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Abstract

Liquid metal batteries (LMBs) were recently proposed as cheap large scale en-

ergy storage. Such devices are urgently required for balancing highly fluctuating

renewable energies. During discharge, LMBs tend to form intermetallic phases.

These do not only limit the up-scalability, but also the efficiency of the cells.

Generating a mild fluid flow in the fully liquid cell will smoothen concentration

gradients and minimise the formation of intermetallics. In this context we study

electro-vortex flow numerically. We simulate a recent LMB related experiment

and discuss how the feeding lines to the cell can be optimised to enhance mass

transfer. The Lorentz forces have to overcome the stable thermal stratification

in the cathode of the cell; we show that thermal effects may reduce electro-

vortex flow velocities considerable. Finally, we study the influence of the Earth

magnetic field on the flow.

Keywords: liquid metal battery, mass transfer, electro-vortex flow, swirl,

Rayleigh-Bénard convection, OpenFOAM
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1. Introduction1

Integrating highly fluctuating renewable energies (such as photovoltaics and2

wind power) into the electric grid calls for large scale energy storage. Such3

storage must be, first of all, safe and cheap. The liquid metal battery (LMB)4

promises both. After being intensively investigated in the 1960s, and abandoned5

later, LMB research experienced a renaissance some ten years ago. For an6

overview of the pioneering work, see [1–3] (recommended [4]) and for the recent7

work [5] and [6].8
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Figure 1: Sketch of a typical Li||Bi liquid metal battery with an intermetallic phase forming in

the cathode (left) and vertical temperature distribution in the three layers for pure diffusion

(right).

Fig. 1a shows a sketch of a typical LMB. A dense metal on the bottom9

(cathode, positive electrode) is separated by a liquid salt from a lighter metal10

at the top (anode, negative electrode). All three phases float above each other;11

the salt acts as the electrolyte. The word “liquid metal battery” names only a12

type of battery (which may consists of many different active metals). Typical13

cells include Ca||Bi [7, 8], Ca||Pb [9], K||Hg [10, 11], Li||Bi [1, 12–16], Li||Pb14

[1, 17], Li||Sb [5, 17], Li||Sn [1, 14, 18–20], Li||Zn [1], Mg||Sb [5, 21, 22], Na||Bi15

[1, 14, 18, 20, 23–27], Na||Hg [5, 28, 29], Na||Pb [1, 14, 20, 27, 30], Na||Sn16

[1, 11, 18, 20, 31, 32] and Na||Zn [33, 34] as well as exotic ones such as Li||Se17

[1, 35, 36] or Li||Te [1, 14, 15, 35, 36].18
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During discharge, the anode metal is oxidised, crosses the electrolyte layer19

and alloys in the bottom layer with the dense metal (“concentration cell”).20

Commonly, the ohmic resistance of the electrolyte layer represents the most im-21

portant overvoltage. However, at higher discharge currents concentration polar-22

isation enters the field [5, 11, 22, 28, 32, 37]. Example: when discharging a Li||Bi23

cell, Li-rich alloy will concentrate at the cathode-electrolyte interface. When a24

certain local concentration is exceeded, a solid intermetallic phase (Li3Bi) will25

form (fig. 1a) [1, 24]. Such intermetallics often float on the cathode metal [38].26

Sometimes they expand during solidification. As the walls impede a lateral27

expansion, the intermetallic will form a dome until finally short-circuiting the28

electrolyte. Especially in Ca based cells, locally growing dendrites may addi-29

tionally short-circuit the cell [7]. Besides of all the mentioned drawbacks, the30

formation of intermetallics has one advantage: it removes anode metal from the31

melt and keeps thereby the voltage constant. It should be also mentioned that32

some intermetallics have high resistances while others are good conductors.33

When charging the cell of fig. 1a, the cathode-electrolyte interface will de-34

plete of Li and a similar concentration gradient may develop [24]. This effect is35

undesirable, too. Finally, all the same effects may theoretically happen in the36

anode compartment, too, if an alloyed top electrode is used (e.g. CaMg [8, 21]).37

However, such effects were not reported, yet.38

It was early proposed that a mild fluid flow may counterbalance concentra-39

tion gradients and increase thereby the efficiency of LMBs [1, 24, 37]. While40

“mechanical stirring” [1, 37] seems difficult to realise, a localised heating or cool-41

ing inducing thermal convection may be a very good option [39, 40]. Electro-42

vortex flow (EVF) may be used for an efficient mass transfer enhancement, too43

[41–43]. Simply saying, EVF always may develop when current lines are not in44

parallel. It can therefore easily be adjusted by choosing the diameter/geometry45

of the current collectors and feeding lines appropriately. EVF drives a jet away46

from the wall, forming a poloidal flow [44]. For a classical example of the origin47

of EVF, see Lundquist [44] and Shercliff [45], for a good introduction David-48

son [46] and a detailed overview including many experiments Bojarevics et al.49
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[47]. Its relevance for LMBs is outlined by Ashour et al. [43]. It should also50

be mentioned that other flow phenomena like the Tayler instability [48–56] ,51

Rayleigh-Bénard convection [57, 58] or interface instabilities [59–63] may en-52

hance mass transfer in LMBs, as well.53

This article is dedicated (mainly) to electro-vortex flow. It’s aim is twofold:54

first, we will show how the connection of the supply lines to the cell influences the55

flow. Second, we study how electro-vortex flow and thermal convection interact.56

For this purpose we combine numerical simulation with a simple 1D conduction57

model. These models – and the experiment which inspired our studies – are58

described in the following section.59

2. Physical, mathematical and numerical model60

In this section we will first present the experiment [64] which inspired this61

article. Thereafter we explain the way in which we estimate the temperature62

gradient appearing in the cathode of a liquid metal battery (LMB). Finally, we63

give an introduction to the 3D numerical models used.64
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Figure 2: Dimensions of the experiment and simulation model (in mm). The grey values are

not exactly known; they are estimated from the sketch in [64]. The wires are assumed to be

made of copper.
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Fig. 2 illustrates the mentioned experiment, conducted by Kelley & Sadoway65

[64]. A cylindrical steel vessel contains a melt of eutectic lead-bismuth at 150 ◦C.66

An electric current (up to 0.375 A/cm
2

) is applied between a bottom and top67

electrode. The bottom electrode may be attached centrically or laterally. The68

upper electrode consists of a nickel-iron foam; such foam is often used in LMBs69

to contain the anode metal [6]. As the setup is heated from below, Rayleigh-70

Bénard cells appear. If an internal current is applied, the flow becomes much71

more regular at 0.05 A/cm
2
. It is deduced that convection cells align with the72

magnetic field. It is further claimed that the copper plate which placed between73

the bottom electrode and the the vessel, “ensures a uniform current density” in74

the melt. We will show that this is not exactly true; we will further demonstrate75

how electro-vortex flow may give an alternative explanation for the increase in76

order.77

We use the following material properties of eutectic PbBi at 150 ◦C [43]:78

a kinematic viscosity of ν = 2.7 · 10−7 m2/s, a thermal expansion coefficient79

of β = 1.3 · 10−4 K−1, an electric conductivity of σ = 9 · 105 S/m, a density80

of ρ = 10 505 kg/m3, an isobaric heat capacity of cp = 148 J/kg/K, a heat81

conductivity of λ = 10 W/m/K, a thermal diffusivity of α = 6 · 10−6 m2/s, a82

Prandtl number of Pr = 0.04 and a sound velocity of us = 1 765 m/s [65–67].83

The electric conductivity of the vessel is assumed to be σ = 1.37 · 106 S/m and84

of the wires and copper plate σ = 58.1 · 107 S/m. The electric conductivity of85

the Fe-Ni foam is not easy to determine; we use a value of σ = 1.37 · 106 S/m86

without further justification.87

Geometrically, the described experiment perfectly represents a liquid cath-88

ode of an LMB. However, the temperature gradient in a working LMB depends89

on the boundary conditions. For a single cell in an environment at room tem-90

perature it will rather be opposite to that in the experiment. As the electrolyte91

layer has the highest resistance (four orders larger than the metals), most heat92

will be generated there [57]. Fig. 1b shows a typical vertical temperature profile93

through all three layers. If no thermal management system induces additional94

temperature gradients (as suggested in [21, 40]) a stable thermal stratification95
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Figure 3: Temperature difference in the cathode for pure conduction in a Li||Bi cell. The

same model and material properties as in [68] are used.

is expected in the cathode. To drive a flow there, any force has to overcome96

first this stable stratification.97

The temperature difference between top and bottom of the cathode can be98

estimated using the simple 1D heat conduction model developed by Personnettaz99

et al. [68] (for a 3D study of heat transfer in a Li||PbBi cell, see [69]). He100

considers a Li|LiCl-KCl|Bi cell operating at 450◦C. Although our cathode is101

made of eutectic PbBi (and not Bi), we use the same model to get a rough102

estimate of the temperature gradient in the cathode. The Li-layer is assumed103

to be 32 and the Bi-layer 16 mm thick; for the material parameters, see [68].104

Depending on the current density and thickness of the electrolyte, the ∆T over105

the cathode changes as illustrated in fig. 3. In our numerical simulation we will106

assume the electrolyte to be 5 mm thick (realistic values are 3-15 mm [70]). We107

will use the temperature difference of fig. 3 as boundary condition as108

∆T =
hBihsaltq (2hLiλsalt + hsaltλLi)

2hBiλLiλsalt + 2hLiλBiλsalt + 2hsaltλBiλLi
, (1)

with h, λ and q denoting the layer heights, the thermal conductivities and the109
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volumetric heat source in the electrolyte. We will study, if electro-vortex flow110

can overcome the stable stratification.111

The numerical model is implemented in OpenFOAM [71]; the electro-vortex112

flow solver is explained in detail in [72]. Basically, it computes the electric113

potential φ and current density J on a global mesh as114

∇ · σ∇φ = 0 (2)

J = −σ∇φ (3)

with σ denoting the electric conductivity. All conducting regions (of different115

conductivities) are fully coupled. The results are then mapped on a separate116

fluid mesh. Induced currents and magnetic fields are neglected, which is justified117

as long as the velocities are small. On the fluid mesh the following set of118

equations is solved:119

∂u

∂t
+ (u · ∇)u = −∇p+ ν∆u +

J ×B

ρ
(4)

B(r) =
µ0

4π

∫
J(r′)× (r − r′)

|r − r′|3
dV ′ (5)

0 = ∆B (6)

with t, u, p, ν, ρ, µ0, r and V denoting the time, the velocity, the pressure, the120

kinematic viscosity, the density, the vacuum permeability, the coordinate and121

the cell volume, respectively. The Biot-Savart integral is only used to determine122

the magnetic field B on the boundaries. The fluid mesh has at least 200 cells123

on the diameter, which is fine enough according to [43].124

If thermal effects shall be included, the Oberbeck-Boussinesq approximation125

[73] is used (for its validity, see [43, 74]). The following set of equations is solved126

∂u

∂t
+∇ · (uu) = −∇pd + ν∆u− g · r∇ρk +

J ×B

ρ0
(7)

∇ · u = 0 (8)

∂T

∂t
+∇ · (uT ) =

λ

ρ0cp
∆T (9)

with u, p, ν, g, r, T , cp J and σ denoting velocity, pressure, kinematic viscosity,127

gravity, position vector, temperature, specific heat capacity, current density and128
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electric conductivity, respectively. The density ρ = ρ0ρk = ρ0(1 − β(T − Tref))129

is calculated using the mean density ρ0 at reference temperature Tref and the130

coefficient of thermal expansion β; J and B are determined by the electro-vortex131

solver as described above. At least 250 cells on the diameter and strongly refined132

boundary layers are used.133

3. Results134

This section is arranged as follows: firstly, we compare the influence of a135

symmetric and asymmetric current supply on pure electro-vortex flow (fig. 4).136

Thereafter, we study the influence of the Earth magnetic field and of thermal137

stratification on both connection types (fig. 5 and 6). Further, we give estimates138

of the flow velocity depending on the cell current.

(a)
(b)

(c)

Figure 4: Current path and velocity streamlines for a current supply from the side (a). Velocity

on a vertical plane for symmetric (b) and lateral current supply (c). The current is I = 40 A;

the results show electro-vortex flow alone.

139

Fig. 4a illustrates the current path, streamlines and velocities for a lateral140

supply line. Electro-vortex flow is simulated alone; the applied current is 40 A.141

The flow profile is essentially horizontal forming two kidney-shaped vortices.142

The velocity reaches 2.5 mm/s. The horizontal jet (also shown in 4c) is uncom-143

mon for electro-vortex flow, but can easily be explained. As the current flows144

mainly horizontally through the copper plate, it induces a magnetic field in the145
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fluid. This field points towards the observer (in fig. 4a and c). The current in146

the liquid metal flows upwards (vertically) and interacts with the induced field.147

Consequently, the Lorentz force points to the right and drives the observed flow148

in “prolongation” of the current supply. For similar experiments, see [75, 76].149

Fig. 4b shows the flow profile for a symmetric current supply, again for 40 A.150

A typical poloidal flow develops as it was often observed experimentally [47, 77–151

81]. Similar flow structures are very well known from vacuum arc remelting and152

electro-slag remelting [82–89]. However, depending on the exact geometry, the153

direction of the flow might be reversed [90–93]. In our simulation, the velocities154

reach 0.6 mm/s for the symmetrical setup. This is only 25 % of the flow velocity155

observed for a lateral current supply. Due to the shallow liquid metal layer, a156

poloidal flow will dissipate strongly in the boundary layer.157

The simulated velocities are not directly comparable to the experiment. The158

latter was additionally heated from below (vertical temperature difference of ap-159

proximately ∆T = 10 K). As shown numerically by Beltrán, the experimentally160

observed flow is mainly caused by Rayleigh-Bénard convection. Also he used a161

volumetric expansion coefficient three times smaller than the real one [64, 94]162

(for the correct value see [43]), his velocity profile and magnitude (3 mm/s)163

matches very well to the experimental results (compare fig. 9 in [94] and fig. 4164

in [64]). Electro-vortex flow will generally lead to velocities one order of mag-165

nitude smaller (Kelley and Sadoway [64] used currents of 23.3 A at most; our166

results are for 40 A). However, electro-vortex flow will surely influence the flow167

structure and may explain the increase in order of the flow which was observed168

experimentally.169

In the next step we focus on the symmetric current supply (with the poloidal170

flow) only, and analyse the influence of a vertical magnetic background field.171

When we add the magnetic field of the Earth (measured in Dresden as B =172

(15 · ex, 5 · ey, 36 · ez)µT) the original poloidal flow (fig. 5a) becomes strongly173

helical (fig. 5b). The appearance of such azimuthal swirl flow is well known from174

experiments [43, 77, 95] and can be easily explained. Radial cell currents and a175

vertical magnetic background field lead to azimuthal Lorentz forces [79, 84, 95].176
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Compared to a recent experiment by Ashour [43] with a point electrode on the177

top, we observe considerably stronger swirl (compare fig. 5b with fig. 5 in [43]).178

We attribute this difference to the location of the azimuthal forcing. Here, the179

force is well distributed in the whole volume; in [43] it is concentrated only in180

the centre of the liquid metal “sheet”. We suppose the distributed azimuthal181

Lorentz force to better suppress the poloidal flow by forcing the streamlines into182

a dissipative Ekman layer [84]. Fig. 5c shows the volume averaged mean velocity183

of the poloidal and azimuthal flow – with and without the Earth magnetic field.184

If we add a vertical field, azimuthal swirl appears (compare the dashed curve).185

At the same time, the poloidal flow is strongly reduced (by a factor of 1/2). This186

fits nicely to Davidsons “poloidal suppression” model [84]. This is remarkable,187

because simulations with a point electrode (see [43]) did not show such a strong188

suppression.189

Keeping the symmetric current supply, we now focus on the influence of the190

temperature stratification. During operation of an LMB, the cathode will be191

heated from above; the temperature stratification will be stable. At first glance,192

this configuration is similar to arc remelting. There, an electric arc heats the193

melt from above. However, the bath is cooled rather from the side than from194

below which leads to strong thermally driven flow [96], but we have a stable195

thermal stratification instead. Based on the temperature conduction model196

described in section 2 we apply a vertical temperature gradient of ∆T = 0.7 K197

(at 40 A). The stable thermal stratification slows down the electro-vortex flow198

(compare fig. 5d and e). While the general flow structure does not change,199

especially the velocity near the bottom wall decreases by a factor of 2/3. This200

result cannot be compared to the experiment, as Kelley and Sadoway heated201

from below (and we from above). A temperature gradient as in the experiment202

is not expected to appear during “normal” operation of an LMB; however, an203

additional heating or cooling for mass transfer enhancement (as proposed in204

[39, 40]) can easily lead to similar configurations.205

We use two quantities to estimate the mass transfer in the cathode: the206

volume averaged velocity as global measure, and the mean velocity gradient at207
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Figure 5: Streamlines and velocity without (a) and with the Earth magnetic field (b). Volume

averaged mean velocities of the azimuthal and poloidal flow for both cases (c). Velocity on

a vertical plane for symmetric current supply without temperature (d) and with a negative

temperature gradient of 0.7 K (e). Volume averaged mean velocity (f) and mean velocity

gradient (g) of electro-vortex flow alone, with an additional Earth magnetic field (Bz) and

with a stabilising temperature gradient. I = 40 A.

the foam-cathode interface as local one. Fig. 5f and g show both quantities208

for electro-vortex flow alone, with the Earth magnetic field (“Bz”) and with a209

stabilising thermal gradient. The azimuthal flow, caused by the Earth magnetic210

field, yields the highest velocities. A vertical temperature gradient does barely211

influence the horizontal flow. The poloidal electro-vortex flow (“EVF alone”) is212

considerably slower – it is strongly dissipated at the bottom wall. The vertical213
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temperature gradient effectively breaks the downwards flow. Interestingly, a214

strong flow in the volume leads also to strong velocity gradients at the interface.215

We now consider the lateral current supply, and study again the influence216

of temperature and the Earth magnetic field. The prevailing horizontal flow is217

hardly influenced by a stabilising vertical temperature gradient. The flow struc-218

ture changes only slightly; the velocities with and without temperature gradient219

are almost the same (compare fig. 6c and d). Taking into account the Earth220

magnetic field changes the flow much more (compare fig. 6a and b). The hori-221

zontal current and vertical magnetic background field generate a Lorentz force222

which deflects the jet in clockwise direction. Presumably the stronger dissipa-223

tion in the boundary layers decreases the velocity slightly. Most importantly,224

the Earth magnetic field does not lead to swirl flow in this configuration – the225

jet is only deflected. Fig. 6e and f show the mean velocity and the mean velocity226

gradient for pure electro-vortex flow, with the Earth magnetic field and with227

the stabilising temperature gradient. The differences are only marginal.228

4. Summary & outlook229

We have discussed, how electro-vortex flow (EVF) has the potential to en-230

hance mass transfer in liquid metal batteries (LMBs). In a first step we discussed231

why such mass transfer enhancement is important. We emphasised that mostly232

(but not only) mixing of the cathode during discharge is highly beneficial. We233

studied the flow structure and magnitude of EVF numerically. Moreover, we234

discussed the influence of stray magnetic fields, the connection of the supply235

lines and a stable thermal stratification on electro-vortex flow.236

A lateral current supply to the cathode will generate a horizontal flow. In237

contrast, a central current supply below the cathode will induce a vertical jet.238

Looking only on this flow-direction, would expect a vertical flow to be bet-239

ter suited for enhancing mass transfer. It will remove reaction products di-240

rectly from the cathode-electrolyte interface. However, the vertical (or better:241

poloidal) flow has three disadvantages: (1) it’s mean velocity is much smaller242
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Figure 6: Electro-vortex flow for a lateral supply wire without (a) and with the Earth magnetic

field (b). Flow in the cross section of the jet without (c) and with a stabilising thermal gradient

(d). The current for (a)-(d) is 40 A. Volume averaged mean velocity (e) and mean velocity

gradient (f) for electro-vortex flow alone, with the additional Earth magnetic field (Bz) and

with a stabilising temperature gradient.

compared to the horizontal flow, (2) it is dampened by the stable temperature243

stratification and (3) it will turn to a swirling flow under presence of the Earth244

magnetic field. In contrast, the horizontal jet will not be dampened considerably245

by a temperature stratification nor be strongly influenced by the Earth mag-246

netic field. We believe therefore the lateral supply line to be better suited for247

enhancing mass transfer. Concerning the swirl flow we could (at least partially)248

confirm Davidsons model of poloidal suppression.249
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Our models are strongly simplified: we ignore induced currents and mag-250

netic fields; we ignore internal heating; the simulation of thermal convection251

and EVF is fully decoupled. A next step would be therefore the development252

of a fully coupled EVF-thermal convection model as well as it’s coupling with a253

real mass transfer (e.g. Li in Bi) model. Of course, velocity and concentration254

measurements in a real 3-layer LMB would be a large step forward. Performing255

Kelley’s experiment with an inverse temperature gradient (better at room tem-256

perature) could allow a further experimental study of the interaction between257

EVF and thermal convection.258
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[86] A. Kharicha, W. Schützenhöfer, A. Ludwig, R. Tanzer, M. Wu, On the511

importance of electric currents flowing directly into the mould during an512

ESR process, Steel Res. Int. 79 (8) (2008) 632–636.513

[87] V. Shatrov, G. Gerbeth, Stability of the electrically induced flow between514

two hemispherical electrodes, Magnetohydrodynamics 48 (3).515

23

http://dx.doi.org/10.1016/j.actamat.2014.07.037
http://dx.doi.org/10.1016/j.actamat.2014.07.037
http://dx.doi.org/10.1016/j.actamat.2014.07.037


[88] O. V. Kazak, A. N. Semko, Numerical modeling of electro-vortical flows in516

a confined volume, J. Eng. Phys. Thermophys. 85 (2012) 1167–1178.517

[89] A. Kharicha, I. Teplyakov, Y. Ivochkin, M. Wu, A. Ludwig, A. Gu-518

seva, Experimental and numerical analysis of free surface deformation in519

an electrically driven flow, Exp. Therm. Fluid Sci. 62 (2015) 192–201.520

doi:10.1016/j.expthermflusci.2014.11.014.521

[90] O. Kazak, A. Semko, Modelling vortex fields in metal smelting furnaces,522

Int. J. Multiphysics 4 (4).523

[91] O. V. Kazak, A. N. Semko, Electrovortex motion of a melt in DC furnaces524

with a bottom electrode, J. Eng. Phys. Thermophys. 84 (1) (2011) 223–231.525

[92] O. Kazak, Modeling of Vortex Flows in Direct Current (DC) Electric Arc526

Furnace with Different Bottom Electrode Positions, Metall. Mater. Trans.527

B 44 (5) (2013) 1243–1250. doi:10.1007/s11663-013-9899-4.528

[93] O. Semko, Y. Ivochkin, I. Teplyakov, K. O, Electro vortex flows in hemi-529

sphere volume with different bottom electrode positions, in: 9th PAMIR530

International Conference, Fundamental and Applied MHD, 2014.531

[94] A. Beltrán, MHD natural convection flow in a liquid metal electrode, Appl.532

Therm. Eng. 114 (2016) 1203–1212. doi:10.1016/j.applthermaleng.533

2016.09.006.534
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