), but
it cannot ensure the constant sum constraint. This is only ensured by cokriging
(or cosimulation) of raw closed data, if one manages to deal with the singularity
of the cokriging system matrix.

Methods based on normal score transforms present a secondary problem:
compositional data are multivariate by nature, and some form of multivariate
anamorphosis is needed. A naive marginal anamorphosis of each individual
variable (as implemented in most geostatistical software) does not satisfy this
condition. In this context, the stepwise conditional transform of Leuangthong
and Deutsch (2003), the projection pursuit multivariate transform (PPMT Bar-
nett et. al., 2014) or the multivariate flow normal transform of van den Boogaart
et al. (2017) should be applied, as they are multivariate by construction.

Compositional kriging was introduced by Walwoort and de Gruijter (2001)
to describe a cokriging of all components where positivity and constant sum con-
straints are included in the cokriging as additional constraints. The singularity
of the covariance of raw data is dealt with by ignoring cross-covariances, thus
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neglecting any natural link between variables conveyed by the cross-variograms.
The only link preserved by this technique is the naive (and physically irrele-
vant) constant sum. Moreover, up to the authors’ knowledge, this method does
not deliver a meaningful cokriging covariance matrix, which makes cosimulation
based on compositional kriging impossible.

Finally, a general omment on all approaches based on raw data, on simple
logarithmic transformations or on individual Gaussian anamorphosis, even those
taking into account the necessary constraints: These methods do not explictly
account for the relative scale of compositional data, and may thus not measure
differences between observations in a sensible way. Moreover, although in some
cases they satisfy numerical constraints, they do not ensure that the problem of
spurious spatial covariance is avoided, which affects regionalized compositions
analogously to the way in which spurious correlation affects compositions in
general (Pawlowsky, 1984). To what extent these problems also affect a truly
multivariate normal score transformed data set (e.g. using PPMT Barnett et.
al., 2014) is still unclear.

5 Compositional structural analysis

Pawlowsky-Glahn and Olea (2004) propose several structural functions, which
are essentially classical variograms and covariance functions defined either on
the clr-transformed data, or on alr-transformed data. In this section we provide
a summary of these definitions, and an adaptation to the case of ilr transformed
data.

5.1 Structural functions and their relations

Denote by Y(x) the scores obtained by transforming a regionalized composition
Z(x) through a suitable log-ratio transformation. This can be either an alr, an
ilr or a clr. For any of the three transformations, a matrix-valued variogram or
covariance function can be defined, as shown in proposition 9 in the appendix.
The six specifications have the following properties (proposition 7):

• For a given log-ratio transformation, its variogram and covariance function
satisfy

Γ(h) = C(0)− 1

2
(C(h) + C(−h)) ;

thus, for a symmetric covariance function, C(h) = C(−h), the log-ratio
variogram and the log-ratio covariance function are equivalent, and they
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also fulfill C(h) = C(0)−Γ(h). These equivalences are honored whichever
log-ratio transformation is used.

• The covariance functions of ilr and clr transformed data are related by:

Cψ(h) = Ψ ·Cc(h) ·Ψt, Cc(h) = Ψt ·Cψ(h) ·Ψ ,

where the superscripts c and ψ relate to the clr and ilr transformed scores,
respectively.

• Analogously, the corresponding variograms are related by

Γψ(h) = Ψ · Γc(h) ·Ψt, Γc(h) = Ψt · Γψ(h) ·Ψ . (22)

• Equivalent expressions link clr score variograms and covariance functions
with those expressed in any arbitrary basis,

Cψ(h) = Ψ ·Cc(h) ·Ψt, Cc(h) = Ψ− ·Cψ(h) ·Ψ−t ,

Γψ(h) = Ψ · Γc(h) ·Ψt, Γc(h) = Ψ− · Γψ(h) ·Ψ−t . (23)

In particular, these expressions are valid when working with alr scores, by
taking Ψ = J. This also applies to the remainder of this section.

The preceding relationships are satisfied both by the theoretical and the em-
pirical versions of these functions. Thus, when fitting models to empirical var-
iogram systems defined in two different log-ratio specifications, it is necessary
to force the fitted model to satisfy them too. We say in this case that the fitted
models are mutually compatible. In practice, ensuring compatibility during the
modeling process may not be easy, as each variogram or covariance function
derived from a particular log-ratio transform may focus on some specific sub-
compositional features, while other might appear to mask the variability of that
particular feature. It is thus possible that classical automatic fitting processes
do not produce compatible models.

To avoid working with a specific transformation and having to check for
mutual compatibility, a variogram function can be defined based on the vari-
ation matrix. The resulting matrix-valued function is called (pairwise) log-
ratio variogram, or variation-variogram, and is denoted as the matrix T(h) =

[tij(h)]i,j=1,...,D with elements

tij(h) = Var

[
log

Zi(x+ h)

Zj(x+ h)
− log

Zi(x)

Zj(x)

]
. (24)
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Variation-variograms contain the same information as classical clr or log-ratio
coordinate variograms, so that the latter can be calculated from the former,
with

Γψ(h) = −1

2
Ψ ·T(h) ·Ψt, Γc(h) = −1

2
H ·T(h) ·H, (25)

and conversely from the clr-variograms

tij(h) = γcii(h) + γcjj(h)− 2γcij(h). (26)

There is no straightforward formula for conversion from ilr/alr-variograms to
variation-variograms. Therefore, it is convenient to use Eq. (22), resp. Eq.
(23), first and then Eq. (26).

5.2 Variogram estimation and modelling

Empirical variograms satisfy Eqs. (22)-(26) for all lags, if they are computed
with the same set of data. Fitted models should also satisfy them. In par-
ticular, the linear model of coregionalization (LMC, Wackernagel, 2003), being
symmetric, can be expressed in any of these specifications,

Cψ(h|θ) =
K∑
k=0

Cψ
k · ρk(h|θk), Cc(h|θ) =

K∑
k=0

Cc
k · ρk(h|θk),

Γψ(h|θ) =
K∑
k=0

Cψ
k · (1− ρk(h|θk)), Γc(h|θ) =

K∑
k=0

Cc
k · (1− ρk(h|θk)),

T(h|θ) =

K∑
k=0

Bk · (1− ρk(h|θk)),

with the vector of model parameters θ containing all individual ranges θk and
sill matrices, specified either as Bk or Ck, as they are equivalent because of

Cψ
k = −1

2
Ψ ·Bk ·Ψt, Cc

k = −1

2
H ·Bk ·H. (27)

A model must be positive definite if specified in terms of Cψ, and positive semi-
definite in terms of Cc because the clr-transformed covariances always have
at least one zero eigenvalue. Equivalently, a model specification in Γψ must
be conditionally negative definite, and in terms of Γc conditionally negative
semi-definite. Thus, a model specified in T must be conditionally positive semi-
definite. For the LMC, these conditions are satisfied if each correlogram ρk(h|θk)
is a positive definite function, and each matrix Ck is a valid covariance matrix
(Wackernagel, 2003) or Bk is a variation matrix (see the appendix), namely a
conditionally negative definite matrix with zero diagonal elements.
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Reduced-rank submodels of the LMC can also be used. Minimum/Maximum
Autocorrelation Factors (MAF) have been applied to compositions after an alr
(Morales Boezio, 2010; Morales Boezio et al., 2012; Ward and Mueller, 2012)
or a clr (Mueller and Grunsky, 2016) transformation. Also, the use of rank-
deficient sill matrices Ck has been put forward (Gelfand and Banerjee, 2010;
Tolosana-Delgado and Boogaart, 2013).

Individual variation-variograms can be estimated with any available proce-
dure for estimation of direct variograms. Nevertheless fitting must be done
jointly, to ensure that the validity conditions are satisfied. Fitting models for
the variation-variograms has certain advantages. For instance it allows to use a
goodness of fit that maximizes a logarithmic goodness-of-fit criterion (Tolosana-
Delgado et al., 2011),

gof(θ) =

D∑
i=1

D∑
j=1

∑
n

Nij(hn)(log t̂ij(hn)− log tij(hn|θ))2, (28)

where t̂ij(hn) is the empirical (i, j)-variation-variogram calculated for a lag dis-
tance class hn, Nij(hn) is the number of pairs used for that calculation, and
tij(hn|θ) is the model evaluated at lag hn. The choice of Eq. (28) as a fit cri-
terion focuses the fitting procedure on the smaller values of tij , i.e. around the
origin and at short ranges. Two arguments support this choice. First, interpola-
tion results are particularly sensitive to this part of the variogram, and they do
not really depend on the sill: spending effort on fitting the sill will not translate
in more reliable interpolations (Chilés and Delfiner, 1999). Second, as sills are
variances, their natural spread ranges in orders of magnitudes, i.e. they should
be compared in a relative scale, thus in logarithms: this view is consistent with
the multiplicative confidence intervals given for the sill of a variogram (Cressie,
1991).

Moreover, fitting variation-variograms enables working with data sets with
many missing values, partially observed subcompositions and similar irregular-
ities. As each component tij(hn) requires only that variables i and j are avail-
able, one uses pairwise elimination to calculate t̂ij(hn), thus using a maximum
number of observations for each lag and each pair of variables. In contrast, es-
timating variograms with ilr- or clr-transformed data requires eliminating much
more data: for instance, the clr vector is not available if one single compo-
nent is missing (i.e., one would need complete row-wise elimination to deal with
missing values); and though an ilr can be chosen to maximize the number of
computable log-ratio scores, this only works if the missing components are the
same (Tolosana-Delgado et al., 2008).
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For these reasons, a structural analysis of regionalized compositional data is
better done in terms of variation-variograms. One can use standard estimation
algorithms to obtain each individual pairwise log-ratio variogram. Then, a pro-
cedure is required for fitting an LMC using Eq. (28), subject to the condition
that each matrix Bk is a valid variation matrix (zero diagonal, conditionally
negative semidefinite). Finally, the fitted model can be compared to the empiri-
cal structural functions, either in terms of the variation-variograms or recasting
variogram estimates and model to clr-/ilr-variograms or covariances, using Eq.
(27).

5.3 Illustration: structural analysis

The proposed compositional structural tool, the variation-variogram, is cur-
rently only available in the R package “compositions” (van den Boogaart, Tolosana-
Delgado and Bren, 2009). Instead, and in order to stay within the framework
of user-friendly geostatistical software, the data were alr-transformed with re-
spect to the Rest, and the resulting scores imported into ISATIS (Geovariances,
2017). A rotation of the geographic coordinates was applied, and direct- and
cross-variograms were computed at lag spacings of 2m in the vertical direction
and 25m in the horizontal plane. A linear model of coregionalization (LMC) was
fitted semi-automatically. The resulting parameters are summarized in Table 4
and the model fit is shown in 2.

Figures 3 and 4 show both the empirical variograms and the fitted LMC
represented in variation-variograms and clr-variograms, respectively obtained
with Eqs. (26) and (23). The same equations could be used to derive variograms
in any isometric log-ratio representation, which were not included for space
reasons. In all variogram figures, lower triangle plots (blue color) show vertical
variograms, while upper triangle diagrams show (red and black/grey colors)
variograms on the X-Y plane. All refer to directions after global rotation. It
is worth noting that the LMC satisfactorily fits the data in all these diagrams,
even though these alternative log-ratio representations were not used during the
fitting process.

6 Pointwise estimation

6.1 Cokriging

Once a structural model is available, this can be used in interpolation and sim-
ulation procedures, most often ordinary cokriging. This is better done just: (a)
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Figure 2: Empirical alr-variograms (dots) and fitted LMC (curves): diagonal
plots (dark colors) are direct variograms, the lower triangle (blue) shows vari-
ograms in the vertical direction, the upper triangle (red, black) shows variograms
in horizontal directions (after global rotation)
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Table 4: Linear model of coregionalization of the alr-transformed composition;
Sph=spherical model of the indicated (X,Y,Z) ranges, after global rotation

alr.Al2O3 alr.Fe alr.Mn alr.P alr.SiO2

nugget
alr.Al2O3 0.1324 -0.0098 0.1023 0.0415 0.0338
alr.Fe 0.0011 -0.0059 0.0018 -0.0029
alr.Mn 0.1267 0.0722 0.0177
alr.P 0.0907 -0.0072
alr.SiO2 0.3362

Sph(39.05, 66.94, 11.16)
alr.Al2O3 0.225 -0.0026 -0.02 -0.0042 0.0253
alr.Fe 0.0034 -0.0033 -0.0033 -0.0033
alr.Mn 0.1575 0.0138 -0.0650
alr.P 0.0554 0.0145
alr.SiO2 0.1330

Sph(3.3·102 2.0·102 1.0·108)
alr.Al2O3 0.3901 -0.0147 0.0364 -0.0602 0.1710
alr.Fe 0.0043 -0.0059 0.0056 -0.0134
alr.Mn 0.2806 0.0515 0.0685
alr.P 0.1159 -0.0389
alr.SiO2 0.3812

Sph(34.8, 34.8, 34.8)
alr.Al2O3 0.199 -0.0118 0.0864 0.0586 0.1185
alr.Fe 0.003 -0.0109 -0.0147 0.0073
alr.Mn 0.1998 0.042 -0.0045
alr.P 0.0753 -0.0409
alr.SiO2 0.3486
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Figure 3: Empirical variation-variograms (dots) and fitted LMC (curves): the
lower triangle (blue) shows variograms for the vertical direction, the upper tri-
angle (red, black) variograms in horizontal directions (after global rotation).
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Figure 4: Empirical clr-variograms (dots) and fitted LMC (curves): diagonal
plots (dark colors) are direct variograms, the lower triangle (blue) shows vari-
ograms in the vertical direction, the upper triangle (red, black) show variograms
in horizontal directions (after global rotation)
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choosing a particular ilr coordinate system, (b) expressing data and variation-
variogram model in this system by Eqs. (13) and (27) respectively, (c) ap-
plying cokriging/cosimulation to the obtained log-ratio scores, and (d) back-
transforming the interpolated/cosimulated scores to interpolated/cosimulated
compositions through Eq. (14). This procedure ensures that the final outcomes
are exactly the same, whichever log-ratio transform was used (proposition 9).
It is nevertheless recommended to avoid the clr transformation, as clr scores
sum to zero, and this collinearity makes the cokriging matrix singular. This
could be resolved by Moore Penrose generalized inversion, if this is available,
but producing the same solution at a larger computational cost is seldom a good
choice.

6.2 Cross-validation and error assessment

When faced with the application of log-ratio methods, practitioners often won-
der whether this approach is “better” or “worse” than “classical” methods, and
try to answer that by a cross-validation exercise, where a root mean square
error (RMSE), a standardized residual sum of squares (STRESS) or a simi-
lar measure of difference between observations and independent predictions is
drawn (Lark and Bishop, 2007; Morales Boezio, 2010; Sun et al., 2014; Rossi
and Deutsch, 2014). It should be noted that this procedure is fair only when
comparing methods that minimize the same error measure, it is not appropri-
ate to compare estimates obtained with Eq. (21) by using two different φ(·)
functions, e.g. the identity (cokriging raw data) vs. a log-ratio transformation
(cokriging log-ratio data).

If the goodness-of-fit measure is related to a distance d(y(xi), ŷi), then esti-
mators minimizing its expected value will be favored. Pawlowsky-Glahn and
Egozcue (2001) called such estimators metric expectations, and Pawlowsky-
Glahn and Egozcue (2002) showed that these coincide with linear estimators
in terms of any isometric transformation of the data (isometric with respect to
the distance chosen). As a consequence, if the chosen measure of goodness of
fit is an absolute difference between estimates and true values, one immediately
favors cokriging of raw components. In contrast, by choosing a relative differ-
ence (like the Aitchison distance), one favors log-ratio methods. There is thus
no fair comparison between them.

A second consideration relates to the multivariate nature of compositional
data. A compositional goodness-of-fit cross-validation criterion should be mul-
tivariate rather than univariate. For instance, one could compare some distance
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between the observed compositions y(xi) and their cross-validation predictions
ŷi, preferentially a Mahalanobis distance (Eq. 20) taking into account the cok-
riging error covariance (Lark and Bishop, 2007).

Connecting these two ideas, it seems reasonable to evaluate compositional
methods by a Mahalanobis distance between predictions and values of the log-
ratio transformed data (20). Note that this Mahalanobis distance will deliver
the same results, whichever log-ratio transform is used, as long as it is one-to-one
(Filzmoser and Hron, 2008, or Proposition 5 in the appendix). This property
is not satisfied by the Euclidean distance of the scores, which requires working
with isometric transformations (clr or ilr) in order to give rise to the Aitchison
distance (Eq. 6).

Classical cross-validation (leave-one-out, n-fold, etc.) typically involves a
visual assessment of the adequacy of a series of diagrams, judged by experience.
These diagrams are histograms of residuals or standardized residuals, scatter
plots of residuals against predictions, and scatterplots of true values against
predictions (Bivand et. al., 2013). For the purposes of validation with composi-
tional data, all these scatter plots can be obtained for the log-ratio scores; and
for the back-transformed components as well, if the input data and the cross-
validated values are computed in the same (sub)composition. Histograms and
qq-plots, on the other hand, are better obtained only for the log-ratio scores,
because the original components will have strongly non-normal distributions.
Histograms of Aitchison-Mahalanobis norms of residuals may also be useful.

6.3 Illustration: cokriging and cross-validation

Using the LMC of section 5.3, a 5-fold cross-validation was conducted to assess
the adequacy of the LMC. The data set was randomly split into 5 subsets, and
for each subset co-kriging estimates were computed based on the data from the
remaining subsets. Cokriging covariance matrices were also produced. Compu-
tations were obtained with R. Figure 5 shows the estimates against true values
and against residuals in log-ratio scale, while figure 6 shows them in raw scale,
i.e. in the original units. In all cases, a red line shows a reference line, be it
the identity line for plots of observations vs predictions, or the horizontal line
y = 0 for diagrams of residuals vs predictions. All diagrams show a reasonable
absence of trends or non-linearity structures, although some residuals in raw
scale show a clear heteroskedasticity. Adjustment of the data to the reference
lines is also very good.

As a multivariate measure of goodness of fit, one can study the Aitchison-
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Figure 5: Scatter density of residuals against predictions (lower triangle) and
of true values against predictions (upper triangle) for a 5-fold cross-validation.
Each diagram represents outcomes for the log-ratio of the row component di-
vided by the column component. Regression lines (red) and correlation coeffi-
cients are reported. Reference lines are also shown in black: the y = 0 line for
the lower triangle plots, the y = X line for the upper triangle plots. Note that
grey grid lines are spaced 1 unit.
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Figure 7: Comparison of Aitchison-Mahalanobis cokriging residual norms with
a χ2-distribution of 5 degrees of freedom (in log scale): histogram (left) and
qq-plot (right)

Mahalanobis cokriging residual (squared) norms: these are (squared) Aitchison-
Mahalanobis distances (Eq. 20) between true values and cokriging estimates,
with respect to the cokriging covariance matrix. Given that the dimension of the
space is 5, these squared norms should follow a χ2 distribution with 5 degrees
of freedom. Figure 7 shows this comparison, in the form of a histogram and
a qq-plot for a robust subset of the predictions. This selection was necessary
because relative residuals are non-robust quantities: to filter the data exhibit-
ing this problem, it is common in conventional geostatistical practice to filter
standardized residuals larger than 2.5 in absolute value. The outcome shows a
reasonable fit, although with a slightly heavier tail.

7 Simulation and blockwise estimation

7.1 Conditional joint distribution

As happens with conventional (real-valued) variables, cokriging of regionalized
compositional data sets delivers something more than just an “interpolation”.
Ordinary cokriging provides the expected value of the ilr-transformed compo-
sition at the predicted location given the surrounding observed compositions.
And it can, by virtue of Eq. (17), be back-transformed to an unbiased estimate
of the corresponding conditional expected value of the composition. This un-
biasedness is with respect to the Euclidean structure introduced in Section 3.2
(Pawlowsky-Glahn and Egozcue, 2002). Moreover, under the key assumption of
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(transformed) Gaussianity discussed in the Introduction, simple cokriging de-
livers the full conditional distribution of the ilr-transformed composition at the
predicted location given the surrounding observed compositions: a multivariate
normal distribution with mean equal to the simple cokriging predictor and co-
variance matrix equal to the cokriging error covariance. But as stated in Section
3.5, these two moments of any ilr representation completely specify the normal
distribution on the simplex that describes the conditional uncertainty on the
interpolated composition. Conditional distributions are primarily used for two
purposes: cosimulation and estimation of non-linear quantities.

7.2 Cosimulation

Any cosimulation algorithm applied to the log-ratio transformed composition
will provide valid simulated log-ratios, that can be back transformed to simu-
lated compositions through Eqs. (7-13). Mueller et al. (2014) show that this
procedure adequately reproduces the mean value and the sample distribution of
the variables (on both scales: the original proportions and the log-ratio trans-
formed values), as long as the log-ratio transformed data do not depart notably
from normality. Reproduction of the variation-variogram is, by construction,
as good (or as bad) as the simulation method actually used. These caveats are
well-known for simulation procedures of raw data, which often rely on Gaussian
anamorphosis to enforce these global statistics reproduction. Recent concerns
(Rossi and Deutsch, 2014) on this side for the log-ratio procedure are thus quite
partial.

As a matter of good practice, one should avoid any procedure for which final
simulated compositions would depend on the log-ratio transformation used. For
this reason, separate simulation of each log-ratio variable (with or without a
normal score transform) should be avoided. However, a multivariate Gaussian
anamorphosis (Barnett et. al., 2014) will be necessary when departures from
additive logistic normality are notable. The recently introduced flow anamor-
phosis (van den Boogaart et al., 2017) provides a Gaussian anamorphosis that
ensures independence of the results from the log-ratio transform applied.

7.3 Estimation of non-linear quantities

With regard to the estimation of non-linear quantities (non-linear in terms of
the log-ratio transformed composition), either Monte Carlo simulation or Gauss-
Hermite quadratures can be used. If ŷ0 and Ŝy denote respectively the sim-
ple cokriging estimate and covariance matrix of an ilr-transformed composition

27



Y(x0), then
[Y(x0)|y1, . . . ,yN ] ∼ ND−1(ŷ0, Ŝy). (29)

If interest lies in a non-linear function g(Y(x0)), a Monte Carlo sample of this
quantity can be obtained from a set of K simulations {ỹ(1), . . . , ỹ(K)}. By
transforming each one of them, the set {g(ỹ(1)), . . . , g(ỹ(K))} will describe the
distribution of g(Y(x0)), and any relevant statistics (mean, variance, quantiles,
etc.) can be derived from this transformed sample. This Monte Carlo strategy
can also be used for spatially averaged quantities, such as block kriging estimates
(Tolosana-Delgado et al., 2013).

An alternative is the use of Gauss-Hermite quadratures to estimate the ex-
pected value of g(Y(x0)). This requires a factorization of Ŝy = RRt, e.g. a
Cholesky decomposition or a decomposition based on the singular value decom-
position of Ŝy. Applying the change of variable U = R−1 · (Y − ŷ0)/

√
2, the

expectation sought can be written as∫
RD−1

g(Y)φ(Y|ŷ0, Ŝy)dY =

∫
RD−1

π−(D−1)/2g(Y(U)) exp(−UtU)dU = I.

An order k Gauss-Hermite approximation can be computed using weights
w1, w2, . . . , wk and quadrature points u1, u2, . . . , uk as

I ≈
k∑

i1=1

k∑
i2=1

· · ·
k∑

iD−1=1

wi1wi2 · · ·wiD−1
g(ŷ0 +

√
2 ·R · u[i1,i2,...,uD−1]) (30)

involving kD−1 (D − 1)-tuples of Hermite quadrature points u[i1,i2,...,uD−1] =

[ui1 , ui2 , . . . , uiD−1
]. These expressions were used by Aitchison (1986, p. 314) to

obtain estimates of the composition Z(x0) unbiased in terms of the original units
(ppm, %, etc) under the assumption that the geometry of real space induced
in the simplex holds. This is readily available using the vector-valued function
g(Y(x0)) = ilr−1(Y(x0)) (Pawlowsky-Glahn and Olea, 2004; Lark and Bishop,
2007; Ward and Mueller, 2013). Note that the final results of this approximation
to I might depend on which log-ratio was used (see the appendix). Being a Gauss
quadrature approximation of E [Z(x0)], the result of this numerical integration
is an unbiased estimator of Z(x0) in the classical, Euclidean difference based
sense.

7.4 Illustration: cosimulation in point and block support

Cosimulation requires joint normality of the log-ratio scores. Figure 1 (lower
triangle plots) show that the alr data do not have uni- and bi- normal marginals
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(nor will any other log-ratio transform). Hence a form of joint multivariate
normal anamorphosis is required. We applied the flow anamorphosis (van den
Boogaart et al., 2017), with parameters σ0 = 0.1 and σ1 = 1.1. Resulting
scores were shown to be spatially uncorrelated, something often observed in
flow-anamorphosed scores. Thus, only direct variograms of the 5 normal scores
were modelled, with structures reported in Table 5. This allowed applying a
separate simulation procedure for each of them. In a general framework with
non-zero cross-variograms, one should use cosimulation in order to ensure that
results are independent of the logratio transform used.

Table 5: Variogram models of the flow-anamorphosed scores; Sph=spherical
model of the indicated (X,Y,Z) ranges, after global rotation

Ana1 Ana2 Ana3 Ana4 Ana5

Nugget 0.24 0.18 0.26 0.13 0.13
Sill1 0.22 0.25 0.15 0.26 0.3
Sph1 (20, 5, 24) (20, 5, 24) (40, 5, 20) (14, 14, 5) (14, 20, 10)
Sill2 0.19 0.19 0.3 0.31 0.35
Sph2 (60, 100, 14.5) (30, 100, 14.5) (50, 70, 28) (60, 60, 30) (200, 100, 30)
Sill3 0.36 0.38 0.3 0.3 0.22
Sph3 (600, 200, ∞) (400, 200, ∞) (200, 400, ∞) (180, 120, ∞) (200, 300, ∞ )

The turning bands algorithm in ISATIS was used to generate the realisations.
Outcomes were backtransformed via the inverse flow anamorphosis, and the
inverse alr-transform to obtain point-support simulations of the composition.
These were upscaled to block support, with blocks of 12 × 12 × 6m3, that is,
averaging simulations at 8 points. Figure 9 shows two views of the results. The
spatial averages were all computed in mass scale, that is adding tons/block of
component i at the different locations.

The E-type estimates were computed on the relevant scale. For single vari-
ables expressed in percentages, the relevant scale is additive, because the goal
is to generate unbiased estimates of the mass of a certain element within each
block, and masses are additive. In contrast, estimates of proportions should be
unbiased regardless of what subcomposition is considered, i.e. a compositional
scale is relevant. Hence, out of Nsim = 100 simulations, E-types for %Fe at
block V were obtained as

Etype[%Fe(V )] =
1

Nsim

Nsim∑
k=1

∑
x∈V

w(k)(x)Fe(k)(x), (31)
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Figure 8: Experimental variograms and fitted models for the flow-anamorphosed
variables. The top row (red, black) shows direct variograms in horizontal di-
rections (after global rotation), the bottom row (blue) those in the vertical
direction.

while E-types for the (log)-proportion Fe:Mn were produced with

Etype

[
log

Fe(V )

Mn(V )

]
=

1

Nsim

∑
x∈V

log

∑
x∈V w

(k)(x)Fe(k)(x)∑
x∈V w

(k)(x)Mn(k)(x)
, (32)

where Fe(k)(x) orMn(k)(x) denote the values of iron or manganese at a location
x for the k-th simulation, and w(k)(x) is the tonnage value allocated to point
x at simulation k. This is the portion of mass allocated to a small block v of
6 × 6 × 3m3 centered at x with respect to the mass of the block V of 12 ×
12 × 6m3. Estimating it properly requires cosimulating the rock density ρ(x)
as well (Tolosana-Delgado et al., 2015). In this illustration the density was
assumed constant, so that w(k)(x) = 1/8 for this configuration of simulation
points within the block V . Eq. (32) assumes that the processing of the block
will occur after some form of spatial mixing, hence the spatial average is taken
as an arithmetic mean: this will be a common situation in mining, due to the
effect of milling. However, one can imagine other situations in which a spatial
average is not relevant, in which case a quantity such as

Etype

[
log

Fe

Mn
(V )

]
=

1

Nsim

∑
x∈V

w(k)(x) log
Fe(k)(x)

Mn(k)(x)
, (33)

would be more appropriate.
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Figure 9: North view of the deposit, with indication of block %Fe (top) and
of log(Fe/Mn) (bottom), both E-type estimates out of 100 simulations. Two
horizontal slices, 7 vertical transversal slices and one vertical longitudinal slice
of the block model are shown.
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8 Conclusions

Compositional data should be treated geostatistically expressed in terms of log-
ratios. The idea is to use conventional multivariate geostatistical tools in the
transformed scores, and back-transform interpolations or simulations. This is
analogous to the conventional gaussian anamorphosis or normal score transform,
but multivariate and concept-driven, instead of univariate and data-driven.

All log-ratio transformations available yield the same final compositional re-
sults, as long as the transformation is one-to-one and the variogram models used
are compatible with each other. Indeed, given that the choice of one or another
log-ratio transformation is somewhat an arbitrary one, this invariance (affine
equivariance) is highly desirable. Moreover, it makes to discuss or consider
that each alr or ilr could give different results. However, numerical approxi-
mations of non-linear transformations (for instance, the unbiased estimations
of the composition in percentages within the original subcomposition) obtained
by Gauss-Hermite quadratures might differ because of the approximation error.
Note that no univariate normal score transformations (Gaussian namorphosis)
is admissible, if this invariance is desired. Appropriate multivariate Gaussian
anamorphoses exist, like the flow anamorphosis, which is by construction affine
equivariant.

The variographic structure should be characterized by exploring several pos-
sible log-ratio sets, to check that the fit of the model to the empirical variograms
is consistent across them. These should include at least variation-variograms,
formed by direct variograms of all pairwise log-ratios. in addition to classical
automatic fitting procedures, these variation-variograms can be fitted with a
logarithmic goodness of fit criterion which focuses on improving the fit at short
ranges.

Finally, bias and cross-validation error measures should be computed with
caution. First, they should not be used at all to rank methods that minimize
different kriging error variances. Second, given the multivariate nature of com-
positional data, multivariate measures of goodness-of-fit should be preferred over
an individual component by component error assessment: a distance (preferen-
tially an Aitchison-Mahalanobis distance) between each vector of observations
and its predictions should be used.

With regard to representating compositions, a powerful option is to use
matrices of pairwise log-ratios. This concept was first used in the variation
matrix, as a matrix of variances, and has been extended to diagrams like the
variation-variogram, or the visualization of cross-validation prediction vs true
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values.
Upscaling to block estimates as well as computing expectations of non-linear

functions of the composition can be achieved by using simulations. This typi-
cally requires taking a multivariate Gaussian anamorphosis of the logratio trans-
formed scores, and apply conventional variography and cosimulation procedures
to the Gaussian scores obtained. Simulations can then be back-transformed to
logratio scores and to compositions, and then upscaled or transformed as re-
quired. An average of the results will deliver a Monte Carlo estimation of the
target quantities.

A Appendix: Formal statements and proofs

In this appendix, proofs for the results in the main text are provided. They
are organised into a “non-spatial” part and a spatial part. In what follows the
variables z and Z will denote the composition on the original scale and ζ or Z
will be used for the log-ratio transformed data.

A.1 Non-spatial results

Definition 1 (Composition as closed vectors) A vector z ∈ RD is called
a composition if its kth component zk represents the relative importance of part
k with respect to the remaining components.

Typically, zk ≥ 0 and z1 + zi + · · · + zD = κ, with κ = 1 (for proportions),
κ = 100 (for percentages) and κ = 106 (for ppm). However, the variables under
consideration might only represent a subset of all possible variables in which case
the constant sum constraint is not necessarily satisfied. Subsequent treatment
of the data then depends on whether or not the resulting non-constant sum
is meaningful and less than κ. In this case a fill-in variable (Eq. 2) can be
added to retain that information and fulfill the constraint. On the other hand,
if the non-constant sum is meaningless, the data can be reclosed (Eq. 3) without
losing any information. Mathematically, this last case gives rise to the definition
of compositions as equivalence classes (Barceló-Vidal, 2003), the modern, more
general definition of composition.

Definition 2 (log-ratio representation) A function ψ(·) is a full-rank log-
ratio representation of the composition z if its image satisfies

ψ(z) = Ψ · log z =: ζ

where Ψ is a (D − 1)×D matrix of rank (D − 1) with Ψ · 1 = 0.
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Lemma 1 (inversion) If ψ(·) is a full-rank log-ratio transformation, then the
corresponding matrix Ψ satisfies Ψ− ·Ψ = H, where H is the projection on the
orthogonal complement of the vector 1 in RD.

Proof: The singular value decomposition of Ψ is given by Ψ = U · S · Vt,
where U is an orthogonal (D− 1)× (D− 1) matrix , V is an orthogonal D×D
matrix with VtV = I(D−1) and S =

[
D(D−1) 0(D−1)

]
is a (D− 1)×D matrix

with D an invertible real diagonal matrix and 0 a column vector of zeros. The
Moore-Penrose inverse is therefore Ψ− = V · D+ · Ut where D+ = [S−1 0]′.
Then

Ψ− ·Ψ = (V · S− ·Ut) · (U · S ·Vt)

= V ·

[
I(D−1) 0

0t 0

]
·Vt.

Since D+ ·D has rank D − 1 and V has full rank, Ψ− ·Ψ has rank D − 1 and
its eigenvalues are 1 and 0. Since (Ψ− ·Ψ)2 = Ψ− ·Ψ, and (Ψ− ·Ψ)t = Ψ− ·Ψ,
the matrix Ψ− ·Ψ is an orthogonal projection. Moreover from the definition
of Ψ it follows that Ψ− ·Ψ · 1 = Ψ− · 0 = 0. Therefore, if the columns of V

are denoted by vi, i = 1, . . . , D, the eigenvector for 0 is given by vD = 1√
D

1, so
that (Ψ− ·Ψ) = ID − vDvtD = ID − 1

D1D×D = H. �

Proposition 1 (Inverse log-ratio representation) A full-rank log-ratio rep-
resentation ψ(·) is one-to-one, and its inverse is

z = C[exp(Ψ− · ζ)].

Proof: From the previous lemma if follows that

C[exp(Ψ− · ζ)] = C[exp(Ψ− ·Ψ · log z)]

= C[exp((H · log z)]

= C[exp(clr(z))] ≡ z.

It remains to be shown that ψ(·) is one-to-one when restricted to the orthogonal
complement of 1D, but this is a direct consequence of the definition of ψ(·). �

Proposition 2 (Change of log-ratio representation) Let z be a composi-
tion, and ψ1(·) and ψ2(·) be two full-rank log-ratio transformations characterized
by the matrices Ψ1 and Ψ2 respectively. Then, its two log-ratio representations
ζ1 = ψ1(z) and ζ2 = ψ2(z) are related through the linear relationship

ζ2 = A12 · ζ1 (34)

where the matrix A12 = Ψ2 ·Ψ−1 is square and invertible.
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Proof: From the preceding two propositions it follows that ζ2 = ψ2(z) = Ψ2 ·
log z and z = C[exp(Ψ−1 · ζ1)]. Substituting the second expression into the first,

ζ2 = Ψ2 · log
(
C[exp(Ψ−1 · ζ1)]

)
= Ψ2 ·

[
Ψ−1 · ζ1 − α1

]
= Ψ2 ·Ψ−1 · ζ1,

where α = log(1t · exp(Ψ−1 · ζ1)). This last term satisfies κΨ2 · 1 = 0, which
delivers the final expression as sought. �

Proposition 3 (log-ratio representation of the mean) Let Z = [zkn], k =

1, 2, . . . , D, n = 1, 2, . . . , N , be a compositional data set with N observations and
D parts, and ψ(·) be a full-rank log-ratio transformation. Then Ê [ψ(Z)] = ψ(m̂)

the log-ratio representation of the closed geometric mean (Eq. 15).

Proof: The empirical closed geometric center is m̂ = C[exp(log(Z) · 1N/N)].
The log-ratio mean is given by Ê [ψ(Z)] = (Ψ · logZ) · 1N/N . Substituting this
expression into the definition of the inverse log-ratio representation results in

ψ−1(Ê [ψ(Z)]) = C[exp(Ψ− · Ê [ψ(Z)])] = C[exp(Ψ− ·Ψ · log(Z) · 1N/N)] =

= C[exp(log(Z) · 1N/N)] = m̂.

�

This proposition also proves Eq. (17): Because the calculation of m does not
involve any log-ratio representation, all log-ratio representations are equivalent.

Proposition 4 (log-ratio representations of the covariance) Let Z = [zkn],
k = 1, 2, . . . , D, n = 1, 2, . . . , N , be a compositional data set with N observations
and D parts, and ψ(·) be a full-rank log-ratio transformation. Then the covari-
ance matrix of the log-ratio representation can be obtained from the empirical
variation matrix T̂ as Σ̂

ψ
= − 1

2Ψ · T̂ ·Ψt.

Proof: From (Aitchison, 1986) it is known that the clr covariance Σ̂
c
is related

to the empirical variation matrix by Σ̂
c
= − 1

2H · T̂ ·H and Ψ ·H = Ψ, which
is a consequence the definition of the matrix H (Eq 9),

Ψ ·H = Ψ ·
(

ID×D −
1

D
1D×D

)
= Ψ · ID×D −

1

D
Ψ1D×D = Ψ− 1

D
0 = Ψ,

because the rows of Ψ sum to zero. Therefore it remains to be shown Σ̂
ψ
=

Ψ · Σ̂
c
· Ψt. The (maximum likelihood) estimators of these two covariance

matrices are

Σ̂
ψ

=
1

N

(
Ψ · (log(Z)− log(m̂) · 1tN )

)
·
(
(log(Z)− log(m̂) · 1tN )t ·Ψt

)
Σ̂
c

=
1

N

(
H · (log(Z)− log(m̂) · 1tN )

)
·
(
(log(Z)− log(m̂) · 1tN )t ·H

)
.
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Since H = Ht, so that H ·Ψt = Ψt , it follows that

Σ̂
ψ

=
1

N

(
Ψ ·H · (log(Z)− log(m̂) · 1tN )

)
·
(
(log(Z)− log(m̂) · 1tN )t ·H ·Ψt

)
= Ψ · Σ̂

c
·Ψt.

Therefore Σ̂
ψ
= Ψ · Σ̂

c
·Ψt = − 1

2Ψ ·H · T̂ ·H ·Ψt = − 1
2Ψ · T̂ ·Ψt �

It is straightforward to show that the same properties hold for unbiased estima-
tors (with denominator N − 1).

The preceding two propositions show that the empirical log-ratio mean vec-
tor and covariance matrix can be obtained directly from the empirical closed
geometric center and variation matrix. Equivalent relationships exist also be-
tween the theoretical counterparts of these statistics.

Corollary 1 If ψ(·) is a full rank log-ratio transform, then Ψ− ·Σ̂
Ψ
·Ψ−t = Σ̂

c
.

Proof: From Proposition 4 it follows that Ψ− ·Σ̂
Ψ
·Ψ−t = Ψ− ·Ψ·Σ̂

c
·Ψt ·Ψ−t =

H · Σ̂
c
·Ht = Σ̂

c
. �

Corollary 2 If ψ1(·) and ψ2(·) are full rank log-ratio transforms, then Σ̂
Ψ2

=

A12 · Σ̂
Ψ1 ·At

12.

Proof: From Σ̂
ψ2

= Ψ2 · Σ̂
c
·Ψt

2 and Corollary 1 it follows that Σ̂
ψ2

= Ψ2 ·
Ψ−1 · Σ̂

ψ1 ·Ψ−t1 ·Ψ
t
2 = A12 · Σ̂

ψ1 ·At
12. �

Corollary 3 If ψ(·) is a full rank log-ratio transform, then Σc− = Ψt ·Σψ−1 ·Ψ
is a generalised inverse of Σc.

Proof: Firstly, ΣΨ has full rank and so is invertible, thus

Σc ·Σc− = Ψ− ·Σψ ·Ψ−tΨt · (Σψ)−1 ·Ψ

= Ψ− ·Σψ · (Ψ ·Ψ−)t · (Σψ)−1 ·Ψ

= Ψ− ·ΣψΣψ−1 ·Ψ

= Ψ−Ψ = H.

since (Ψ·Ψ−) = I(D−1), so that Σc ·Σc− is symmetric. Secondly, Σc ·Σc− ·Σc =

H ·Σc = Σc and Σc− ·Σc ·Σc− = Σc− ·H = Ψt ·(Σψ)−1 ·Ψ ·H = Σc− Similarly,
Σc− ·Σc = H. Therefore Ψt · (Σψ)−1 ·Ψ satisfies all conditions of a generalised
inverse. �

Proposition 5 (Invariance of the Mahalanobis distance) Let Z be a com-
position, with variation matrix T. The Aitchison-Mahalanobis distance between
any two of its realizations z1 and z2

d2
M,T(z1, z2) = ψ(z1 	 z2)

t · [Σψ]−1 · ψ(z1 	 z2),
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is invariant under the choice of full-rank log-ratio representation ψ(·).

Proof:
To show this proposition, it suffices to observe that from Corollary 3 and the

proof of Proposition 4 we have H ·Σc− ·H = H ·Ψt ·ΣΨ−1 ·Ψ ·H = Ψt ·ΣΨ−1 ·Ψ
so that

d2
M,T(z1, z2) = log(z1 	 z2)

t ·Ht ·Σc− ·H · log(z1 	 z2)

= log(z1 	 z2)
t ·Ψt ·ΣΨ−1 ·Ψ · log(z1 	 z2)

= −2 log(z1 	 z2)
t ·Ψt ·Ψ−t · T̂− ·Ψ− ·Ψ · log(z1 	 z2)

an expression which does not depend on the log-ratio representation at all. �
Proposition 6 is a direct consequence of the invariance property of the Ma-

halanobis distance.

Proposition 6 (Invariance of the normal distribution) The probability
density function of the normal distribution on the simplex with center m and
variation matrix T,

fZ(z) = (2π|Σψ|)(1−D)/2 exp

[
−1

2
d2
M,T(z,m)

]
,

does not depend on the choice of full-rank log-ratio representation ψ(·).

Analogous results are available for the case when the log-ratio transform is
not full-rank. In that case a the determinant |Σψ| needs to be generalised to
the product of its non-zero eigenvalues. This invariance (Mateu-Figueras et al.,
2013) is a direct consequence of the preceding proposition 5 and the fact that
the determinant of a matrix is one of its invariants.

A.2 Spatial results

Definition 3 (Compositional random function) A vector-valued random func-
tion Z = [Z1, Z2, . . . , ZD] on a spatial domain D ⊂ Rp, is called compositional if
for each x ∈ D the vector of random variables Z(x) = [Z1(x), Z2(x), . . . , ZD(x)]

shows the relative importance of a set of parts forming a total of interest.

Definition 4 (Regionalized composition) Given a set of locations {x1, x2, . . . , xN},
a regionalized data set {z1, z2, . . . , zN} with zi = z(xi) = [z1(xi), . . . zD(xi)] =

[z1i, . . . , zDi], i = 1, 2, . . . , N is called a regionalized composition, if zki repre-
sents the relative importance of part k with respect to the set of components
considered at location xi,.
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Proposition 7 (log-ratio representation of the spatial structure) Let
Z = [zkn] = [zk(xn)], k = 1, 2, . . . , D, n = 1, 2, . . . , N , be a regionalized composi-
tional data set with N locations xn and D parts, and ψ(·) be a full-rank log-ratio
transformation. Then, for each lag h, the variogram of the log-ratio representa-
tion can be obtained from the empirical variation-variogram T̂(h) as Σ̂

ψ
(h) =

− 1
2Ψ · T̂(h) ·Ψt, or from the clr-variogram matrix as Γ̂

ψ
(h) = Ψ · Γ̂

c
(h) ·Ψt.

This is a direct consequence of propositions 3 and 4.

Proposition 8 (Equivalence of the spatial structure) Let Z = [zkn] =

[zk(xn)], k = 1, 2, . . . , D, n = 1, 2, . . . , N , be a regionalized compositional data
set with N locations xn and D parts, and ψ1(·) and ψ2(·) be two full-rank log-
ratio transformations. Then, for each lag h, the empirical variograms Γ̂

ψ1
(h)

and Γ̂
ψ2
(h) are related through the linear relationship

Γ̂
ψ2
(h) = A12 · Γ̂

ψ1
(h) ·At

12 (35)

with matrix A12 = Ψ2 ·Ψ−1 square and invertible.

Proof: From proposition 7, it follows that Γ̂
ψ2
(h) = Ψ2 · Γ̂

c
(h) ·Ψt

2; and because
of Eq. (??), Γ̂

c
(h) = Ψ−1 · Γ̂

ψ1
(h) ·Ψ−t1 . Therefore

Γ̂
ψ2
(h) = Ψ2 ·Ψ−1 · Γ̂

ψ1
(h) ·Ψ−t1 ·Ψ

t
2,

which proves the desired equality because At
12 = Ψ−t1 ·Ψ

t
2 . �

Since proposition 8 holds for all lags, it is normal to require that any fitted
model satisfies the same relation. This is automatically satisfied if a linear model
of coregionalization T(h|θ) is fitted to the variation-variograms and then recast
to each of the two log-ratio representations by using proposition 7.

Proposition 9 (Invariance of the cokriging predictor and errors) Let
Z = [zkn] = [zk(xn)], k = 1, 2, . . . , D, n = 1, 2, . . . , N , be a regionalized compo-
sitional data set with N locations xn and D parts, and ψ1(·) and ψ2(·) be two
full-rank log-ratio transformations. Then, the corresponding cokriging predictors
ζ̂1(x0) and ζ̂2(x0) of the log-ratio transformed composition ζi(x0) = ψi(Z(x0))

satisfy
ζ̂2(x0) = A12 · ζ̂1(x0),

so that
ψ−1

1 (ζ̂1(x0)) = ψ−1
2 (ζ̂2(x0)) =: ẑ(x0)
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gives a predicted composition independent of the log-ratio representation used
in the computations. Moreover, the corresponding cokriging error covariance
matrices S1 and S2 are related by

SK2 = A12 · SK1 ·At
12

with A12 = Ψ2 ·Ψ−1 , for all forms of cokriging (simple, ordinary, universal and
cokriging with a trend) at all locations x0, if both are derived from the same
linear model of coregionalization T(h|θ).

Proof: We will first consider the case of simple cokriging (SK) under the as-
sumption of second-order stationarity. In both log-ratio representations, the SK
predictor is of the form

ζ̂(x0) =

N∑
n=1

λtnζ(xn) = ΛtZ, (36)

where Z = [ζ(x1); ζ(x2); . . . ; ζ(xN )] is the concatenated vector of all log-ratio
transformed observations ζ(xn) = Ψ log z(xn), and Λ = [λ1;λ2; . . . ;λN ] is
the block matrix of all cokriging weight matrices, which are obtained as Myers
(1982),

Λ =


Γ11 Γ12 · · · Γ1N

Γ21 Γ22 · · · Γ2N

...
...

. . .
...

ΓN1 ΓN2 · · · ΓNN


−1

︸ ︷︷ ︸
W−1


Γ10

Γ20

...
ΓN0


︸ ︷︷ ︸

W0

= W−1W0

where each block Γnm = Γ(h|θ) = − 1
2ΨT(h|θ)Ψt using the fitted model

T(h|θ). With the same notation, the SK error covariance is given by

SK = Γ00 −ΛtW0 = Γ00 −Wt
0W

−1W0.

If we now consider these matrices obtained with the two log-ratio representa-
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tions, and taking Eq. (35) into account,

W(2) =


Γ

(2)
11 Γ

(2)
12 · · · Γ

(2)
1N

Γ
(2)
21 Γ

(2)
22 · · · Γ

(2)
2N

...
...

. . .
...

Γ
(2)
N1 Γ

(2)
N2 · · · Γ

(2)
NN



=


A12Γ

(1)
11 At

12 A12Γ
(1)
12 At

12 · · · A12Γ
(1)
1NAt

12

A12Γ
(1)
21 At

12 A12Γ
(1)
22 At

12 · · · A12Γ
(1)
2NAt

12

...
...

. . .
...

A12Γ
(1)
N1A

t
12 A12Γ

(1)
N2A

t
12 · · · A12Γ

(1)
NNAt

12


= AW(1)At, (37)

where A = diag(A12,A12, . . . ,A12) and similary,

W
(2)
0 = AW

(1)
0 At

12. (38)

Now substituting (37) and (38) into the expression for the weights

Λ(2) = [W(2)]−1W
(2)
0 = [AW(1)At]−1AW

(1)
0 At

12 =

= A−t[W(1)]−1A−1AW
(1)
0 At

12 = A−t[W(1)]−1W
(1)
0 At

12 =

= A−tΛ(1)At
12, (39)

which, due to the block-diagonal structure of A, implies that the cokriging
weight matrices of each datum satisfy

λ(2)
n = A−t12λ

(1)
n At

12

Finally substituting these weights into the SK predictor of the second log-ratio
representation, and taking into account Eq. (34) between the data,

ζ̂2(x0) =

N∑
n=1

[λ(2)
n ]tζ2(xn) =

N∑
n=1

(A−t12λ
(1)
n At

12)
tA12ζ1 =

=

N∑
n=1

A12[λ
(1)
n ]tA−1

12 A12ζ1 = A12

N∑
n=1

[λ(1)
n ]tζ1 = A12ζ̂1(x0),

thus establishing the identity between the cokriging predictors. To derive the
relation for the cokriging error covariance, the same strategy can be used to
express the error in terms of the second log-ratio representation as a function
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of that in terms of the first representation,

SK(2) = Γ
(2)
00 − [Λ(2)]tW

(2)
0 = A12Γ

(1)
00 At

12 − [A−tΛ(1)At
12]

tAW
(1)
0 At

12 =

= A12Γ
(1)
00 At

12 −A12[Λ
(1)]tA−1AW

(1)
0 At

12 =

= A12Γ
(1)
00 At

12 −A12[Λ
(1)]tW

(1)
0 At

12 = A12

[
Γ

(1)
00 − [Λ(1)]tW

(1)
0

]
At

12 =

= A12S
K
(1)A

t
12,

which proves the desired equivalence.
For the remaining cases of cokriging (which will be grouped under the name

of universal cokriging, UK), the log-ratio mean is assumed to have the form

µ(x) =

L∑
l=1

gl(x)bl

with the typical cases L = 1 and g1(x) ≡ 1 (for ordinary cokriging), gl(x) = xl−1

up to the desired order L (universal cokriging), or L = 1 and g1(x) an arbitrary
function available everywhere in the estimation domain (for cokriging with a
trend). In any case, the UK predictor has the same form (Eq. 36), where the
weights are obtained by solving the system

WΛ = W0

subject to the L unbiasedness conditions

N∑
n=1

gl(xn)λ
t
n = gl(x0)ID−1, l = 1, 2, . . . , L.

where ID−1 is the identity matrix of size (D−1), the dimension of the composi-
tion. It is known (Myers, 1982; Tolosana-Delgado, 2006) that this is equivalent
to solving an extended system of equations

WeΛe = We0 (40)

where

We =

[
W G

Gt 0IL(D−1)

]
, We0 =

[
W0

Gt
0

]
, Λe =

[
Λ

N

]
,

with Nt = [ν1;ν2; . . . ;νL] the Lagrange multipliers for each unbiasedness con-
dition, and Gt = [Gt

1;G
t
2; . . . ;G

t
N ] with

Gi = [g1(xi)ID−1; g2(xi)ID−1; . . . ; gL(xi)ID−1], i = 0, 1, . . . , N.
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The UK error covariance matrix is then shown to be

SK = Γ00 −Λt
eWe0 = Γ00 −Wt

e0W
−1
e We0

Since the UK and SK system of equations, predictors and errors have analogous
forms, the proposition for the case of UK can be proved by showing that, if
the extended matrices satisfy Eqs. (37)-(39), then they satisfy the UK system
of equations (Eq. 40) as well. That is, if W

(2)
e = AW

(1)
e At (Eq. 37) and

Λ(2)
e = A−tΛ(1)

e At
12 (Eq. 39), then in Eq. (40), becomes

W(2)
e Λ(2)

e = [AW(1)
e At][A−tΛ(1)

e At
12] = AW(1)

e Λ(1)
e At

12 = AW
(1)
e0 At

12 = W
(2)
e0 ,

which holds given Eq. (38). �

For an integral

I =

∫
RD−1

g(Z)φ(Z|ζ̂,SK)dZ,

where ζ̂ is a cokriging predictor with cokriging error covariance SK , a multi-
variate Gauss-Hermite quadrature of order k with weights w1, w2, . . . , wk and
quadrature points u1, u2, . . . , uk, can be used to obtain the approximation

Î =

k∑
i1=1

k∑
i2=1

· · ·
k∑

iD−1=1

wi1wi2 · · ·wiD−1
g(ζ(i1, i2, . . . , iD−1))

with quadrature vectors

ζ(i1, i2, . . . , uD−1) =: ζ̂ +
√
2 ·R · u[i1,i2,...,iD−1]

where R is any matrix satisfying R·Rt = SK and u[i1,i2,...,iD−1] = [ui1 , ui2 , . . . , uiD−1
],

We lastly establish the relationshiop between quadratures for distinct log-
ratio representations ψ1(·) and ψ2(·) . The weights w1, w2, . . . , wk and quadra-
ture points u1, u2, . . . , uk do not depend on the choice of log-ratio representation.
If ζ̂i is the predictor using the i-th log-ratio representation, then by Proposition
9 the representations ζ̂1 and ζ̂2 are related by A12 · ζ̂1 = ζ̂2.

The spectral decomposition of the cokriging error covariance matrix SK1 is
given by SK1 = V1 · D1 · Vt

1, where D1 is a diagonal matrix and V1 is an
orthogonal matrix of eigenvectors then R1 = V1 ·D1/2

1 ·Vt
1 is a square root of

SK1 and so from the congruence we have

SK2 = A12 · SK1 ·At
12 = A12 · (V1 ·D1 ·Vt

1) ·At
12.

This expression can be rewritten as

SK2 = A12·V1·D1/2
1 ·Vt

1·(A−1
12 ·A12)·V1·D1/2

1 ·Vt
1·At

12 = (A12·R1·A−1
12 )·A12·R1··At

12
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and so
R2 = A12 ·R1 ·At

12

is a square root of S2 if and only if At
12 = A−1

12 , that is A12 is an orthogonal
matrix. In that case the quadrature vectors ζ(i1, i2, . . . , iD−1) are related by

ζ(2)(i1, i2, . . . , iD−1) = ζ2 + R2 · u[i1,i2,...,iD−1] (41)

= A12 · ζ1 + A12 ·R1 ·At
12 · u[i1,i2,...,iD−1] (42)

= A12 · (ζ1 + R1 · ·v[i1,i2,...,iD−1]). (43)

where v[i1,i2,...,iD−1] = A12 · u[i1,i2,...,iD−1].

B Appendix: Compositional Geostatistics Work-
flow

B.1 Interpolation

1. perform both classical and compositional exploratory analysis (section 3.3)

2. compute variation-variograms of the regionalized composition (Eq. 24)

3. fit a valid model (section 5.2); models such as the linear model of coregion-
alization or the minimum/maximum autocorrelation factors are useful

4. recast both the experimental and the model variation-variograms via other
log-ratio transform with respectively Eqs. (25) and (27), in order to as-
sess that the model fits the data reasonably well in these other reference
systems

5. choose one of these alternative log-ratio transforms, and compute the
scores of the data (Eq. 13)

6. apply cokriging to the log-ratio scores with variogram model expressed
in the same log-ratios; store cokriging covariance error matrices if cross-
validation or Gauss-Hermite quadratures is desired

7. backtransform the predicted values

8. if unbiased estimates of the mass of each component are required, estimate
them through Gauss-Hermite quadratures (Eq. 30) or follow the procedure
in the next section
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9. further products (maps, cross-validation, block models, etc) can be derived
from individual components of the composition or from relevant logratios;
cross-validation studies should focus on multivariate quantities and pair-
wise logratio plots (section 6.2).

Steps (2) and (3) can alternatively be applied to a particular log-ratio trans-
formed data. In this case, step (4) should also explore the fit of the model to
the variation-variograms, and step (5) can be applied to the same logratio set
as in step (2). This is the strategy followed in the paper, where all calculations
were primarily done with the alr transformed data.

B.2 Simulation

1. apply a log-ratio transformation to the data, then transform the scores
via multivariate Gaussian anamorphosis, such as the flow anamorphosis
(section 7.2)

2. estimate direct and cross-variograms of the gaussian scores

3. fit a valid joint model to these variograms

4. apply conditional simulation algorithms to produce simulations of the
gaussian scores

5. transform the simulated gaussian scores to logratio scores with the in-
verse Gaussian anamorphosis, then backtransform the logratio scores to
compositions

6. post-process simulations as desired, e.g. produce point-wise estimates of
non-linear quantities (Eq 29), upscale them to block averages (Eqs. 31-33)
or produce maps.
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