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Abstract

The neon-sodium cycle (NeNa cycle) of hydrogen burning is active in stars of the
Asymptotic Giant Branch, in classical novae, and in supernovae of type Ia. The
thermonuclear reaction rate of the 22Ne(p, γ)23Na reaction is determined by a large
number of resonances, and it represents the most uncertain rate in the NeNa cycle.

This PhD thesis reports on an experiment to study tentative 22Ne(p, γ)23Na
resonances at E lab

p = 71 keV and 105 keV, as well as the direct capture component
of the reaction rate for E lab

p ≤ 400 keV.
The measurements were performed deep underground at the Laboratory for Un-

derground Nuclear Astrophysics - LUNA (Gran Sasso, Italy), taking advantage of
the strong reduction in the cosmic ray induced background. The LUNA-400-kV
electrostatic accelerator and a differentially pumped, windowless gas target of iso-
topically enriched 22Ne gas were used. The γ-rays from the reaction were detected
with a 4π bismuth germanate scintillator.

The data show upper limits on the strengths of the resonances at E lab
p = 71 keV

and 105 keV of 5.8 × 10−11 eV and 7.0 × 10−11 eV respectively. The resonances
at E lab

p = 156.2, 189.5 and 259.7 keV have been re-studied and show 20% higher
strength than the literature. The present experiment did not show any evidence for
the direct capture process at the low energies studied.

In addition to the experimental work at LUNA, the 3He(α, γ)7Be and 7Be(p, γ)8B
reactions were studied using the most recent solar neutrino data available. Based on
the standard solar model and the experimentally measured fluxes of solar 7Be and
8B neutrinos, the astrophysical S-factors of both reactions were evaluated directly
in the solar Gamow peak.
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Zusammenfassung

Der Neon-Natrium-Zyklus (NeNa-Zyklus) des Wasserstoffbrennens tritt in Roten
Riesensternen, klassischen Novae und Supernovae vom Typ Ia auf. Die thermonuk-
leare Reaktionsrate der 22Ne(p, γ)23Na Reaktion ist von vielen Resonanzen bes-
timmt, und sie gilt als die unsicherste Rate in dem NeNa-Zyklus.

Die vorliegenden Dissertation berichtet über ein Experiment, zur Untersuchung
von möglichen 22Ne(p, γ)23Na Resonanzen bei Elab

p = 71 keV und 105 keV und des
,,Direct Capture”-Prozesses für Elab

p ≤ 400 keV.
Die Messungen sind tief unter Tage im ,,Laboratory for Underground Nuclear

Astrophysics - LUNA” (Gran Sasso, Italien) durchgeführt worden, um die starke
Reduzierung der kosmischen Strahlung auszunutzen. Der LUNA-400-kV Beschleu-
niger und ein fensterloses Gastarget, gefüllt mit 22Ne-Gas wurden verwendet. Die
γ-Strahlen von der 22Ne(p, γ)23Na Reaktion wurden mit einem 4π Bismutgermanat-
Szintillator nachgewiesen.

Die Daten ergaben obere Schranken von 5.8 × 10−11 eV und 7.0 × 10−11 eV
für die Stärken von Resonanzen bei E lab

p = 71 und 105 keV. Die Resonanzen bei
Elab

p = 156.2, 189.5 und 259.7 keV wurden ebenfalls untersucht, und die Messun-
gen zeigen 20% höhere Werte für die Resonanzstärke als die Literatur. In dem
untersuchten Energiebereich wurde kein Beleg für einen ,,Direct Capture”-Prozess
gefunden.

Außer der experimentellen Arbeit an LUNA wurden die Reaktionen 3He(α, γ)7Be
und 7Be(p, γ)8Bmit Hilfe der Sonnenneutrinoflüsse untersucht. Anhand des Standard-
Sonnenmodels und der gemessen Flüsse von 7Be und 8B Neutrinos wurde der astro-
physikalische S-Faktor von beiden Reaktionen im solaren Gamow-Peak bestimmt.
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The work described in Section 5.1 was already published in a peer-reviewed
journal:

Marcell P. Takács, Daniel Bemmerer, Tamás Szücs, and Kai Zuber
Constraining big bang lithium production with recent solar neutrino data
Physical Review D 91 (2015) 123526
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Chapter 1

Introduction

The stars have fascinated mankind from the very beginning of history, but for a
long time it was not so evident that the Sun is one of them. Around 450 B.C, the
Greek philosopher Anaxagoras already theorised that all the stars in the night sky
are probably similar objects to the Sun, and only the vast distances make them look
different. However, his idea got forgotten, and it was only a millennium later, when
Giordanio Burno came again to the realization that the universe is infinitely large,
and ”fixed stars” are in fact suns. Unfortunately, this rather radical thought also
led to his demise in the year 1600.

Only a couple of years later, the invention of the telescope by some Dutch opti-
cians launched a whole new era, hallmarked by the names of Galilei, Kepler, Huygens
and Newton. The shift from the geocentric to the heliocentric model was a huge
step in the history of astronomy. While the celestial mechanics of the Solar system
was explained by Newton’s theory of gravity, it did not provide a direct confirmation
that stars are suns, and vice versa. The final argument was then provided by Bessel
in 1838, who successfully determined the distance between the Sun and another star
(61 Cygni) by the method of parallax. The calculated distance was incredible huge,
and thus confirmed the original idea of Anaxagoras.

By the end of the 19th century, a lot was already known about the Sun, however,
the origin of its heavenly fire was still a mystery. As Lord Kelvin pointed out,
chemical burning in the classical sense would allow the Sun to shine only for a couple
of thousand years. Even the more sophisticated idea of energy generation due to
gravitational contraction suggested by Helmholtz failed to reproduce a reasonable
lifetime for the Sun. It was only with the dawn of nuclear physics that the correct
answer was found.

In 1917, Ernest Rutherford was doing various experiments at the University of
Manchester, when he realised that he could produce hydrogen ions from air (ni-
trogen gas) by bombarding it with alpha particles from a radioactive source. This
observation, which was in fact the first intentionally induced nuclear reaction, not
only lead to the discovery of the proton, but opened a whole new chapter in physics.
Three years later, in his precise measurement Francis William Aston concluded that
the mass of the helium atom is slightly smaller than the sum of four hydrogen atom
masses.

The significance of this discovery was then realized by Arthur Eddington, who
speculated that the energy production of the Sun relies on the nuclear transformation
of hydrogen into helium. Indeed, Eddington managed to come up with the right idea,
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despite the fact that classically such fusion would not be possible: The protons
are positively charged particles and therefore experience electrostatic repulsion. In
order to induce a nuclear fusion between two protons, they have to be pushed so
close together that their classical radii overlap. The amount of energy required is
determined by the Coulomb potential, which can be expressed as

Vc = kE
q1q2
r

= kE
Z1Z2e

2

r
≈ Z1Z2

r
1.440 MeV fm (1.1)

where kE is the Coulomb constant, q1 = Z1e, q2 = Z2e are the electrical charges
of the interacting nuclei, and r is the distance separating them [1]. As a typical
physical radius of the proton, one can assume its root mean square charge radius,
which is roughly 1 fm. This means that the minimal energy required to fuse two
protons is about 1.4 MeV. The temperature of the solar core is Tc = 16× 106 K. If
one imagines the Sun as a giant gas ball of hydrogen at temperature Tc, the typical
proton energy can be estimated as the average kinetic energy of the gas particles
based on the kinetic theory of ideal gases:

〈Ekin〉 = 3

2
kBT (1.2)

where kB is the Boltzmann constant. Surprisingly, this calculation yields only
〈Ekin〉 ≈ 2 keV, which means the energy of the protons falls three orders of mag-
nitude short. The Sun seems to be too cold, because the protons classically cannot
cross the Coulomb-barrier (see Fig. 1.1).

Vc 

Ep 

0 rp 
x 

E 

projectile 

Figure 1.1: Energy scheme of a charged particle induced nuclear reaction: classically
the reaction is only allowed if Ep ≥ Vc, but in the framework of quantum mechanics
the projectile can tunnel through the Coulomb barrier with a finite probability.

The way out from this dilemma was provided by G. Gamow in 1928 [2], who
managed to find an explanation for the radioactive alpha decay by the introduction
of the quantum mechanical tunnel effect. The same phenomenon which allows the
alpha particles to exit the nucleus, grants the passing for the protons through the
Coulomb barrier in the Sun. For the general case of charged particle induced nuclear
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reaction, the tunneling probability (also known as the Gamow-factor) at zero angular
momentum can be expressed as

P = e−2πη (1.3)

where η = Z1Z2e
2/(h̄ν) is the Sommerfeld parameter with the atomic numbers

of two interacting nuclides Z1, Z2, and the magnitude of their relative velocity v.
In practice, the Sommerfeld parameter is usually approximated with the following
numerical expression [3]:

−2πη = −31.29 Z1 Z2

( μ

E

)1/2

(1.4)

where μ is the reduced mass of the two-body system (consisting of masses m1 and
m2) expressed in units of amu

μ =
m1m2

m1 +m2

(1.5)

and E is the total kinetic energy of center-of-mass system in keV.
It is evident that the cross section of the nuclear reaction σ(E) must be propor-

tional to the Gamow-factor:

σ(E) ∝ exp(−2πη) (1.6)

By definition, the cross section is the effective geometrical area that quantifies the
likelihood of the nuclear reaction taking place. In the semiclassical description of
nuclear reactions, this effective area is determined by the impact parameter of the
two interacting nuclei, which is linked to the de Broglie wavelength of the particles
in the center-of-mass frame: λ = h/p. (In the center-of-mass frame, the two-body
system of target and projectile is characterised by only one de Broglie wavelength,
because the magnitude of their momenta is equally p.) The cross section thus
becomes

σ(E) ∝ πλ2 ∝ 1

E
(1.7)

where E is again the total kinetic energy of the target-projectile system in center-
of-mass frame. Taking into account these properties of the reaction cross section, in
nuclear astrophysics σ(E) is usually expressed as follows

σ(E) = S(E)
1

E
exp (−2πη) (1.8)

In this way, the cross section is separated into three parts, from which the ”nuclear”
part is represented by S(E), the so-called S-factor. Since most of the energy de-
pendence due to kinematics (E−1) and the Coulomb-barrier (exp(−2πη)) is taken
away, usually S(E) has only a mild dependence on the energy.

With the help of the cross section, it is possible to express the rate of nuclear re-
actions in the stellar plasma where particles with relative velocity v and distribution
P (v) interact with each other

〈σv〉 =
∫

σ(v)P (v)vdv (1.9)
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For non-degenerate plasmas, which are in thermal equilibrium at temperature T,
P (v) follows the well-known Maxwell-Boltzmann distribution

P (v) = PMB(v) =

(
μ

2πkBT

)3/2

exp

(−μv2

2kBT

)
4πv2 (1.10)

which means that the number of particle pairs that are interacting with a relative
velocity between v and v + dv is

PMB(v) · dv =

(
μ

2πkBT

)3/2

exp

(−μv2

2kBT

)
4πv2dv (1.11)

Since the cross section was expressed in Eq. 1.8 as a function of the energy,
it is better to write also Eq. 1.9 as a function of energy. The conversion can be
accomplished by noting that E = μv2/2 and dv/dE = 1/

√
2Eμ

PMB(E) · dE =
2√
π

(
1

kBT

)3/2

exp

( −E

kBT

)√
EdE (1.12)

Substituting this expression into Eq. 1.9 and integrating it over all possible en-
ergies the total reaction rate can be determined

〈σv〉 =
∫ ∞

0

σ(E)

√
2E

μ
PMB(E)dE =

√
8

πμ

(
1

kBT

)3/2 ∫ ∞

0

σ(E) exp

( −E

kBT

)
EdE

(1.13)
By using the definition of the S-factor (Eq. 1.8), the stellar thermonuclear reac-

tion rate takes its final form

〈σv〉 =
√

8

πμ

(
1

kBT

)3/2 ∫ ∞

0

S(E)e−2πη exp
( −E

kBT

)
dE (1.14)

As it was mentioned before, the S-factor has only a mild energy dependence,
therefore the energy dependence of the integrand in Eq. 1.14 is determined by the
interplay of the two exponential expressions: With increasing energy the tunnelling
probability increases. On the other hand, the number of available particle pairs at
a certain energy is decreasing, because of their Maxwell-Boltzmann statistics. The
result of these two opposing tendencies is that nuclear reactions only take place in
a limited interval of energy, the so-called Gamow peak.

The Gamow peak is usually described with the E0 energy at which the integrand
takes its maximum value, and its approximated Gaussian width Δ [1]:

E0 = 0.1220

(
Z2

1Z
2
2μT

2
9

)1/3

[MeV] (1.15)

Δ =
4√
3

√
E0kBT = 0.2368

(
Z2

1Z
2
2μT

5
9

)
[MeV] (1.16)

Consequently, the cross section (or equivalently the astrophysical S-factor) has
to be determined within the bounds of E0 − Δ/2 and E0 + Δ/2. However, it is
important to note, that the smoothly varying picture of the cross section is not
always the case. The presence of isolated narrow resonances might greatly enhance
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Figure 1.2: Gamow peak for the 22Ne(p, γ)23Na reaction at T= 100 MK, as product
of the penetrability of the Coulomb barrier and the Maxwell-Boltzmann energy
distribution

the cross section for certain energies. Therefore, Eq. 1.14 only describes one part of
the picture, the non-resonant reaction rate.

A resonance can happen if the Er center of mass energy of the projectile satisfies
the following condition:

Ex = Q+ Er (1.17)

where Q is the Q-value of the reaction and Ex is the energy of one of the excited
states of the nucleus in the exit channel of the nuclear reaction. In the case of a
resonance at Er, the reaction rate has to be evaluated using the Breit-Wigner shape
of the resonance

σBW (E) =
λ2

4π

2J + 1

(2j1 + 1)(2j2 + 1)
(1 + δ12)

ΓaΓb

(E − Er)2 + (Γ/2)2
(1.18)

which is determined by the λ de Broglie wavelength of the projectile, the spins of the
interacting particles (j1, j2) and the excited state (J), moreover the partial widths
of the entrance and exit channels (Γa, Γb), and last but not least the total width
of the resonance (Γ). This last quantity is defined as the sum of the widths of all
possible decay channels: Γ =

∑
i Γi.

For narrow resonances (Γ < Er), the expression of the reaction rate can be
simplified, because the Maxwell-Boltzmann part of the integrand can be assumed
to be constant over the width of the resonance [1]. Therefore, it can be evaluated
at the resonance energy and moved in front of the integral:

〈σv〉res =
√

8

πμ

(
1

kBT

)3/2

exp

(−Er

kBT

)
Er

∫ ∞

0

σ(E)BWdE (1.19)
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The remaining integrand can be evaluated analytically:∫ ∞

0

σ(E)BWdE =
λ2

2

2J + 1

(2j1 + 1)(2j2 + 1)
(1 + δ12)

ΓaΓb

Γ
(1.20)

where it is customary to introduce the definition of the resonance strength ωγ, which
represents the integrated cross section.

ωγ = ω
ΓaΓb

Γ
=

2J + 1

(2j1 + 1)(2j2 + 1)
(1 + δ12)

ΓaΓb

Γ
(1.21)

Thus, the reaction rate for narrow resonance can be written as

〈σv〉res =
(

2π

μkBT

)3/2

h̄2 exp

(−Er

kBT

)
ωγ (1.22)

where the definitions λr = h/
√
2μEr and h̄ = h/2π have been used.

For stellar hydrogen burning, there are two major reaction paths depending on
the star’s initial mass - and thus its core temperature - which have to be studied [4].

In 1937, Weizsäcker suggested a reaction mechanism starting with the fusion of
two protons into deuterium via the weak interaction [5], which hence became known
as the pp-chain. The proper description of the process was developed one year later
by Bethe and Crichfield [6]. As it is shown in Fig. 1.3, after the formation of 2H
another radiative proton capture takes place which leads to 3He. In most cases the
reaction chain proceeds from this point with the fusion of two 3He nuclei via the
3He(3He,2p)4He reaction. This is the pp-I chain.

However, if there is already some 4He present, another reaction pathway, called
the pp-II chain, becomes possible, where 7Be is created. 7Be is an unstable isotope
and it decays into 7Li by electron capture. The 7Li nucleus then captures a proton
and emits an alpha particle, leaving behind 4He. The original 4He necessary for
the initiation of the pp-II is thus conserved, while similarly to the pp-I path one
additional 4He nucleus is obtained at the end. A third reaction sequence (pp-III) can
be triggered via a (p, γ) reaction on 7Be. In this case instead of 7Li, the radioactive
isotope of 8B is created. The β+ decay of 8B results in 8Be, which instantly decays
into two 4He nuclei. The net result of all three pp-chains is the same: four protons
are converted into one 4He.

The first generation of stars consisted only of hydrogen and helium produced by
the Big Bang. Therefore, in their case the only possible way of hydrogen burning
was provided by the above described pp-chain. On the other hand, from the second
generation onwards stars could also use the ashes from the previous stars to engage
in other ways of hydrogen burning. The so-called CNO cycles use the isotopes of
carbon, nitrogen and oxygen as catalysts to produce 4He. The first such catalytic
cycle (CNO-I) was proposed by Bethe [7] and Weizsäcker [8] independently from
each other, therefore it is often referred to as the Bethe-Weizsäcker-cycle:

12C(p, γ)13N(β+ν)13C(p, γ)14N(p, γ)15O(β+ν)15N(p, α)12C (1.23)

The result is the same as for the pp-chain, because four hydrogen nuclei are
converted into one helium nucleus. However, there is an important difference: in
case of the reactions of the pp-chain, the fusion process has to take place against a
relatively low Coulomb barrier, while the CNO-cycle is characterised by an elevated

18



p+ p→ 2H+ e+ +υe p+ p+ e- → 2H+υe

2H+ p→ 3He+γ

3He+ 3He→ 4He+ 2p 3He+ 4He→ 7Be+γ

7Be+ e- → 7Li+υe
7Be+ p→ 8B+γ

7Li+ p→ 2 4He 8B→ 8Be* + e+ +υe

8Be→ 2 4He

99.75 % 0.25 % 

86 % 14 % 

99.89 % 0.11 % 

Figure 1.3: pp-I-III chain of hydrogen burning

Coulomb-repulsion due to the presence of elements with higher Z. This means that
CNO cycle can only ignite at higher temperatures compared to the pp-chain. The
temperature dependence of the overall energy production exhibits a much steeper
slope for the CNO cycle (ε ∝ T 18), while for the pp-chain it follows a slower one
(ε ∝ T 4). As a result, the CNO-I cycle will dominate energy production for core
temperatures Tc ≥ 20 × 106 K. Since the core temperature has a direct link to the
initial mass of the star, one can also say that stars with approximately < 1.5M�
initial mass will mainly burn hydrogen via the reactions of the pp-chain, while the
heavier ones will rely on the CNO cycle.

If the core temperature increases further (50-100 MK) alternative CNO processes
will become possible, however, it is important to note that the energy contribution
of these side cycles to the total budget is lower than the one of the main Bethe-
Weizsäcker-cycle. The second CNO cycle, which was first described in the famous
B2FH paper of stellar nucleosynthesis [4], branches off from the first cycle via the
15N(p, γ)16O reaction. Consequently, the cross section of this reaction at a certain
stellar core temperature will determine the contribution to the energy production
by the CNO-II reaction path:

15N(p, γ)16O(p, γ)17F(β+ν)17O(p, α)14N(p, γ)15O(β+ν)15N (1.24)

By the radiative proton capture on 17O, a third cycle becomes also possible which
was first described by Rolfs and Rodney [9] in the mid-1970s. The path of this cycle
goes through the radioactive 18F isotope, that decays into 18O, on which a (p, α)
reaction takes place:

17O(p, γ)18F(β+ν)18O(p, α)15N(p, γ)16O(p, γ)17F(β+ν)17O (1.25)

The above mentioned three reaction cycles traditionally referred to as the cold
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Figure 1.4: The three cold CNO cycles

CNO cycles, in order to set them apart from the so-called hot CNO-cycles, which
require stellar core temperatures larger than 150 MK. The mechanism of these high
order ways of hydrogen burning relies on the fact, that at these energies the (p, γ)
reaction on 13N (also 17F and 18F) can effectively compete with the radioactive
β+ decay. These breakouts from the cold-CNO cycles open up alternative pathways
of catalytic hydrogen burning.
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Figure 1.5: Break-out reactions towards the hot CNO cycles

While the stars with initial massM > 1.5M� produce energy mostly by the CNO
processes, radiative proton capture processes can also happen on other isotopes of
the stellar core, and form more exotic ways of catalytic hydrogen burning. The NeNa
and MgAl cycles (shown in Fig. 1.6) function the same way as the CNO cycles do:
they consist of a sequence of 3 (p, γ) reactions, 2 β+ decays and one (p, α) reaction.

The NeNa cycle starts with a proton capture on the 20Ne, followed by the
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β+ decay of 21Na into 21Ne. From 21Ne the second proton capture reaction pro-
duces 22Na, which acts as a branching point in the cycle. The competition between
the β+ / electron capture decay of 22Na and the (p, γ) reaction opens up two possible
reaction paths:

20Ne(p, γ)21Na(β+ν)21Ne(p, γ)22Na(p, γ)23Mg(β+ν)23Na(p, α)20Ne (1.26)

20Ne(p, γ)21Na(β+ν)21Ne(p, γ)22Na(β+ν)22Ne(p, γ)23Na(p, α)20Ne (1.27)

The link towards the MgAl cycle is provided by the 23Na(p, γ)24Mg reaction.
Starting with proton capture on 24Mg, the conversion of 1H into 4He proceeds in a
similar fashion as in the NeNa cycle. As can be seen in Fig. 1.6, the cycle branches
into two alternative reaction paths at the radioactive 26Al isotope:

24Mg(p, γ)25Al(β+ν)25Mg(p, γ)26Al(p, γ)27Si(β+ν)27Al(p, α)24Mg (1.28)

24Mg(p, γ)25Al(β+ν)25Mg(p, γ)26Al(β+ν)26Mg(p, γ)27Al(p, α)24Mg (1.29)

Due to the even higher Coulomb barrier, the NeNa and MgAl cycles represent only
a negligible addition to the total energy production. Their true importance lies in
the synthesis of elements between 20Ne and 27Al, where they have a considerable
impact.

With the scheme of stellar hydrogen burning laid out, the task falls to the experi-
mentalist to provide precise cross section data in the astrophysically relevant energy
range for the model calculations. The fact that the reactions take place at much
lower energies than the Coulomb barrier, pushes the cross sections to the nano- or
femtobarn region. In this sense, the energy production in stars is very inefficient.
The only reason why they can still shine is their immense mass, which allows a
reasonable number of reactions to take place even at these low cross sections. In the
laboratory, however, it is hard to gather enough statistics at stellar energies within
a practical time frame. In addition to this, the signal under study often gets simply
buried under the background caused by environmental radioactivity or by cosmic
radiation.

In principle, it is possible to measure the cross section at higher energies, where
the cross section is higher, and then extrapolate to the Gamow peak. This approach,
however, has a number of pitfalls and might lead to completely wrong results. The
key to measure in the astrophysically relevant energy range is to improve on the
statistics by radically reducing the number of background events (several orders
of magnitude). This could be achieved by a careful choice of materials with low
natural radioactivity, and most importantly by relocating the experiment to a deep
underground location, where the effect of the cosmic rays is considerably reduced
by the rock overburden.

This thesis is intended to improve the available knowledge on stellar hydrogen
burning by adopting two different approaches: The first part of this work is dedi-
cated to the experimental study of the 22Ne(p, γ)23Na reaction at the Laboratory for
Underground Nuclear Astrophysics (LUNA), while in the second part an indirect
idea is explored using the latest available neutrino fluxes and the Sun as nuclear
laboratory to constrain the S-factors of the 3He(α, γ)7Be and 7Be(p, γ)8B reactions
at solar temperatures.
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MgAl cycle

22



Chapter 2

Astrophysics of the 22Ne(p,γ)23Na
reaction

The NeNa cycle represents a way of catalytic hydrogen burning. Recent astronomi-
cal observations regarding the chemical composition of globular clusters have drawn
attention to its impact on nucleosynthesis. Globular clusters are spherical concen-
trations of stars, usually found in the halo of our galaxy. Such systems consist
of thousands (sometimes millions) of stars, which due to their close proximity are
assumed to share a similar chemical composition, and to have been formed at ap-
proximately the same time. The average age of some globular clusters is estimated
to be at least 10 billion years, which means that these gravitationally bound systems
contain some of the oldest stars (mostly low mass Red Giants) in the Milky Way.

Recent astronomical measurements using high resolution optical spectroscopy
revealed that stars inside globular clusters are not as uniform as it was traditionally
believed: not only the stars inside the cluster belong to multiple generations [10],
but the abundances of elements of the CNO, NeNa and MgAl cycles show con-
siderable variations from star to star [11]. Most interestingly, there is a puzzling
anti-correlation between the abundance of O and Na [12]. In order to create such
anti-correlation, both the CNO and the NeNa cycle have to be active in the stellar
interior [13]. This requirement, however, is in contradiction with the rather low core
temperature of the currently observed stars in globular clusters. Consequently, the
abundance variations must originate from the ashes of previous generations of stars.

There are several possible astrophysical sites for such a ”self-enrichment” sce-
nario: Asymptotic Giant Branch (AGB) stars [14–16], fast rotating massive stars
[17], supermassive stars [18] and massive stellar binary system [19]. Currently, AGB
stars with M > 4M� represent the most promising candidate: they effectively
pollute the interstellar medium with material created in the so-called Hot Bottom
Burning (HBB) process.

The AGB stars represent the second red giant phase of stellar evolution, which
occurs after core helium burning but before the ignition of carbon burning. Thus,
they are characterised by an inert C-O core, which is surrounded by shells of He-
and H-burning and a convective envelope. Depending on the mass of the AGB star,
the convective envelope can extend to different depths. For stars with M > 4M�,
the bottom of the convective zone produces an overlap with the outer hydrogen
burning shell of the core. The H-shell provides enough energy that within this
overlap region radiative proton capture reactions are initiated on the material of the
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convective envelope. This process is called Hot Bottom Burning (HBB) [20].

Figure 2.1: Inner structure of an AGB star with Hot Bottom Burning

The nucleosynthesis in HBB has a great impact on the surface chemical abun-
dances of AGB stars. Due to the convective mixing motion, its products are effec-
tively transported from the bottom of the convective envelope to the stellar surface.
The temperatures in HBB are considered high enough (T ≈ 100 MK), that the
NeNa-cycle is also activated, which could lead to an increase in the abundances of
Na, Al and Mg on the surface, from where it could be carried away by stellar winds.
This, in combination with the oxygen depleting effect of the CNO-II cycle, might
count for the O-Na anticorrelation observed in globular clusters.

In addition to HBB in AGBs, the NeNa cycle is also active in explosive scenarios
such as classical novae and supernovae of type Ia. Classical novae develop from a
binary system of two main-sequence stars, where it is required that one of binary
companions is a star with mass M < 13M�, so that after its red giant phase it will
end up as white dwarfs. Depending on its initial mass and thus its last burning
stage (helium- or carbon-burning) the star might form a carbon-oxygen (CO) or an
oxygen-neon (ONe) white dwarf. Meanwhile, the second star can stay either on the
main-sequence or develop into a red giant.

Due to its extreme gravity, the white dwarf will draw hydrogen rich material from
its larger companion through the first Lagrangian point, and increase its mass by
accretion. If the accretion rate is slow (< 10−8M�/yr), the hydrogen will gradually
accumulate on the surface. As the new material is slowly compressed to degenerate
conditions, its temperature will become high enough to ignite hydrogen burning via
the CNO-cycle. Since degenerate matter does not expand as its temperature rises,

24



the burning cannot regulate itself, and it will result in a thermonuclear runaway
with temperatures 0.15 GK < T < 0.45 GK. The explosion blows away the ac-
creted envelope of the white dwarf, but it is not powerful enough to fragment the
massive core. Therefore, the whole process can repeat itself several times. Con-
sequently, nova explosions can very effectively enrich the interstellar media with
material processed through the CNO, NeNa, and MgAl cycles.

Supernovae of type Ia can result either from white dwarf - white dwarf mergers,
or from a scenario similar to the above described one. In the latter case, the accretion
rate is higher than for classical novae, and the white dwarfs increases its mass up
to the Chandrasekhar limit (about 1.44 M�). At this point the electron degeneracy
pressure cannot outbalance the gravitation any more, and it starts to collapse. The
compressional heating fires up nuclear fusion reactions, leading to a violent type
Ia supernova explosion, which eventually disrupts the white dwarf. During the
explosion temperatures higher than 1 GK are reached, enabling high order processes
of hydrogen burning.

In order to estimate the impact of the NeNa cycle in the above mentioned as-
trophysical scenarios, one has to have precise information on the rate of the nu-
clear reactions involved. The reactions with the most uncertain reaction rate in
the temperature range of interest are the 22Ne(p, γ)23Na and 23Na(p, γ)24Mg reac-
tions [21, 22]. This thesis focuses on the 22Ne(p, γ)23Na reaction.

In the NeNa cycle, 22Ne is produced by the β+ decay of radioactive 22Na (T1/2 =
2.6027 yrs). As it was recently shown [23], for temperatures present in AGBs and
supernovae of type Ia (T > 70 MK), proton capture on 22Na may bypass its ra-
dioactive decay. Because of this bypass, 22Ne is excluded from the catalytic cy-
cle, thus its destruction via the 22Ne(p, γ)23Na reaction is not compensated any-
more. However, 22Ne is still very abundant in the above mentioned scenarios,
because in helium burning it is produced on the ashes of the CNO cycle via the
14N(α, γ)18F(β+ν)18O(α, γ)22Ne reaction chain [24].

The present uncertainty on the 22Ne(p, γ)23Na reaction rate results in six orders
of magnitude uncertainty in the 22Ne yield of an ONe nova explosion. In case of
a CO nova, the variation of 22Ne yield is ”only” two orders of magnitude. On
the other hand, about one order of magnitude uncertainty propagates also into the
abundance of elements from 22Ne to 27Al [25]. The 22Ne(p, γ)23Na reaction can also
affect the nucleosynthetic outcome of type Ia supernova explosions, because during
the pre-explosion phase, when temperatures are still T < 0.6 GK it might deplete
22Ne [26], which may have consequences in the production of 18O, 23Na and 24Na [27].
Moreover, as it was recently pointed out [28], the 22Ne(p, γ)23Na reaction rate might
even have its implications for the core-collapse supernovae, since the 22Ne nucleus
also acts as a neutron source for the neutron capture nucleosynthesis (s-process and
r-process) via the 22Ne(α, n)25Mg reaction.

The 22Ne(p, γ)23Na reaction (Q = 8794.11 keV) is characterized by a large num-
ber of resonances. As can be seen in Fig. 2.2, the thermonuclear reaction rate in case
of the AGB stars and classical novae is determined by the resonances below 480 keV
center-of-mass energy, while resonances at higher energies become important for the
nucleosynthesis in type Ia supernovae. Until the last couple of years, most of the
information regarding the lowest energy resonances (≤ 400 keV) originated from
indirect measurements using the 22Ne(3He, d)23Na reaction [29,30].

However, the interpretation of such indirect data is not without ambiguities. Al-

25



  3 keV

 29 keV
 37 keV

158 keV

215 keV

255 keV

291 keV

323 keV

334 keV

369 keV

394 keV

8797

8822
8830

8945

9000

9038

9072

9103

9113

9147

9171

9/2-
1/2+

7/2-

15/2+

436 keV

479 keV

9211.0

9252.1

3/2+

1/2+

156.2 keV

189.5 keV

259.7 keV

8943.5

8975.3

9042.4

3/2+

5/2+, 3/2+

7/2+, 9/2+

 71 keV

105 keV

8862

8894

1/2+

1/2+

H
Z

D
R

LU
N

A
-H

P
G

e
L

U
N

A
-B

G
O

Eproton Elevel Jπ22Ne(p,γ)23Na

A
G

B
-H

B
B

C
la

ss
ic

al
 N

ov
ae

S
N

 Ia

Figure 2.2: Low energy levels in the spectrum of 23Na and their relevance for different
astrophysical scenarios. Level energies are taken from [31–33]. The three newly dis-
covered resonances from the previous LUNA experimental campaign [33] are shown
in blue, while the two lowest energy points from the measurement at HZDR [34] are
plotted in brown. The two low energy resonances shown in red represent the main
focus of this thesis (the second LUNA experimental campaign).

ready, the analysis of the deuteron spectra obtained by magnetic spectrometers is not
straightforward due to background effects and the presence of contaminant peaks.
Moreover, in order to obtain the corresponding resonance strength, knowledge of
spin assignment and the partial widths is required (see Eq. 1.21).

These difficulties are well illustrated by the levels at 8862 and 8894 keV. These
resonances corresponding to a proton energy of 71 and 105 keV, respectively, were
first reported in 1971 by Powers et al. [29]. However, they were labeled as tentative,
because their signature in the (3He, d) spectrum was not clear. Thirty years later
Hale et al. [30] used the same technique to study the spectrum of 23Na. Despite
the lower background and higher resolution, neither of the two levels was observed.
A spin/parity assumption was made (denoting both states as Jπ = 1

2

+
) in order to

obtain an upper limit on their resonance strength.

Implementing a direct measurement at such low energies is often more challeng-
ing (if possible at all) than an indirect approach, but it does have the advantage that
no information is required on the spin and parity of the levels in order to obtain
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the resonance strength. The only requirement is that the resonance under study
should be narrow - meaning that its total width Γ is considerably smaller than the
total energy loss of the proton beam inside the target ΔE. (For more details refer
to Section 4.2.)

Already in 1982, efforts were made [35] to measure the 22Ne(p, γ)23Na low energy
resonances (Elab

p = 70− 355 keV) in this way. Unfortunately, none of the expected
resonances were directly observed and only upper limits were provided on the reso-
nance strengths. Thus, for more than three decades the low lying resonances seemed
to be inaccessible via direct measurements.

In 2015 a breakthrough was achieved by the Laboratory for Underground Nu-
clear Astrophysics (LUNA), located in Gran Sasso, Italy. The LUNA collaboration
reported a successful observation of the resonances at E lab

p = 156.2, 189.5, 259.7 keV
along with their resonances strengths [33]. The key to the success was the exper-
iment’s deep underground location. Due to the shielding provided by the 1400 m
overburden of the Gran Sasso massive, the cosmic ray induced background is six
orders of magnitude lower than at the surface.

The experimental setup was based on a differentially pumped windowless gas
target system utilizing isotopically enriched (99.9%) 22Ne gas. The gas pressure
in the target chamber was kept at 1.5 mbar by a feedback valve system. In order
to minimize the gas consumption, the gas pumped away was collected and after
chemical purification was led back to the target chamber. The proton beam was
provided by a single-ended 400 kV electrostatic accelerator, with beam intensities
up to 250 μA. The beam reached the target chamber through a series of collimators
with decreasing diameter, where the induced gamma photons were detected by two
large high purity germanium detectors, placed at 90◦ and 55◦ with respect to the
beam axis. Due to the large number of secondary electrons induced in the target
gas, the beam current was determined by a calorimetric approach.

In the energy range of Elab
p = 70 − 300 keV all previously suspected reso-

nances [32] were investigated, but a clear signature was only found for the above
mentioned three resonances. Since the spin/parity assignment of the corresponding
levels in 23Na is still under debate [31], it was assumed that the gamma photons
from the (p, γ) reaction are emitted isotropically, and thus the weighted average of
the measurements by the two HPGe detectors under different angles were accepted
as final result.

The obtained resonance strength for Elab
p = 156.2, 189.5, 259.7 keV resonances

were consistent with the previously reported direct upper limits [35]. On the other
hand, there was, interestingly, a strong discrepancy with the indirect upper limits
reported in the literature. In case of the tentative resonances at E lab

p = 71, 105 and
215 keV no clear evidence was found, but their upper limits could be reduced by up
to three orders of magnitude.

Parallel to the low energy measurements at LUNA, the strength of several higher
energy resonances (436, 479, 639, 661, and 1279 keV) contributing to the nucleosyn-
thesis in supernovae of type Ia, was also remeasured at the 3 MV tandetron of the
Helmholtz-Zentrum Dresden-Rossendorf, Germany [34]. The resonances at 436 and
479 keV are in the overlap energy region between supernovae and classical novae, as
shown in Fig. 2.2.

In addition to the efforts made by LUNA, the TUNL group (Triangle Universi-
ties Nuclear Laboratory) has recently also measured the strength of resonances at
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E lab
p = 156.2, 189.5, 436 and 479 keV. The new data were included in the PhD thesis

of K. J. Kelly at University of North Carolina [36]. Most recently, the results of the
same experiment were also published as a paper in Physical Review C [37]. However,
the reported ωγ for the resonance at E lab

p =156.2 keV had been considerably revised
from (5.9± 0.7stat ± 1.0sys)× 10−7 to (2.03± 0.18stat ± 0.35sys)× 10−7 eV.

Using the newly obtained direct experimental data on low energy resonances,
both the LUNA collaboration and the TUNL group redetermined the thermonuclear
reaction rate of 22Ne(p, γ)23Na in the energy range important for hot bottom burning
in AGB stars and classical novae [37,38]. In Fig. 2.3, the two new rates are compared
to the previous NACRE [21] and STARLIB-2013 [39] compilations. All compilations
are in a relatively good agreement for temperatures T ≥ 0.3 GK. On the other hand,
large discrepancies are evident below 0.3 GK.

These temperatures correspond exactly to the energy range where the strengths
of the low energy resonances (71, 105, 156.2, 189.5, 215, 259.7 keV) have an impact
on the reaction rate. In the NACRE compilation from 1999, these resonances were
considered with their at the time known upper limits from the experiments of Görres
et al. [35, 40]. These values were higher than the ones provided by the LUNA
experiment, thus the estimated central curve of the reaction rate is also considerably
higher. On the other hand, the updated reaction rate by LUNA and its smaller
uncertainty fits well within the large error margin of the NACRE rate.

The evaluation provided by the STARLIB group also uses the data from [35], but
updates the upper limits on the resonances at E lab

p = 29, 37, 156.2 and 259.7 keV
with the newer results from Hale et al. [30]. One more important difference is
that in this compilation the resonances at 71, 105 and 215 keV are considered as
non-existent. Consequently, they do not contribute to the error budget. This ex-
plains why uncertainty of the STARLIB narrows down around 0.08 GK, which is
exactly the energy range corresponding to the 105 keV resonance. The difference
between the LUNA and STARLIB rates are mostly due to the three newly discov-
ered resonances. The new, precise resonance strength values greatly reduced the
rate uncertainty between 0.1 and 0.3 GK. The enhancement of the rate itself in this
region is dominated by the new strength of the 156.2 keV resonance, which proved
to be more than one order of magnitude stronger than previously believed. Last
but not least, similar to the NACRE compilation, in the LUNA rate all low energy
resonances are considered with their upper limits, which leads to a higher rate at
low temperatures.

The reaction rate by TUNL is an updated version of the STARLIB-2013 im-
plementing the new experimental data on resonances at Elab

p = 156.2, 189.5 and
436 keV [37]. Due to the higher ωγ values measured, the TUNL rate is slightly
higher than the one by LUNA for temperatures above 0.14 GK. On the other hand,
in case of T ≤ 0.14 GK, the TUNL rate is considerably lower than the LUNA rate
due to the fact that the tentative resonance at E lab

p = 71 and 105 keV are excluded
from the compilation. Below 0.6 GK, the STARLIB-2013 and TUNL data predicts
the same rate.

The present doctoral thesis was motivated by these large discrepancies among the
various thermonuclear reaction rate compilations below 0.2 GK. Since the descrip-
tion of AGB stars with respect to the nucleosynthesis in the NeNa-cycle is mainly
limited by our knowledge on the low-lying resonances at E lab

p = 71 and 105 keV, the
determination of their resonance strength (or alternatively the further reduction of
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the present upper limits on ωγ) is of paramount importance. Therefore, shortly af-
ter the completion of HPGe-based measurements in 2014, the LUNA collaboration
continued the study of 22Ne(p, γ)23Na reaction in a second experimental campaign
taking advantage of a high-efficiency BGO detector in near 4π geometry.
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Chapter 3

Experimental setup for the
22Ne(p,γ)23Na study at LUNA

The Laboratory for Underground Nuclear Astrophysics (LUNA) is located in the
Gran Sasso National Laboratory (LNGS), Italy, where due to the 1400 m overburden
of rocks the background induced by cosmic muons is six orders of magnitude lower
than on the surface [45]. The neutron background is also significantly reduced, by
about three orders of magnitude. These conditions provide an excellent environment
for measurement of nuclear cross sections at astrophysical energies.

LUNA 

Figure 3.1: Overview of the Gran Sasso National Laboratory (Italy)
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3.1 LUNA 400 kV accelerator

The beam for the LUNA experiments is supplied by a 400 kV single-ended electro-
static accelerator which was produced by High Voltage Engineering Europe. The
accelerator is embedded in a 2 m3 steel tank, filled with a gas mixture of N2 (75%),
CO2 (20−25%) and SF6 (1−5%). The high voltage terminal is charged by an inline
Cockcroft-Walton generator equipped with an RC filter at its output. In order to
further improve the stability of the high voltage, an active feedback loop based on
a chain of resistors is also incorporated. The accelerator features a radio-frequency
ion source, which is directly mounted on the accelerator tube. The ion source can
provide either proton or alpha beams. In both cases, the maximum beam intensity
is about 500 μA.

Figure 3.2: LUNA-400 accelerator

At astrophysical energies below the Coulomb barrier, the cross sections exhibits
an exponential energy dependence (see Chapter 1), therefore, a precise knowledge of
the beam energy and its stability is of paramount importance. The accelerator was
calibrated using the non-resonant capture reaction 12C(p,γ)13N [46]. The obtained
calibration function is the following:

E ini
p = (0.9933± 0.0002) · (TV + PV )

keV

kV
− (0.41± 0.05) keV (3.1)

where TV stands for the terminal voltage of the accelerator, while PV is the voltage
applied to the anode of the ion source. The statistical uncertainty of the beam
energy is 0.3 keV, and it is dominated by the systematic uncertainty on the Q-value
of the 12C(p,γ)13N. The statistical uncertainty due to the beam spread is only about
0.1 keV. Moreover, the beam energy also has an excellent long term stability, which
is better than 5 eV/h [46].
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In the currently used layout, there are two beam lines in the LUNA laboratory;
one of them is used with a conventional solid target, while the other one accommo-
dates a differentially pumped, windowless gas target system. With the help of two
45◦ analysing magnets the beam can be guided in either of the two beam lines. The
beam parameters are afterwards tuned so that the beam current loss on the series
of collimators inside the beam line is minimal.

3.2 Gas target system

Many nuclear physics experiments rely on the use of solid targets. However, for
nuclear astrophysics where the cross sections are small and the beam energies are
low, they might not represent the best choice: If the target material is not solid in its
elemental form, one has to use its compounds or an implanted target, which may lead
to some difficulties: e.g. the degradation of the target under intense bombardment of
the beam. Instability, or uncertainties in the chemical composition are also common
problems. Moreover, the straggling of the beam in the solid material decreases the
precision of the beam energy.

In order to avoid these problems, the 22Ne(p,γ)23Na LUNA experiment was
based on a differentially pumped gas target system, which consists of three pumping
stages (see Fig. 3.3). The stages are connected by long apertures (LAP3 = 80 mm,
LAP2 = 80 mm, LAP1 = 40 mm), whose diameter decreases along the path of the
beam (dAP3 = 25 mm, dAP2 = 15 mm, dAP1 = 7 mm). Since these apertures also
act as collimators to define the beam geometry, water-cooling is necessary.

The first pumping stage is connected to a large volume Leybold RUVAC WS 2001
roots pump, which removes most of the gas (≥ 90%). The second pumping stage
is evacuated by three Leybold turbo molecular-pumps: two TMP1000 pumps on
the side (TP2L, TP2R), and one higher capacity TMP1500 pump in the center
(TP2M). The negligible amount of gas that still reaches the third pumping stage is
collected by a Leybold TURBOVAC 361 pump. All pumps are backed by a Leybold
RUVAC WS 501 roots pump, which is connected via an additional ECODRY pump
to the laboratory’s exhaust pipeline. The well chosen impedance of the apertures
allows it to maintain pressures in the mbar range inside the target chamber, while
in the third stage of the pumping system the pressure is in the 10−7 mbar range.

The experiment relies on the use of isotopically enriched (99.9%) 22Ne gas (the
certificate can be found in Appendix D). This isotope of neon only amounts to
9.25% of natural neon gas. In order to conserve the expensive target gas, the gas
target system was designed to be able to operate also in recirculation mode. In this
mode, the output of RUVAC WS 501 pump is redirected to an Alcatel ACP28 dry
vacuum pump, which collects the gas and pumps it through a chemical getter into a
reinforced stainless steel buffer of 1 liter volume. From here the gas can be let back
into the target chamber.

The use of a chemical getter is necessary, since it is difficult to keep a vacuum
system completely free from leaks. Thus, the repeated use of the same amount
of gas would otherwise lead to loss of its purity. In order to avoid such effects,
a MonoTorr II PS4-MT3-R-2 purifier with PF4-C3-R-2 chemical getter cartridge
designed for noble gases was incorporated into the setup. The purification process
is based on the fact that noble gases are chemically passive: The cartridge is filled
with a special mixture of metal powder, that is heated up to high temperatures.
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Figure 3.3: Schematic overview of the gas target system (beam enters from the
right)
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When the target gas passes through this filter, any contamination of nitrogen or
oxygen will be bound inside it by chemical reaction, while noble gases - such as
neon - are let through.

3.2.1 Target chamber

The target chamber was manufactured from stainless steel and it has a total length
of 475 mm with an inner diameter of 54 mm. The actual reaction volume is only
108 mm long, because the rest of the space inside the target chamber is occupied
by a copper beam stop, which is used for the calorimetric measurement of the beam
current. (See the following section.) The beam enters the target chamber through
a 40 mm long water-cooled copper collimator which has an inner diameter of 7 mm.
The connection to the gas target system is provided by a 360 mm long stainless steel
tube with 36 mm inner diameter.

The target chamber was electrically insulated from the rest of the gas target
system, therefore it could be used as a Faraday-cup to measure the beam current.
The target collimator was also insulated from the chamber itself. In this way, these
two current readings could be used to optimize the beam transport and focusing in
vacuum. Since the bombarding by the beam liberates a large number of secondary
electrons from the copper beam stop, which could compromise the charge collection,
the chamber was equipped with a secondary electron suppression electrode. This
thin, ring shaped electrode was positioned just after the target collimator and a
negative potential of typically -100 V was applied to it.

Calorimeter 

Gas inlet 

Beam 

MKS 626A 
108 

475 

40 

54 7 36 

22Ne 

360 

Figure 3.4: Target chamber design with its dimensions in mm (beam enters from
the right)

The gas entered the chamber through a copper pipeline on its front side near the
collimator. For the better distribution of the gas, the pipe extended to the center
of the chamber. A similar, but slightly shorter copper pipeline was used for the
pressure measurement. The pressure inside the chamber was monitored by an MKS
Baratron 626A type absolute pressure transducer. The gauge was read out by an
MKS Valve Controller unit, which also regulated an MKS 248A flow control valve
(thermal leak) on the gas inlet. This feedback system was used to keep the target
pressure stable during the measurement.

Due to the limited dynamic range provided by the thermal leak, the pressure first
had to be adjusted by the two manual valves to a level which was about 0.4 mbar
lower than the desired target pressure. The final target pressure was then set on the
MKS Valve controller unit.
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3.2.2 Calorimeter

If there is gas inside the target chamber, an electrical beam current monitoring
cannot be used, because of the vast amount of secondary electrons liberated from
the gas. Therefore, a calorimetric measurement method was adopted, based on
the fact that the beam deposits most of its energy in the beam stop, thus heats it
up during the irradiation. In order to quantify this effect, a constant temperature
gradient calorimeter was constructed: The front side (also called hot side) of the
calorimeter consists of a thick copper disk, which is heated by a number of power
resistors up to 70◦C. The back side (cold side) of the calorimeter was cooled by
circulation of cooling liquid with subzero temperature.

During the experiment two different cold side temperatures were used: Since the
precision of the calorimetric current measurement benefits from a large temperature
gradient between the hot and cold side, the temperature of the cooling liquid was
initially set to −20◦C. This led to a cold side temperature of −3◦C. Unfortunately,
this led to some condensation issues and ice build-up near the electrical connections
of the calorimeter. From this reason, the temperature of the cooling liquid was
increased to −5◦C, which resulted in a milder cold side temperature of 7◦C.

Commercially available Pt100 platinum resistance temperature sensors were used
to monitor the temperature of the calorimeter. (Their name refers to the fact that
at 0◦C they have a nominal resistance of 100 Ω.) Three of these sensors were
mounted on the hot side in different positions, while on the cold side only one Pt100
was used. The readout of the sensors was done by a LabView system utilising
NI CompactRIO hardware. Based on the temperature readings, the system also
regulated the power supply of the heating resistors so that the temperature of the
hot side stayed constant.

In the absence of the beam, the resistors have to deposit a power of W0 to keep
the hot side at 70◦C. During an irradiation, however, the beam also contributes to
the heating of the beam stop, therefore the power supply has to provide less power
WI . The power deposited by the beam is the difference between these two values:

Wbeam = W0 −WI (3.2)

With the help of Wbeam, the beam intensity can be expressed as the following:

I =
Wbeam

Ep −ΔE
qe (3.3)

where Ep is the proton beam energy before entering the gas target, ΔE is the total
beam energy loss up to the surface of the calorimeter, and qe is the electric charge
of the bombarding particles.

In order to check the validity of the beam intensities obtained by the calorimet-
ric approach, the calorimeter was calibrated against the Faraday-cup method, where
the beam current was measured by an ORTEC 439 digital current integrator and an
ORTEC 994 counter. The measurements were carried out in vacuum. The calibra-
tion curve was determined separately for the two different cold side temperatures,
but since obtained results were in good agreement with each other, the two datasets
were combined to obtain the final calibration:

Welec = (1.040± 0.008)Wcalo (3.4)
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Figure 3.5: Calibration of the calorimetric current measurement

3.2.3 Density profile

For a gas target system, the knowledge of the gas density profile inside the target is
crucial for the interpretation of the experimental yield data. According to the ideal
gas law, the density of an ideal gas can be determined by the measurement of its
temperature and pressure:

n =
N

V
=

p

kT
(3.5)

For this purpose, a modified version of the original target chamber was designed.
This so called ”flute chamber” was identical to the original target chamber in its
dimensions, but had seven additional KF25 flanges welded on its side. Four of
these flanges were mounted on the chamber part, while the other three were on the
interconnection tube between the chamber and first pumping stage of the gas target
system. The flanges could accommodate either pressure or temperature sensors.
In addition to this, three holes were drilled on the side of the 4 cm long target
collimator, which made it possible to study the pressure drop inside the collimator.
They are labelled as measurement point K1, K2 and K3. Due to the limited space
available, the pressure gauges could not be directly mounted on these measurement
points. Therefore, an about 30 cm long, thin copper pipeline was soldered to each
measurement point on the collimator. These copper pipes ended in KF25 flanges,
so that the pressure gauges could be connected easily.

For the pressure measurement four pressure sensors were used: two MKS Bara-
tron 626A absolute pressure transducers with 10 torr (13.3 mbar) range (0.25%
accuracy), and two Pfeiffer CMR 363 ceramic capacitive gauges with 10 mbar range
(0.20% accuracy). The Baratrons were used in combination with the MKS Valve
Controller unit, while the Pfeiffer gauges were connected to a Pfeiffer MaxiGauge
controller unit. As with the actual target chamber, one of the MKS Baratrons was
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Figure 3.6: ”Flute chamber” for pressure and temperature profile measurement
(drawing is not to scale)

mounted on the copper pipeline which serves as a reference point for the pressure
measurement during the experiment, while the rest of the gauges was moved around
on the flanges A-G to map the pressure inside the target chamber. At a time, only
one sensor was moved, which made the intercalibration of the measurements possi-
ble. In order to avoid venting the chamber each time a pressure sensor was moved,
manual valves were mounted on all flanges of the flute chamber. The pressure profile
was studied in 0.5 mbar steps from a nominal target pressure of 0.5 mbar to 5 mbar
using enriched 22Ne gas.
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Figure 3.7: Pressure profile in the gas target. The lines are just to guide the eye.

As can be seen in Fig. 3.7, the pressure profile inside the chamber is flat, with
almost no fluctuations. The agreement between the four pressures measured inside
the chamber and the reference pressure was better than 0.5%. Between the two
ends of the collimator the pressure drops about one order of magnitude, then it
slowly decreases towards the first pumping stage of the gas target system. The
general shape of the pressure trend is similar at all nominal pressures. The overall
uncertainty of the pressure profile was estimated to be 1%.

Due to the presence of the calorimeter and water cooled collimator the temper-
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ature inside the chamber cannot be expected to be constant even without beam.
The front face (hot side) of the calorimeter is kept at 70◦C by a LabView controlled
system, while the temperature of the collimator is maintained at around 13◦C by
the circulation of cooling water. Moreover, the heat transport in the chamber is also
affected by the amount of gas inside, which could lead to a different temperature
gradient at different target pressures. Therefore, a detailed study of the tempera-
ture profile had to be carried out in the same nominal pressure range (0.5 mbar to
5 mbar).

For the temperature measurements, the already mentioned Pt100 sensors were
used. The sensors were mounted on modified KF25 blind flanges, with an electrical
feed-through. Each sensor was sitting on an approx. 5 cm long, stiff cable which was
connected to the inner side of the feed-through on the blind flanges. In this way, the
sensors were reaching to the axial center of the target chamber when mounted. The
resistance of the Pt100 sensors was measured by two NI 9217 modules. The same
modules also converted the measured resistance (based on their inner calibration)
into temperature readings for the LabView system.

The temperature gradient was only measured in the target chamber. The tem-
perature of the small amount of gas present in the interconnection tube could be
safely assumed to be equal to the room temperature since in this section of the
target chamber no heat sources or sinks are present. The room temperature was
logged by a Pt100 sensor, which was hanging freely in the accelerator room, near
the gas target setup. Last but, not least an additional sensor was glued on the outer
surface of the water cooled collimator.
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According to their data sheet, the Pt100 sensors have an accuracy of 0.3◦C, or
equivalently 0.3 K. However, as it was observed the measured temperature values
show some dependence on the orientation of the sensor. This effect is due to the
housing of the sensor and introduces an uncertainty of approximately 1 K. Thus, the
total uncertainty was assumed to be the quadratic sum of these two components,
amounting to 1.1 K. Based on this value 0.4% uncertainty was assigned to the
temperature values expressed in Kelvin.

During the experiments the target pressure was set to 2 mbar, thus one can
obtain the density profile by combining the corresponding curves from Figs. 3.7 and
3.8. The uncertainty of the obtained density values amounted to 1.1%, by combining
the uncertainties of the pressure and temperature measurement in quadrature.

As it is evident from Fig. 3.9, the density shows different trends in the three
sections of the target: In the chamber, the gas density slowly increases from the
calorimeter towards collimator as the gas cools down. Inside the collimator, there is
a quick drop in the density, which continues with a linear decrease in the intercon-
nection tube.

Due to the design of the flute chamber, no measurement point is available at the
beginning and end of the collimator. Therefore, one has to resort to the extrapolation
of the density trend inside the chamber and the interconnection tube. A linear drop
between these extrapolated values was expected inside the collimator, but the actual
measurement resulted in a somewhat higher density. This issue is probably caused
by the fact that in case of the collimator the pressure gauges could not be mounted
directly to the flute chamber due to geometrical constraints. Instead, they were
connected via thin copper tubes. It is possible that due to the small diameter and
relatively large length of these tubes, some gas was trapped in front of the pressure
gauges,which led to an overestimation of the pressure.

It is useful to define the so-called effective target length Leff for a reference den-
sity nref . Since the adopted target pressure during the measurement was 2 mbar, it
was convenient to base reference density on this pressure value. The typical room
temperature inside the accelerator room during the experiment was 23◦C. How-
ever, some variations were possible depending on the amount of electric equipment
switched on, and other activities in the accelerator room. Therefore, the uncertainty
on the temperature measurement in this case was considered to be 1%. Assuming
1% uncertainty on the pressure, this led to 1.4% uncertainty on the reference density.

By integrating the density profile from the first pumping stage to the front face
of the calorimeter, the effective target length was found to be

Leff = 14.5± 0.5 cm (3.6)

from which the chamber contributes 10.6 cm, the collimator 2.7 cm and the inter-
connection tube 1.3 cm. This means that the beam has to travel a path of 9.3 cm
to reach the center of the target. The 0.5 cm uncertainty is estimated considering
alternative density profiles inside the collimator (see Fig. 3.9).

With the help of the effective target length Leff and the reference target density
nref , the total energy loss in the gas target can be expressed as

ΔE = nrefεLeff (3.7)

where ε is the stopping power.
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Figure 3.9: Gas density profile along the beam axis (beam from the right). The black
line represents the adopted density profile, while blue lines show two alternative
profiles inside the collimator.

3.2.4 Beam heating correction

During an irradiation the impinging beam loses some of its energy due to collisions
with gas atoms inside the target. This leads to an increase in the temperature of
the target gas along the beam path. As the gas warms up, its density decreases
and thus the density profile will not be identical to the one measured without beam.
This so-called beam heating effect is a typical feature of gas targets, and has already
been investigated in previous gas target experiments [47–49].

Recently, the phenomenon was also studied in natural neon at LUNA by us-
ing the same differentially pumped gas target system [50]. The measurement was
based on the fact that a small fraction (0.27%) of the natural neon gas is 21Ne.
The 21Ne(p,γ)22Na reaction has a narrow (Γ < 3 eV), but quite strong resonance
(ωγ = 83 meV) at E lab

p = 271.6 keV proton beam energy. Due to its narrow width
the position of the resonance inside the target chamber is well localised.

In order to populate the resonance at E lab
p , the initial proton beam energy E ini

p

has to satisfy the following condition

Eini
p = Elab

p +ΔE (3.8)

where ΔE is the beam energy loss in the target. The latter quantity is directly
proportional to the gas density. Therefore, by comparing the experimentally de-
termined ΔE to its expected value based on the density n0 measured without the
beam, one can calculate the density reduction factor n/n0.
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Using this method, the beam heating effect as a function of the dissipated beam
power per unit length dW/dx was found to be described by the following empirical
expression [50]

n

n0

= 1− C
dW

dx
(3.9)

with beam heating coefficient C = (0.44± 0.05)× 10−3 cm/mW.
Unfortunately, the reported value of the beam heating coefficient cannot be di-

rectly adopted for the present experiment due to differences in the target design: in
contrast to the cylindrical target chamber with an inner diameter of 54 mm outlined
in Sec. 3.2.1, the chamber of the previous, HPGe-based experimental phase [50] had
a rectangular cross section of 120× 104 mm. This geometrical difference has to be
reflected in Eq. 3.9.

Assuming that the walls of the chamber act as an infinite, room-temperature
heat sink, it is possible to put an upper limit on temperature difference ΔT between
the central beam heated part of the gas and the walls of the chamber [51]:

ΔT =
1

2πK

dW

dx
ln

(
D

d

)
(3.10)

where K is the thermal conductivity of the target gas, D is the inner diameter of
the cylindrical chamber, and d is the diameter of the cylindrical gas volume heated
by the beam, corresponding to the diameter of the collimator.

Since for both chamber designs the diameter of the collimator was 7 mm, the
only difference in Eq. 3.10 is parameter D. Consequently, the difference in the beam
heating coefficient can be approximated as follows

CBGO = CHPGe

ln
(
DBGO/d

)
ln
(
DHPGe/d

) = 0.32
cm

mW
(3.11)

where in case of the chamber used in the HPGe phase an effective inner radius of
DHPGe = 120 mm was assumed.

Using Eq. 3.10 one can also compare the heat conduction in different gases based
on their thermal conductivity K. This provides an alternative way to determine
the beam heating coefficient for the present experiment, thus to check the result
of the previous method. The present target chamber is the same one, which was
previously used in the 14N(p,γ)15O LUNA experimental campaign [48]. During
the measurements the beam heating effect was studied with nitrogen gas, and a
beam heating coefficient of C = 0.54× 10−3 cm/mW was determined. The thermal
conductivity of nitrogen gas (KN2 = 0.026 W /mK) is approximately half of the one
of neon (KNe = 0.049 W /mK). This means that the conduction of heat in neon gas
is more efficient than in nitrogen, and the beam heating coefficient has to be scaled
as follows:

CNe = CN2

KN2

KNe

= 0.29
cm

mW
(3.12)

Since both methods yield comparable values for the beam heating coefficient,
their average value was accepted for the present experiment:

n

n0

= 1− (0.31± 0.09)
dW

dx
(3.13)
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Due to the fact that the determination of these value relies on measurements either
in different geometry or in different target gas, as a conservative 30 % uncertainty
was assigned. With this assumption, the typical beam heating correction was less
than 5%.

3.3 BGO detector and DAQ

The detection system was based on a large, segmented bismuth germanate (Bi4Ge3O12,
commonly referred to as BGO) scintillator, produced by Scionix [52]. The detector
consists of six optically separated segments, which surround the target chamber in
a cylindrical geometry. It has a length of 28 cm and an outer radius of 10 cm,
however the actual radial thickness of the crystals is only 7 cm, because the coaxial
hole occupied by the target chamber takes up the first 3 cm of the radius. Each
crystal can be coupled with two photomultipliers (PMT) (one on the front, and one
back end of crystal). In the experiment, however, the crystals were read out only on
their back ends due to space constraints, while on their front end they were fitted
with a light reflective cap without PMT.

BGO 

BGO 

PMT 

PMT 

Calorimeter 

Gas inlet 

Beam 

Pressure gauge 

Figure 3.10: BGO detector with target chamber (not to scale)
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Figure 3.11: Cross section of the BGO detector (not to scale)

The high voltage for the PMTs was provided by a VME-based CAEN V6533P
6-channel power supply. The logical interface between the VME-crate and the con-
trol PC was provided by a CAEN V1718 VME-to-USB bridge controller. The voltage
of each of the six channels could be adjusted separately using the CAEN GECO2020
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control software. During the experiment supply voltages around 900 V were used.
The gains of the six PMTs were matched by slightly adjusting their supply voltage.

The signal taken from the anode of each PMT was amplified by one ORTEC 113
charge sensitive pre-amplifier per PMT. The amplified signal then was connected
to one of the analog input channels of a CAEN V1724 8-Channel 14 bit 100 MS/s
digitizer mounted in the same VME-crate as the power supply of the PMTs. No
spectroscopy amplifier was used. The CAEN V1724 card uses a trapezoid filter for
pulse height analysis (parameters are listed in Table 3.1). The digitizer was read
out by the MC2 Digital MCA Data Acquisition and Analysis Software provided by
its manufacturer.

Figure 3.12: Scheme of the data acquisition system

The events were recorded in list-mode format, which made the use of conven-
tional coincidence modules unnecessary. During the data acquisition each channel
triggered and stored events independently from the rest. This is different from the
described behaviour in the documentation, but clearly visible from the raw data.
The coincidence analysis was done off-line based on the time stamps.

In order to monitor the dead-time of the detection system, a BNC PB-5 pulser
was also incorporated in the electronics setup. The 50 Hz pulser signal was injected
into the data acquisition chain through the ”TEST” input of the pre-amplifiers con-
nected to the PMTs. As a reference, a seventh ORTEC 113 pre-amplifier receiving
only the pulser signal was used. The output of this pre-amplifier was connected to
a separate channel of the CAEN digitizer.
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Table 3.1: Main parameters of the CAEN V1724 digitizer with their typical values
for BGO segments 1-6 and the pulser. (For their definition refer to the manual of
the CAEN V1724 digitizer: www.caen.it.)

Settings group Parameter BGO1-6 Pulser

Input Signal DC offset 14750 LSB* 14600 LSB*

Decimation 1 1
Digital gain 8 8
Pulse polarity NEG NEG

Trigger Threshold 30 LSB* 100 LSB*

RC-CR2 32 4
Trigger hold-off 2.00 μs 1.30 μs
Input rise time 0.20 μs 0.20μs

Energy filter Baseline mean 1024 256
Trapezoid gain 1.00 1.00
Trapezoid rise time 3.00 μs 3.00 μs
Decay Time 35.0 μs 35.0 μs
Trapezoid flat top 5.00 μs 5.00 μs
Flat top delay 50.0 % 50.0 %
Peak mean 64 64
Baseline hold-off 0.50 μs 0.50 μs
Peak hold-off 1.00 μs 1.00 μs

Firmware DPP-PHA 4.5.128.30 (Feb. 2015)

* 1 LSB = 2.25V/214 = 0.137 mV

3.4 Detector efficiency

The detection efficiency of the above described BGO based setup was studied with
the help of radioactive sources, in-beam measurements and Monte Carlo simulation.
Due to the nearly 4π geometry and large thickness of the crystals, the detector
absorbs very efficiently the γ-photons produced inside the target chamber. The peak
detection efficiency can be further increased if the signals from the six segments are
summed up in coincidence (add-back mode). In this way, the total energy of γ-rays,
which are depositing energy in more than one crystal, can be also restored, compared
to the method were the single spectra from the segments are simply combined.

Consequently, one has to differentiate between the peak detection efficiency of
the single crystals and add-back (summing) efficiency of the whole detector. The
energy dependence of the single crystal efficiency can be easily studied by standard
calibration sources and nuclear reactions. On the other hand, the efficiency of the
add-back mode is more difficult to understand, because the total energy of the
excited state is usually not deposited in a single step, but in a cascade of gamma
photons. From this reason, the efficiency with which an excited state is detected
depends on its exact decay structure. Furthermore, if more than one transition is
possible from an excited state, the branching ratios between these transitions will
also influence the final add-back efficiency.

In principle, it is possible to provide an analytical description of the add-back ef-
ficiency if the single crystal efficiency and the decay probabilities of the intermediate
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Figure 3.13: Decay of an excited state Ex through two possible γ-cascades with
branching ratio B. The detection efficiency for each member of the cascades is
denoted as ηij.

states are known. For example, in the simple case which is presented in Fig. 3.13,
it can be obtained as follows:

ηAdd-back = Bη11η12 + (1− B)η21η22 (3.14)

However, it is evident that such an analytical approach becomes impractical if
the decay proceeds via a larger number of intermediate states. In order to avoid
these complications, and to have a better understanding of the add-back detection
efficiency, a precise model of the target chamber and BGO detector was created using
GEANT4 [53]. The code does not simulate the nuclear reactions, only the decay
of a selected excited state, or radionuclide. The energy loss of the bombarding
protons is not implemented, instead the user can explicitly specify the beam energy
at the position of the γ-ray emission along with target temperature and pressure
in a macro file. The decay probabilities and branching ratios were taken from the
ENSDF database.

In order to test the Monte Carlo simulation, the efficiency was measured ex-
perimentally with point-like radioactive sources. Standard sources with one or two
intense gamma-lines were chosen to make the comparison with simulation easier:
7Be, 60Co, 88Y and 137Cs.

As the interaction with the beam can take place at different positions in the gas
target, it was necessary to map the detection efficiency along the beam axis. For
this purpose, a special source holder and positioning equipment was made.

Table 3.2: Properties of the radioactive calibration sources (The given uncertainty
on the source activity crossesponds to 1σ.)

Isotope Half-life Manufacturer Ref. Activity [kBq] Ref. Date

7Be 53.22 days MTA-ATOMKI 112.6± 2.4 18. April 2014
60Co 5.27 years PTB 9.12± 0.04 1. January 2005
88Y 106.6 days Eckert & Ziegler 36.8± 0.4 1. April 2014
137Cs 30.08 years PTB 11.30± 0.06 1. January 2005
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For the source holder, a very light, frame-like design was constructed from plastic
(shown in Fig. 3.14), in which the attenuation of γ-rays was quantified with Monte
Carlo simulation: in case of of the 477 keV gammas from the decay of 7Be, the
presence of the source holder caused 1.7± 0.5% reduction in the number of γ-rays
hitting the detector, while 1836 keV gammas of the 88Y source suffered 1.3± 0.5%
attenuation. These attenuation effects were seen mainly by the two detector crys-
tals in plane with the source holder, while the ones located above and below were
unaffected.

The source holder then was mounted on one end of a 750 mm long, rectangular
(10x10 mm) metal rod. In order to keep the source aligned along the axis of the
target chamber and to allow a precise positioning, a support structure was manu-
factured from a blind flange, which could be mounted on the back end of the target
chamber after the removal of the calorimeter. (See Fig. 3.15.) It had a rectangular
borehole in its center with the same dimensions as the cross section of the posi-
tioning rod. In order to provide additional support against the torque produced by
the weight of the rod in eccentric positions, a 100 mm long T shape stainless steel
reinforcement was mounted on the outer side of flange.

The detection efficiency for the 661 keV gamma-line of a point-like 137Cs ra-
dioactive source is shown in Fig. 3.16 as function of the source position. Due to
geometrical constraints, the efficiency could be directly measured only inside the
chamber, while the simulation was extend to the whole setup. In case of the simula-
tion, the detection efficiency at a given x position along the beam axis was calculated
as follows:

ηeff(x) =
NROI(x)

Nstarted

(3.15)

where NROI(x) is the number of add-back events that have an energy corresponding
to the selected region of interest (ROI), and Nstarted is the total number of simulated
decays. The simulated efficiency was found to match the experimentally measured
one within 4% without any rescaling applied. For the data analysis, this difference
was treated as the typical uncertainty of the GEANT4 simulation.

Besides the measurements with the radioactive sources, the gammas originating
from the decay of the well-known resonance in 14N(p,γ)15O at Ep = 278 keV were
also used to check the detector simulation at higher energies. Fig. 3.17 shows a
comparison between an experimental and a simulated single crystal spectrum.
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Figure 3.14: Source holder for efficiency measurement

Figure 3.15: Modified end flange and positioning rod for efficiency measurement
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Chapter 4

Results of the 22Ne(p,γ)23Na
experiment at LUNA

The aim of the experimental campaign was to collect statistics on the so far un-
observed resonances at E lab

p = 71 and 105 keV, and to study the non-resonant
component of the 22Ne(p,γ)23Na reaction rate. In addition to this, the three low-
energy resonances (E lab

p = 156.2, 189.5, 259.7 keV) reported in the previous phase
of the LUNA experiment were remeasured to confirm the resonance strength values
obtained [33].

During the more than five months of data taking, the following experimental
procedure was followed: The buffer of the gas target system was filled with iso-
topically enriched (99.9%) 22Ne gas up to a pressure of 500-800 mbar. With the
purifier turned on, the gas target was then switched to recirculation mode and the
pressure inside the chamber was adjusted to 2 mbar using the manual valves and
the MKS automatic feed back valve. At this point, the so-called ”zero power” (W0)
of the calorimeter was measured to establish the reference for the calorimetric beam
current reading.

After this, the electropneumatic inlet valve of the target chamber was shut off
to collect the gas in the buffer. This step was necessary to allow the optimisation
of the beam transmission, because otherwise the large number of secondary elec-
trons induced in the gas would have made the electrical readings on the collimators
unreliable. The currents of the analysing and steerer magnets were tuned along
with the source parameters so that the electrically measured beam current on the
target was maximal while the losses on the three consecutive collimators were kept
minimal. With the proper beam parameters set, the 22Ne gas was let back to the
chamber and the data acquisition was started. At a certain energy, usually several
days of statistics were collected in roughly one day long runs. At the end of each
experimental run the measurement of W0 was repeated.

Figure 4.1: 4-phase experimental procedure
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4.1 Detector background

Thanks to the very effective shielding against the cosmic muons by the rock over-
burden, the background in the BGO detector originates mainly from two sources:
natural radioactivity and nuclear capture reactions induced by the beam. It is ap-
parent from Fig. 4.2, that up to 3.7 MeV the spectrum is dominated by the γ-rays
from the decay of natural radioisotopes present in the walls of the laboratory and
the BGO crystal itself. The resolution of the BGO detector was not sufficient to
separate well these natural γ-lines, therefore only a few of them could be clearly
identified: 40K, 207Bi, 208Tl, 214Bi.

The 207Bi isotope is an intrinsic contaminant, which is typical for all BGO crys-
tals. In nature, it is produced from 207Pb and 208Pb via (p, n) and (p, 2n) reactions
by cosmic rays. In addition to this, the nuclear weapon tests in the 1960s led to
an enrichment of 207Bi in atmosphere and thus increased the global contamination
levels in bismuth processed afterwards.

The long tail above 3.7 MeV and the following two distinct plateaus from 5.5 to
8.0 MeV and from 8.0 to 10.5 MeV are due to neutron capture on the materials of the
detector housing and BGO crystal. While the flux of environmental neutrons is three
order of magnitude lower than on the surface, there are still enough neutrons (both
thermal and high-energy) left to generate energetic γ-rays via (n, γ) reactions on
various isotopes of Fe, Cr, Ni and Ge. The neutron capture reactions in the copper
calorimeter and collimator also contribute to the counting rate in these regions.
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Figure 4.2: Natural background seen by the BGO detector in add-back mode

Due to the adopted add-back measurement method, the signal of the 22Ne(p,γ)23Na
(Q = 8.794 MeV) reaction is expected at energies corresponding to the excited lev-
els in 23Na. For low energy resonances under investigation the region-of-interest is
around 9 MeV (E = Q + Ecm) and it is typically 1 MeV wide. As can be seen in
Fig. 4.2, the average counting rate in this region is in the order of 10−4 counts/(keV h).
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Due to this extremely low counting rate, in most cases the main concern is
represented by the additional nuclear reactions induced by the proton beam. The
most common sources of beam-induced background are listed in Table 4.1.

Table 4.1: Common contaminant reactions in the gas target

Reaction Q-value [MeV] γ-lines in the add-back spectrum [MeV]

15N(p,αγ)12C 4.965 4.439
14N(p,γ)15O 7.296 7.296+Ecm, 6.791, 6.172, 5.180
13C(p,γ)14N 7.551 7.551+Ecm
18O(p,γ)19F 7.993 8.136, 8.026, 7.939, 4.230, 3.906
19F(p,αγ)16O 8.114 6.130
15N(p,γ)16O 12.126 12.126+Ecm
11B(p,γ)12C 15.956 15.957+Ecm, 11.661, 4.439

As can be seen in Fig. 4.3, the beam-induced background varies with the beam
energy, because depending on their cross section at different energies different groups
of contaminants come into focus. Moreover, resonances in the contaminant nuclear
reactions lead to rapid changes in the counting rates. Therefore, if possible, the
beam-induced background should be investigated at the same energy as the nuclear
reaction under study.

However, a spectrum taken in vacuum at the same beam energy does not neces-
sarily reflect the actual beam-induced background correctly: When the gas target is
filled with 22Ne gas, the bombarding protons not only lose energy due to collisions
with the target atoms, but also experience angular deflection. The latter effect is
called angular straggling, and leads to angular spreading of the beam. Thus, the
beam may hit such deposits of contaminants inside the target chamber, which would
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Figure 4.4: Illustration of the adopted background normalization approach

not be excited in vacuum.

From this reason, the background measurements were done in natural argon gas
instead of vacuum. However, it is important to note that there is nearly a factor
of two difference in the stopping powers of natAr and 22Ne. Therefore, at the same
pressure the beam energy loss and the straggling are very different in the two gases.
In order to reach the same beam energy at the calorimeter, the pressure of the argon
gas was decreased compared to 22Ne.

The contaminants can be present either in the target gas, or localized on an
inner surface of the target chamber. With respect to the bound contaminants, the
two locations with the highest impact are the target collimator and the calorimeter,
because they are in direct interaction with the beam.

The spectrum over 10 MeV is dominated by the 11B(p,γ)12C reaction. Its full
energy peak is located around 16 MeV (Q-value + Ecm). However, the add-back
summing is not always complete. Therefore, the single γ-lines from the de-excitation
of 12C are also visible at 11.6 MeV and 4.4 MeV. Since the Compton-continuum of
the structure above 10 MeV contributes to the counting rate in the 22Ne(p,γ)23Na
ROI, considerable effort was devoted to localise and remove the 11B contamination.
Unfortunately, the investigation was inconclusive, and only a minor reduction of
the contamination level was achieved. On the other hand, it was confirmed that
the 11B is a non-volatile contaminant. Therefore, the 11B(p,γ)12C signal shape is
independent from the gas type and pressure.

Due to the fact that it is hard to keep a vacuum system completely free from small
leaks, the stable isotopes of oxygen and nitrogen are also common contaminants.
Their isotopes can be also localised on the inner surfaces of the gas target due
to oxidization or implantation. With respect to the study of 22Ne(p,γ)23Na, the
18O isotope is one of the most problematic contaminants, because its 18O(p,γ)19F
reaction produces a characteristic sum peak at 8 MeV next to the 22Ne ROI.
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In order to better understand the long-term tendencies in the background, the
measurements with 22Ne were alternated with background runs every other day.
Approximately, the same amount of time was devoted to measurements with 22Ne
and natAr at a given energy. Still, during the data analysis some scaling of the
experimental spectra was necessary, because of the variations in beam current and
focusing. Since the ROI for the 22Ne(p,γ)23Na reaction is mostly affected by the
γ-rays from beam induced nuclear reactions, the spectra had to be normalised to
the collected charge.

Instead of using directly the charge obtained from the calorimetric current mea-
surement, a more precise approach was adopted to normalize the 22Ne and natAr
runs by using features already present in the spectra: the scaling factor was deter-
mined based on a ROI from 11 to 18 MeV, mainly dominated by the 11B(p,γ)12C
reaction. The approach is illustrated in Fig. 4.4.

4.2 Resonant capture reaction

As it was already mentioned in Chapter 1, the reaction cross section can be dra-
matically enhanced if resonances are present. In case of isolated, narrow resonances,
the cross section σ is well-described by the Breit-Wigner formula (see Eq. 1.18) and,
thus the resonances are characterised by their resonance strength ωγ (Eq. 1.21). In
this case the resonant yield can be expressed as follows:

Yres =

∫ E0

E0−ΔE

σBW (E)

ε(E)
dE =

∫ E0

E0−ΔE

1

ε(E)

λ2

2π
ωγ

Γ/2

(E − Er)2 + (Γ/2)2
dE (4.1)

Since the change in the stopping power ε(E) over the beam energy loss ΔE is
typically negligible, it can be evaluated at the resonance energy Er. The de Broglie
wavelength λ also has to be determined at Er, therefore it can be moved out of the
integrand.

Yres =
1

εr

λ2
r

2π
ωγ

∫ E0

E0−ΔE

Γ/2

(E − ER)2 + (Γ/2)2
dE (4.2)

Noting that
∫
(1+x2)−1dx = arctan x+c, this integral can be calculated analytically,

thus, one obtains the following expression for the yield

Yres =
1

εr

λ2
r

2π
ωγ

[
arctan

(
E0 − Er

Γ/2

)
− arctan

(
E0 − Er −ΔE

Γ/2

)]
(4.3)

It can be shown that the maximum of the yield is achieved if the initial beam energy
E0 satisfies the following relation

E0 = Er +
ΔE

2
(4.4)

In this way, the resonance is populated in the center of the gas target, and the yield
becomes

Yres,max =
1

εr

λ2
r

π
ωγ arctan

(
ΔE

Γ

)
(4.5)
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The total resonance width is the sum of the partial width of all open channel.
For (p, γ) reactions, where only the proton and gamma channels are open, it can be
written as Γ = Γp +Γγ. For the low energies of astrophysical interest Γp << Γγ [1],
thus the total resonance width Γ is dominated by the gamma width, which also
means that the resonance strength ωγ (see Eq. 1.21) is basically determined by the
proton width Γp:

ωγ = ω
ΓpΓγ

Γ
≈ ω

ΓpΓγ

Γγ

= ωΓp (4.6)

Typically Γ ≈ Γγ is not larger than a few eV-s, while the beam energy loss ΔE
in the target usually amounts to several keV-s. Thus Γ << ΔE, and the arctan
function in Eq. 4.5 converges to π/2. Consequently, the yield for an infinitely thick
target becomes

Yres(Γ << ΔE) =
λ2
r

2

ωγ

εr
(4.7)

Usually, in order to obtain Yres from the experimental yield Yexp, one has to cor-
rect for the detector efficiency ηeff , the branching ratios B and angular distribution
of the γ-photons W (θ). However, due to the nearly 4π detection geometry of the
present experiment and the add-back detection mode used, the latter two corrections
can be neglected. For the resonance strength ωγ thus one finds

ωγ =
2

λ2
r

εr
N

Nbηeff
(4.8)

where Nb and N are the numbers of bombarding particles and detected gammas.

4.2.1 71 keV resonance

Experimental yields were measured at four different beam energies near the rec-
ommended literature resonance energy of E lab

p = 71± 5 keV [29]. A more detailed
resonance scan would have been desirable because of the uncertainty in the actual
resonance energy, however, due to beam time constraints it was not feasible. The
typical measurement time for one experimental point was 2-3 days, followed by an
in-beam background measurement of approximately equal length with natAr gas.
The details of the measurement can be found in Table 4.2.

Based on its Q-value and the resonance energy of 71 keV, the γ-rays of the
22Ne(p,γ)23Na reaction were expected at 8862 keV. No clean peak-like structure is
visible in the experimental spectra near this energy (see Fig. 4.5, 4.6, 4.7 and 4.8).
Therefore, the counts were simply integrated between 8.36 and 9.36 MeV. The choice
of the ROI was motivated by the level energy of the resonance (Ex = 8862 keV), and
the resolution of the detector. The same ROI was used for all four beam energies,
since the uncertainty related to the energy calibration of the BGO spectra was higher
than the required shift due to the difference in beam energy.

As it was mentioned in Sec. 4.1, the natural background in LUNA is extremely
low, thus in most cases it can be neglected due to the presence of the more prominent
beam-induced background. However, as can be seen in Table 4.3, at the present
beam energies the integrated number of counts in the ROI (both in 22Ne and natAr
gas) is consistent with the expected number of events from the natural background
(based on the average counting rate reported in Sec. 4.1).
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Figure 4.5: Experimental spectra at Eini
p = 72.1 keV.
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Figure 4.6: Experimental spectra at Eini
p = 74.0 keV.
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Figure 4.7: Experimental spectra at E ini
p = 76.0 keV.
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Figure 4.8: Experimental spectra at E ini
p = 80.3 keV.
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Table 4.2: Experimental parameters for the resonance at Elab
p = 71 keV: E ini

p and
Etarget correspond to the initial proton energy, and beam energy at the center of
the target chamber in the laboratory frame, respectively. q is the integrated charge
based on the calorimetric beam current measurement, t is the measurement time,
and pt stands for the target pressure.

22Ne gas natAr gas

E ini
p [keV] Etarget [keV] q t pt q t pt

[C] [h] [mbar] [C] [h] [mbar]

72.1± 0.3 65.8± 0.5 24.6± 1.0 80.5 2.00 18.0± 0.6 42.5 0.81
74.0± 0.3 67.7± 0.5 9.4± 0.3 22.8 2.00 10.6± 0.3 22.7 0.82
76.0± 0.3 69.6± 0.5 22.5± 0.8 64.4 2.00 25.4± 0.8 63.0 0.81
80.3± 0.3 73.8± 0.5 13.3± 0.5 40.7 2.00 25.6± 0.6 47.7 0.84

Table 4.3: Registered events (not normalised) in the experimental ROI
(8.36-9.36 MeV) compared to the expected number of counts from natural back-
ground. (The latter numbers were obtained from Fig. 4.2 by scaling with the mea-
surement time)

22Ne gas natAr gas

Eini
p [keV] ROI natBg* ROI natBg*

[counts] [counts] [counts] [counts]

72.1± 0.3 22 14.2± 1.4 9 7.5± 0.7
74.0± 0.3 4 4.0± 0.4 8 4.0± 0.4
76.0± 0.3 15 11.3± 1.1 19 11.1± 1.1
80.3± 0.3 16 7.2± 0.7 19 8.4± 0.8

* original counting rate: 105 events in 597.5 hours

Because of the low statistics, the analysis of the experimental data was done using
a Monte-Carlo approach: The number of events measured in 22Ne (ξNe), or in

natAr
gas (ξAr) during irradiation, and the counts from the natural background (ξBG) were
assumed to be random variables following Poisson-statistics. The expected number
of true events (Nnet) due to the 22Ne(p,γ)23Na reaction was calculated as follows:

Nnet = ξNe − tNe

tBG

ξBG − C
(
ξAr − tAr

tBG

ξBG

)
(4.9)

where tNe, tAr and tBG are the real-times of the corresponding measurements. The C
scaling factor between the in-beam measurements with 22Ne and natAr was calculated
by comparing the number of counts in the ROI of 11B(p,γ)12C reaction (see Sec. 4.1)
for the two spectra.

The mean of the Poisson distributions was set equal to the raw number of events
in the 22Ne(p,γ)23Na ROI of the corresponding experimental spectrum without any
normalisation applied. For each beam energy the Monte-Carlo code was run 100000
times to obtain distribution of the NET counting rate Nnet. Based on its probability
density function, upper limits on the counting rate with 90% confidence level were
determined.
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In addition to this Monte-Carlo based method, the upper limits were also deter-
mined based on the profile likelihood approach suggested by Wolfgang Rolke [54].
The method is implemented in the TRolke class of ROOT [55], however the cur-
rent version only allows one source of background - which can be either Poisson or
Gaussian distributed. (The signal events are always considered Poisson distributed.)

Therefore, total background rate in the experiment was estimated by an ad-
ditional Monte Carlo simulation: the beam-induced and natural background were
considered Poisson distributed, and the sum of the backgrounds were calculated.
The Gaussian mean and sigma of the resulting distribution were used as input for
the Rolke approach. The upper limits corresponding to 90% confidence level were
determined.

The results for both methods are summarized in Table 4.5. The proton beam
energy in the center of the target chamber was given as resonance energy for the
obtained upper limits on ωγ (Eq. 4.2). The assigned uncertainty on the resonance
energy in Table 4.5 reflects the energy interval spanned by the beam inside the
108 mm long target chamber.

As can be seen in Fig. 4.9, the upper limits based on the Rolke approach are
generally higher than the ones produced by the Monte Carlo method. While for the
measurements at 65.8 and 73.8 keV, the upper limits from the two different methods
are comparable, in case of the experimental points at 67.7 and 69.6 keV there is a
larger discrepancy. The difference can be explained by the fact that in these runs the
expected rate of background was higher than the rate of signal events. Therefore, in
the Monte Carlo simulation only a small fraction of the probability density function
(of the net counting rate) was above zero, which led to lower upper limits.

During the experiment the beam energy was chosen so that the individual energy
regions overlap with each other (see Fig. 4.9). The investigated energy range spans
from 62.3 to 77.6 keV, and therefore it completely covers the 71± 5 keV range orig-
inally reported by Powers et al. [29]. Consequently, if a narrow resonance does exist
in this energy region, its resonance strength cannot be higher than 5.8× 10−11 eV.

As it was emphasized in Sec. 3.4, the determination of the add-back detection
efficiency relies on the knowledge of the exact decay scheme of the excited state
under study. For the tentative resonances at E lab

p = 71 and 105 keV, however, the
branching ratios are unknown [32]. Moreover, the arbitrary 1/2+ spin and parity
assignment [30] of these states is yet to be confirmed by experiment.

Fortunately, in case of the Ex = 8829.5 keV level, corresponding to the reso-
nance at E lab

p = 37 keV, the branching ratios are well-known [32]: R → 2391 with
64± 10%, and R → 0 with 36± 10%. Since this state has similar energy, and its
spin/parity assignment is also 1/2+, it may be assumed that the decay scheme of
the resonances at 71 and 105 keV follow the same pattern. However, some other
possible scenarios were also tested with the help of the Monte Carlo code, in order
to determine the sensitivity of the simulated add-back efficiency for the branching
ratios. The results are listed in Table 4.4.

As expected, a single ground state transition yields the highest efficiency, while
the detection of γ-rays is less efficient when the de-excitation proceeds via a cascade
of several MeV γ-rays (R → 3678, R → 2391). If the branching ratios from the
Ex = 8829.5 keV level are adopted, the simulated efficiency lies between the two
extremes. As a conservative assumption, the upper limits (listed in Table 4.5) were
based on the lowest value η71eff = 42%.
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Table 4.4: Add-back detection efficiencies for the resonances at E lab
p = 71 and

105 keV

Transition Multipolarity Branching [%]

R → 3678 E1 - - - 100
R → 2391 M1 64 - 100 -
R → 0 M1 36 100 - -

Efficiency (71 keV): 52.9 % 64.5 % 46.3 % 42.3 %

Efficiency (105 keV): 52.1 % 63.8 % 45.5 % 41.1 %

Table 4.5: Upper limits on the ωγ for the resonance at Elab
p = 71 keV

Etarget [keV] ωγMC [eV] ωγRolke [eV]

65.8+3.6
−3.5 ≤ 4.1× 10−11 ≤ 4.8× 10−11

67.7+3.7
−3.5 ≤ 7.7× 10−12 ≤ 2.6× 10−11

69.6+3.7
−3.5 ≤ 1.4× 10−11 ≤ 2.3× 10−11

73.8+3.8
−3.6 ≤ 4.5× 10−11 ≤ 5.8× 10−11

10-12

10-11

10-10

 60  70  80  90  100  110  120

ω
γ
 [e

V
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Figure 4.9: Upper limits on the strength of resonance Elab
p = 71 and 105 keV. The

vertical lines show the resonance energy and its uncertainty reported by Powers et al.
[29].
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4.2.2 105 keV resonance

The measurements regarding the resonance at E lab
p = 105 keV were carried out in

a similar fashion as for the resonance at Elab
p = 71 keV. Experimental yields were

measured at three different proton beam energies around the suggested literature
energy of the resonance. During the analysis the experimental ROI was shifted to
8.40-9.40 MeV, in order to account for the difference in the level energy compared
to the resonance at 71 keV. The simulated detector efficiency was slightly lower than
for the 71 keV (η105eff = 41%) due to the shift in the limits of the ROI (see Table 4.4).
The details of the experiment are listed in Table 4.6.

The experimental spectra are shown in Figures 4.10, 4.11 and 4.12. As can be
seen, at these energies there is more structure also in the high energy part of the
spectra. Due to the increased beam-induced background, the role of the natural
background is less prominent, however, its contribution to the total counting rate
in the ROI is still around 10%.

Near the expected resonance energy of 8894 keV, a broad peak-like structure
is visible in all three spectra. However, the same feature seems to be also present
in the background runs with similar counting rates. Therefore, only upper limits
could be derived from the data, whereas both the previously described Monte-Carlo
(Eq. 4.2.1) and Rolke approach were used. The obtained upper limits are sum-
marised in Table 4.7.

In case of the last experimental point corresponding to Etarget = 108.7 keV pro-
ton energy, the Monte Carlo based derivation of upper limits fails, because the
background is considerably higher than the rate of signal events. For the other two
points, both method provide consistent upper limits on ωγ, however, the values
based on the Rolke method are more conservative.

The three experimental points completely cover the suggested 105± 5 keV en-
ergy range by Powers et al. [29] (see Fig. 4.9). Therefore, if a resonance exists in
this range, its strength cannot be higher than 7.0× 10−11 eV.

Table 4.6: Experimental parameters for the resonance at E lab
p = 105 keV: Eini

p and
Etarget correspond to the initial proton energy, and beam energy at the center of
the target chamber in the laboratory frame, respectively. q is the integrated charge
based on the calorimetric beam current measurement, t is the measurement time,
and pt stands for the target pressure.

22Ne gas natAr gas

E ini
p [keV] Etarget [keV] q t pt q t pt

[C] [h] [mbar] [C] [h] [mbar]

105.5± 0.3 98.7± 0.5 14.2± 0.2 22.1 2.00 16.1± 0.3 23.3 0.92
110.5± 0.3 103.6± 0.5 28.7± 0.6 67.3 2.00 27.8± 0.6 61.3 0.94
115.5± 0.3 108.7± 0.5 40.3± 0.6 62.6 2.00 32.0± 0.5 44.4 0.95
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Figure 4.10: Experimental spectra at Eini
p = 105.5 keV.
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Figure 4.11: Experimental spectra at Eini
p = 110.5 keV.
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Table 4.7: Upper limits on the ωγ for the resonance at E lab
p = 105 keV

Etarget [keV] ωγMC [eV] ωγRolke [eV]

98.7+4.0
−3.8 ≤ 4.1× 10−11 ≤ 7.0× 10−11

103.6+4.0
−3.8 ≤ 4.8× 10−11 ≤ 6.9× 10−11

108.7+4.0
−3.8 ≤ 3.1× 10−12 ≤ 4.7× 10−11
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Figure 4.12: Experimental spectra at E ini
p = 115.5 keV.

63



4.2.3 156.2 keV resonance

The resonance at E lab
p = 156.2 keV proton energy has been successfully observed

in the previous, HPGe-based experimental phase in LUNA. In order to confirm the
reported resonance strength [33], its value was remeasured in the present experiment.
As a first step, a resonance scan was performed to determine the proton beam energy
corresponding to the resonance in the new target chamber. Based on the yield
curve (see Fig. 4.13), the initial proton beam energy was set to E ini

p = 163.9 keV
and statistics were collected for half a day. Further details of the measurement are
summarised in Table 4.11 at the end of Sec. 4.2.
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Figure 4.13: Scan of the resonance at E lab
p = 156.2 keV

Because of the higher beam energy, the beam induced background also be-
came more significant compared to the spectra at lower energies. For example,
in case of the measurement at E ini

p = 105.5 keV (Fig. 4.10) the counting rate in the
11B(p,γ)12C region (11-18 MeV) was about 6.3 counts/h, while at E ini

p = 163.9 keV
it was 3300 counts/h. On one hand, this approximately 500 times increase meant
more Compton events for the 22Ne(p,γ)23Na ROI around 9 MeV, but on the other
hand made the background normalization and subtraction more reliable: in only
hours enough statistics could be acquired to allow the normalization of the natAr
spectrum to the one in 22Ne with 1% uncertainty. Therefore, more time could be
allocated for the study of the resonance itself. Moreover, the appearance of distinct
structures in the high energy part of the spectra made it easier to judge the quality
of the background subtraction.

As can bee seen in Fig. 4.14, the dominant contaminants are the 11B(p,γ)12C and
18O(p,γ)19F reactions. Despite the fact, that the high energy part of the spectra is
basically determined by the γ-peaks from the 11B(p,γ)12C reaction, the presence of
18O is far more problematic: its full energy sum peak is located directly next to the
region of interest, which was selected from 8.5 to 9.5 MeV.

The validity of this choice becomes more evident from Fig. 4.15, which shows
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the NET spectrum after background subtraction. Within the selected ROI, the
experimental spectrum is in excellent agreement with the predicted peak shape by
the Monte-Carlo simulation (shown in red). Looking only at the spectra taken in
22Ne and natAr, one might except the high energy tail of the 18O(p,γ)19F peak has
some contribution in the ROI. Fortunately, from Fig. 4.15 it is clear that it is not
the case.

As it was already emphasised in the previous chapters, for the correct simula-
tion of the add-back efficiency the knowledge of the decay scheme of the excited
level is necessary. The Ex = 8943.5 keV state corresponding to the resonance at
Elab

p = 156.2 keV is known to decay into the 2391 and 3914 keV states. The most
recent branching ratios regarding these γ-transitions are from the previous LUNA
experimental campaign on 22Ne(p,γ)23Na reaction [38] and the measurement con-
ducted by Kelly et al. [37] at TUNL (see Table 4.8).

Table 4.8: Branching ratios for the resonance at E lab
p = 156.2 keV

γ-transition Eγ [keV]
Branching [%]

Jπ
TUNL [37] LUNA-HPGe [38] LUNA-BGO

R→ 0 8943 - - - 5± 1 3
2

+ → 3
2

+

R→ 2391 6552 20± 4 23± 4 34± 4 32± 3 3
2

+ → 1
2

+

R→ 3914 5029 80± 6 77± 4 66± 4 63± 3 3
2

+ → 5
2

+

Efficiency: 41.4% 41.6% 41.7% 42.7%

Simulations were carried out subsequently with each of the two reported branch-
ing ratios and compared to experimental spectra. Taking advantage of the fact
that all data were recorded in list mode, a conditional filter was applied to the
recorded events: only those add-back events were allowed, which had an energy
8.5 MeV ≤ E ≤ 9.5 MeV. This gating procedure was applied both for the experi-
mental and simulated spectra. From the add-back events which satisfied the con-
dition, the single events were extracted corresponding to single counts in the in-
dividual detector crystals. These single events were then simply summed together
without considering coincidence effects, creating a so-called single-sum spectrum.
Before comparison with the simulation, the experimental spectra taken in 22Ne was
corrected for the beam induced background, by scaling and then subtracting the
single-sum spectrum of the beam induced background recorded in natAr.

It is apparent from Fig. 4.16, that both recommendations regarding the branch-
ing ratios fail to properly reproduce the experimental spectrum. Therefore, the
branching ratios were redetermined based on the present data: Two template spec-
tra were created by simulating the transitions R → 2391 and R→ 3914 separately.
If the gated experimental spectrum is free from background, and there are only the
above mentioned γ-transitions present, then it should be possible to reconstruct it
as a ”mixture” of the two templates:

Experimental = A2391 × Template2391 + A3914 × Template3914 (4.10)

where parameters A2391 and A3914 are the corresponding branching ratios. Based on
this assumption, a fitting procedure was created using the MINUIT minimizer class
of ROOT [55]. The resulting new branching ratios are listed in Table 4.8.
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Figure 4.14: Experimental spectrum at Eini
p = 163.9 keV for the study of the reso-

nance at Elab
p = 156.2 keV.
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While the readjusted branching ratios provide a better agreement between the
experiment and simulation (Fig. 4.16), the reproduction of the peak around the
total level energy (Ex = 8943 keV) of resonance is not perfect. This peak arises
due to the fact, that the individual segments of the detector are so large, that the
consecutive gammas from the decay of the resonance have a good chance hitting the
same segment. However, it seems that this self-summing effect could not entirely
account for the number of counts observed in the experimental spectrum. This
suggests that a small fraction of γ-transitions proceeds directly to the ground state.
Therefore, a template for the R → 0 transition was created. With the help of
the above described fitting procedure, the contribution form the ground state was
estimated to be 5± 1%.

Based on the new recommended branching ratios, the add-back detection effi-
ciency was estimated to be η156eff = 43± 2%. Since the variation of the efficiency
between the different sets of branching ratios listed in Table 4.8 is minimal, the un-
certainty is mainly dominated by the modelling of the BGO geometry in the Monte
Carlo code (see Sec. 3.4).

The resulting experimental resonance strength was:

ωγ = [1.84± 0.04stat ± 0.09sys]× 10−7 eV (4.11)

In case of the resonance energy, the previous literature value of E lab
p = 156.2 keV

[38] was accepted.
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4.2.4 189.5 keV resonance

The strength of the second resonance reported by LUNA [38] at E lab
p = 189.5 keV

was also remeasured in the current experiment. Based on the resonance scan shown
in Fig. 4.17, the proton beam energy was set to E ini

p = 196.4 keV. The main mea-
surement in 22Ne gas lasted 16.2 hours, followed by a 1 hour long background run
in natAr. Further details of the experiment can be found in Table 4.11.
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Figure 4.17: Scan of the resonance at E lab
p = 189.5 keV

The background spectrum was normalised based on the integrated number of
counts from 11 to 18 MeV. With respect to the beam induced background, the spec-
tra are dominated by the various peaks of the 11B(p,γ)12C, however, the signature
of the 14N(p,γ)15O and / or 13C(p,γ)14N reactions are also visible around 7.5 MeV.

The peak corresponding to the 22Ne(p,γ)23Na reaction has a broad, non-Gaussian
shape, and its large Compton-continuum extends down to 5 MeV. A closer look
reveals, this asymmetry of 22Ne add-back peak is most likely caused by the presence
of a second γ-peak centered around 8.5 MeV. This energy is close to, but not equal
to the one, where the add-back peak from the 18O(p,γ)19F contaminant reaction
(Q = 7.993 MeV) is expected (see Table 4.1). Moreover, the spectrum taken in
natAr does not show any sign of a 18O contamination.

Fortunately, the origin of the peak in question can be explained by the de-
cay scheme of the resonance [37, 38]. From Table 4.9 it is evident, that after the
resonant capture of a proton, there is a high probability of a γ-transition to the
Ex = 440 keV level. The incomplete summing of the resulting 8.5 MeV, and the
consecutive 440 keV photons can lead to the formation of a peak in the add-back
spectrum at 8.5 MeV. The overlap between this and the complete sum peak can
account for the asymmetry of the observed 22Ne add-back peak.

This explanation was verified with the help of a Monte Carlo simulation. The
shape of the add-back peak was simulated using the branching ratios from the pre-
vious LUNA experimental phase and compared to the experimental spectrum after
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background subtraction. As can be seen in Fig. 4.19, the simulation by default fails
to reproduce the shape of the observed add-back peak. This suggests that during
the measurement the detector lost more 440 keV photons than it was expected.

During the experiment, all BGO crystals were used with the same DAQ settings
(see Table 3.1). However, during this particular measurement crystal segment Nr. 6
exhibited increased noise levels, which affected the counting rate in the low energy
end of the spectrum, and more importantly the dead time. Therefore, the trigger
threshold was increased for the problematic segment. Taking into account this
difference in the trigger levels, a good agreement could be reached between the
simulation and the experiment.

Table 4.9: Branching ratios for the resonance at E lab
p = 189.5 keV

γ-transition Eγ [keV]
Branching [%]

Jπ
TUNL [37] LUNA-HPGe [38] LUNA-BGO

R→ 0 8975.3 5.3± 1.4 - - 5
2

+ → 3
2

+

R→ 440 8535.3 37.7± 1.5 42.8± 0.9 38.0± 0.9 5
2

+ → 5
2

+

R→ 2076 6899.3 39.8± 1.3 47.9± 0.9 50.6± 0.9 5
2

+ → 7
2

+

R→ 2982 5993.3 5.0± 0.8 3.7± 0.5 3.2± 0.5 5
2

+ → 3
2

+

R→ 3678 5297.3 2.2± 0.8 - 2.2± 0.2 5
2

+ → 3
2

−

R→ 3914 5061.3 3.1± 0.6 1.1± 0.3 2.0± 0.5 5
2

+ → 5
2

+

R→ 4775 4200.3 ≤ 3.0 1.8± 0.2 1.6± 0.2 5
2

+ → 7
2

+

R→ 6618 2357.3 4.7± 0.9 2.7± 0.2 2.4± 0.2 5
2

+ → 3
2

+ 5
2

+ 7
2

+

Efficiency: 60.3% 60.9% 60.0%

Apart from the add-back spectrum, the validity of the simulation was also
checked with respect to the single-sum mode. This was especially important, be-
cause again two different sets of branching ratios are reported in the literature (see
Table 4.9): The most recent measurement by Kelly et al. (TUNL) [37] not only pro-
vides slightly different values of the branching ratios, but also reports two additional
transitions, which were not observed in case of the LUNA-HPGe experiment [38].

The Monte-Carlo code was run with both branching sets, and then the resulting
simulated spectra were compared to the experimental results by using the same gat-
ing method described in the previous chapter. In this case, the singles-sum spectra
were built from those add-back events which had an energy 8.0 MeV ≤ E ≤ 9.5 MeV.
The results are shown in Fig. 4.20.

The two most intense primary transitions (R→ 440 and R→ 2076) are reasonably
well reproduced with both sets of branching. However, the transition to the ground
state suggested by Kelly et al. [37] does not seems to be justified by the present
experiment. Moreover, the TUNL branching ratios result in a general overestimation
in the energy range from 2 to 6 MeV due to the higher intensity given to transitions
R→ 2982, R→ 3678, R→ 3914, R→ 4775 and R→ 6618.

The LUNA branching ratios [38] in general provide a better, but not perfect
description of the experimental spectrum. The simulated spectrum somewhat un-
derestimates the counting rate in regions 3-4 and 5-6 MeV. This suggest that the
actual intensity of transitions R→ 3678 and R→ 3914 might be slightly higher than
reported by the LUNA-HPGe phase.
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Figure 4.18: Experimental spectra at E ini
p = 196.4 keV for the study of the resonance

at E lab
p = 189.5 keV.
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Figure 4.19: Comparison of experimental NET (after background subtraction) and
simulated add-back peak for the resonance at E lab

p = 189.5 keV. The blue curve
shows the predicated shape of the add-back peak based on the LUNA branching
ratios from Table 4.9, while the red curve also takes into account that one of the
detector crystals had a higher trigger threshold than the others.
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Figure 4.20: Comparison of the gated experimental single-sum spectrum to the
simulated ones based on the different decay schemes in case of the resonance at
Elab

p = 189.5 keV. Primary transitions are indicated in blue.

Therefore, the branching ratios were redetermined adopting the same fitting
procedure as in Sec. 4.2.3. The results is very similar to the previous LUNA recom-
mendation (see Table 4.9), although, it was necessary for the better reproduction
of the experimental spectrum to increase the strength of transitions R→ 3678 and
R→ 3914. This also improves the matching between the simulated and experi-
mental spectra in the region 3-4 MeV, because of the intense secondary transitions
3678 → 440 and 3914 → 0. The fit, however, did not justify the 5.3% probability of
a ground state transition suggested by the TUNL measurement.

The new branching ratios are listed in Table 4.9 along with the previous literature
values. The final simulation of the resonance was based on this updated decay
scheme, and the add-back detection efficiency was found to be η189eff = 60± 2% for
the selected experimental ROI (8.0-9.7 MeV) shown in Fig. 4.18. The three sets of
the branching ratios result in similar detection efficiencies, therefore the uncertainty
is mainly arising from the simulation of the detector geometry.

The resulting experimental resonance strength was:

ωγ = [2.28± 0.02stat ± 0.10sys]× 10−6 eV (4.12)

For the resonance energy, the previous literature value of E lab
p = 189.5 keV [38]

was accepted.

4.2.5 259.7 keV resonance

Unlike the previously discussed two resonances, the resonance at E lab
p = 259.7 keV

was not studied in the most recent measurement at TUNL [36, 37]. Therefore, the
only value on its ωγ is known from direct measurement performed at LUNA [38]. In
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Figure 4.21: Experimental spectra at E ini
p = 265.0 keV for the study of the resonance

at E lab
p = 259.7 keV.

order to confirm the reported resonance strength, this resonances was also remea-
sured in the current experiment. The details of the measurement are summarised
in Table 4.11.

The signature of the 22Ne(p,γ)23Na reaction is clearly visible in the experimental
spectrum (Fig. 4.21). It produces a broad add-back peak between 8 and 10 MeV,
with a considerable Compton-tail extending towards lower energies. With respect
to the contaminant reactions, the most visible difference compared to Fig. 4.19,
is the appearance of the peak of the 19F(p,αγ)16O reaction at 6.1 MeV. Despite
its intensity, the 19F peak is less important than the weaker one produced by the
14N(p,γ)15O (or 13C(p,γ)14N) reaction around 7.6 MeV, which lies next to the region
of interest.

Still, most of the beam induced background originates from 11B(p,γ)12C. As can
be seen in Fig. 4.19, the integrated number of counts from this reaction (in the
region of 10-18 MeV) provides a good basis for normalisation of the spectra. As
the excellent matching between the spectra taken in 22Ne and natAr reveals, the
beam induced background under the 22Ne(p,γ)23Na peak region (ROI 8.0-9.8 MeV)
is nearly constant.

With respect to the decay scheme of the resonance, the previously reported
branching ratios [38] provide a reasonable description of the experimental spectra
(see Fig. 4.22). However, in case of the transitions R→ 5927 and R→ 6042, the
simulation seems to slightly overestimate the height of the experimentally observed
peak. This issue can be addressed by a minor reduction in the intensity of these
transitions. The new branching ratios are summarised in Table 4.10 along with the
originally recommended ones.

It is worth to note, the in both cases the simulation fails to reproduce the ex-
perimental spectra in two regions: near 1.2 MeV and 4.2 MeV the predicted curves
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underestimate the observed one. Neither of these regions are directly affected by the
reported primary transitions. Moreover, the following secondary transitions do not
produce gammas corresponding to these energies. Therefore, it is most likely that
this 0.8% excess over the simulated spectrum is due to some kind of unidentified
background or random summing of gammas in the detector crystals, which is not
correctly reproduced in the simulation.

Table 4.10: Branching ratios for the resonance at E lab
p = 259.7 keV

γ-transition Eγ [keV]
Branching [%]

Jπ
LUNA-HPGe [38] LUNA-BGO

R→ 440 8602 45.4± 0.9 46.0± 0.9 7
2

+ 9
2

+ → 5
2

+

R→ 2076 6963 18.7± 0.6 18.9± 0.6 7
2

+ 9
2

+ → 7
2

+

R→ 2704 6335 10.9± 0.5 11.0± 0.5 7
2

+ 9
2

+ → 9
2

+

R→ 3848 5193 13.3± 0.5 13.5± 0.5 7
2

+ 9
2

+ → 5
2

−

R→ 3914 5127 1.8± 0.4 1.8± 0.4 7
2

+ 9
2

+ → 5
2

+

R→ 5927 3115 3.6± 0.2 3.0± 0.2 7
2

+ 9
2

+ → 7
2

+

R→ 6042 3000 2.6± 0.2 2.0± 0.2 7
2

+ 9
2

+ → 7
2

−

R→ 6355 2686 1.5± 0.2 1.5± 0.2 7
2

+ 9
2

+ → 9
2

−

R→ 6820 2221 2.2± 0.2 2.2± 0.2 7
2

+ 9
2

+ → 5
2

−

Efficiency 60.1% 60.2%

The evaluated add-back efficiency was η260eff = 60± 2% for this resonance and the
resonance strength was found to be

ωγ = [8.74± 0.03stat ± 0.39sys]× 10−6 eV (4.13)

based on the integrated number of counts in the experimental ROI (8.0-9.8 MeV).
The already established literature value of resonance energy Elab

p = 259.7 keV [38]
was accepted also in this case.
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Figure 4.22: Comparison of the gated experimental single-sum spectrum to the
simulated ones based on the different decay schemes in case of the resonance at
E lab

p = 259.7 keV. Primary transitions are indicated in blue.

Table 4.11: Experimental parameters for the resonances at Elab
p = 156.2, 189.5 and

259.7 keV

22Ne gas natAr gas

E ini
p [keV] Etarget [keV] q t pt q t pt

[C] [h] [mbar] [C] [h] [mbar]

163.9± 0.3 157.2± 0.5 6.3± 0.1 12.4 2.00 0.77± 0.01 1.5 1.06
196.4± 0.3 189.9± 0.5 8.0± 0.1 16.2 2.00 0.27± 0.01 1.0 1.13
265.0± 0.3 259.1± 0.5 47.3± 0.5 48.1 2.00 27.2± 0.5 35.3 1.22
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4.3 Non-resonant capture reaction

In the case of a narrow resonance, the reaction happens at a well-defined energy
(Eres), therefore the point of interaction is well localised inside the target chamber.
On the other hand, the direct capture reaction mechanism can take place at any
energy. Consequently, the source of the gamma photons is spread out along the beam
axis. Every point of the gas target, where the beam hits the 22Ne gas, contributes
to the total non-resonant reaction yield (YDC) in the BGO:

YDC =

∫ E0

E0−ΔE

σ(E)

ε(E)
dE (4.14)

where E0 is initial center-of-mass energy of the target-projectile system, ΔE is the
energy loss of the beam in the target, and ε(E) is the stopping power. By expressing
the reaction cross section σ(E) with the help of the astrophysical S-factor S(E) (see
Eq. 1.8), the yield can be written as

YDC = S(Eeff)

∫ E0

E0−ΔE

1

ε(E)

1

E
exp(−2πη)dE (4.15)

Since typically ΔE ≤ 10 keV, the S-factor can be assumed to be constant.
Therefore, it can be moved in front of the integration by evaluating its value at Eeff

effective beam energy. Eeff is usually defined as the energy at which one-half of the
total yield (for the full target thickness) is obtained:∫ E0

Eeff

1

ε(E)

1

E
exp(−2πη)dE =

1

2

∫ E0

E0−ΔE

1

ε(E)

1

E
exp(−2πη)dE (4.16)

Following the notation of Chapter 1, Eq. 4.15 and 4.16 were expressed here in
the center-of-mass frame. However, for an experimentalist it is often more intuitive
to use quantities defined in the laboratory frame. For example, in the laboratory the
stopping powers can directly be adopted from the well-known SRIM compilation [56].
Fortunately, the yield YDC as physical quantity is independent from the frame of
reference, therefore, the integral in Eq. 4.15 can also be calculated with the initial
beam energy E ini

p and energy loss ΔEp measured in the laboratory frame:

YDC = S(Eeff)

∫ Eini
p

Eini
p −ΔEp

1

ε(E)

1

E
exp(−2πη)dE (4.17)

where the Sommerfeld-paramter (see Eq. 1.4) has to be evaluated taking into account
the following conversion

Ecm =
Mt

Mt +Mp

E lab
p (4.18)

with Mt and Mp as the atomic mass of target and projectile respectively.
It is important to note, that Eq. 4.17 in its present form does not take into ac-

count that the detector has an efficiency ηeff ≤ 1. Moreover, ηeff is not constant, but
it varies as a function of the position along the beam axis. Therefore, the efficiency
has to be evaluated point-by-point with the help of the Monte Carlo simulation.

As it was already mentioned in the previous chapter, the add-back efficiency
also depends on the branching ratio of different γ-transitions involved in the decay
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of an excited state. Therefore, in case of the direct capture process the capture
probabilities to the different excited states are needed as input parameters for the
simulation. Unfortunately, there is no information available at the low energies
discussed here: In 1983 Görres et al. studied the direct capture cross sections at
a beam energy of 1.22 MeV [40], while most recently Kelly et al. reported cross
section data at 425 keV [37].

Table 4.12: Most important transitions for the direct capture 22Ne(p,γ)23Na at
E ini

p = 1.22, 0.425 and 0.310 MeV, showing their relative intensity. The given
efficiency is calculated for the center of the target, assuming point-like γ-emission.

Transition Jπ
f Intensity (%) Multipolarity

[keV] Görres [40] Kelly [37] Adopted s-wave p-wave
(1.22 MeV) (0.425 MeV) (0.310 MeV)

DC→ 0 3
2

+
9.5 31.1 53.6 M1 E1

DC→ 440 5
2

+
22.1 11.6 8.3 E2 E1

DC→ 2391 1
2

+
31.5 18.6 15.3 M1 E1

DC→ 2982 3
2

+
10.7 7.2 0.0 M1 E1

DC→ 6306 1
2

+
6.9 5.9 4.6 M1 E1

DC→ 6918 3
2

−
4.9 1.5 1.1 E1 M1

DC→ 7080 3
2

−
2.2 3.0 2.1 E1 M1

DC→ 7488 1
2

−
, 3

2

−
1.4 2.1 1.5 E1 M1

DC→ 8664 1
2

+
9.9 15.2 10.9 M1 E1

DC→ 8829 1
2

+
0.9 3.6 2.6 M1 E1

Efficiency: 50.8 % 54.0 % 57.3 %

As can be seen in Table 4.12, both evaluations of direct capture cross sections
place the emphasis on the transitions to low lying excited states: DC→ 0, DC→ 440,
DC→ 2391 and DC→ 2982. However, there are differences with respect to the
strongest one: at 1.22 MeV one third of the transition results in level Ex = 2391 keV,
while in case of the data at 425 keV the ground state transition bears the main
importance. For the rest of the transitions both experiments see comparably low
intensities. The only exception is level Ex = 8664 keV, which has 10-15 % capture
probability.

With respect of the multipolarity of transitions, the capture process is charac-
terised by mostly p-wave transitions. Despite the higher centrifugal barrier, p-wave
transitions are more advantageous in case of positive parity states. On the other
hand, s-wave transitions are preferred for levels with negative parity.

Due to the lack of information at lower energies, it was assumed that only the
transitions listed in Table 4.12 have significance for the direct capture process in
the present experimental energy range. Their relative intensities were used as in-
put for the Monte Carlo simulation. The resulting spectra were then compared to
the experimental one obtained at E ini

p = 310 keV. As in the previous chapter, the
comparison was done by using gated single-sum spectra which only included events
with total add-back energy 8.6 MeV ≤ E ≤ 9.5 MeV.

From Fig. 4.23 it is evident that neither the Görres [40] nor the Kelly [37] data
could reproduce the experimental spectra. Therefore, the transition probabilities
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Figure 4.23: Comparison of the observed and simulated direct capture transitions
at Eini

p = 310 keV using gated single-sum spectra. The transitions from Table 4.12
are indicated in blue, while the secondary transitions are shown in black.

were adjusted until a reasonable agreement with the experimental spectrum was
achieved. The adopted ,,branching ratios” are reported in the Table 4.12. How-
ever, it is important to note, that these values not necessarily represent the actual
transition probabilities due to the difficulties associated with the localisation of the
γ-emission in case of the experiment. Moreover, the limited statistics makes a pre-
cise determination of the strength of the individual transitions difficult. Therefore,
it is safer to consider the adopted numbers only as arbitrary input parameters of
the Monte Carlo model without much emphasis on their physical meaning. For the
same reason no uncertainty is quoted on them.

The resulting trend of add-back efficiency as function of the position inside the
target chamber is presented in Fig. 4.24 along with density profile already presented
in Fig. 3.9.

The efficiency peaks in the center of the chamber, where it has a plateau around
60%. In the close vicinity of the calorimeter, the efficiency starts to drop, because
the massive copper body of the calorimeter absorbs a large fraction of the gamma
photons. Towards the collimator, the efficiency also decreases due to the shielding
effect of the collimator on the front portion of the BGO crystals. Inside the colli-
mator the efficiency is about half of its maximum value, which is consistent with
the fact, that the gamma photons have to propagate through 2 cm material made
of copper and stainless-steel before reaching the BGO crystal. In first centimetres
of the interconnection tube, the detection efficiency shows a slight increase, because
the walls of the tube are only 2 mm thick, thus the attenuation of γ-photons is lower.
Moving further away from the collimator, the efficiency starts to decrease again, as
the solid angle covered by the BGO detector becomes smaller and smaller.

In order to take into account this strong variation of detection efficiency (and
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Figure 4.24: Simulated add-back detection efficiency for the direct capture process,
shown along with the gas density as function of position. The position is measured
from the hot side of the calorimeter towards the first pumping stage of the vacuum
system. The shaded area represent the portion of the target chamber covered by
the BGO detector. The basic design of the target chamber with BGO detector is
also shown.

gas density) along the path of the beam, the following approach was implemented
to determine the S-factor via numerical integration:

1. The total length of the gas target (including the chamber, collimator and in-
terconnection tube) was divided into sections of 1 mm length. Within each
section, the detection efficiency and the gas density were assumed to be con-
stant.

2. The beam reaches the i-th section with initial energy Ei. Considering that the
length of the section is Li, the energy loss ΔEi can be calculated as follows:

ΔEi = εi(Ei)niLi (4.19)

where ni is the local gas density and εi(Ei) is the stopping power. Conse-
quently, the outgoing beam energy will be

Ei+1 = Ei − εiniLi (4.20)

3. The contribution of i-th section to the total experimental yield is obtained by
evaluating the integral of Eq. 4.17 numerically in the energy range between Ei
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and Ei+1

Ii = ηeffi
∑
j

1

ε(Eav
i )

1

Eij

exp

(
− 2πη(Eij)

)
ΔEincr (4.21)

with Eav
i = (Ei + Ei+1)/2 and Eij = Ei + jΔEincr. ηeffi is the local detection

efficiency in the ith section, and ΔEincr = (Ei+1 − Ei)/j is the energy step
size.

4. Step 2 and 3 are then repeated for section i+1, with initial energy Ei+1.

5. The direct capture S-factor is assumed to be constant over the studied energy
range, and thus it is obtained by dividing the experimentally measured yield
based on number of counts in the ROI by the sum of all partial integrals Ii

S = YExp/
∑
i

Ii (4.22)

6. Finally, the effective energy Eeff corresponding to the half of the yield was
calculated according to Eq. 4.16.

The direct capture component was studied at four beam energies: Eini
p = 188.0,

205.2, 250.1, and 310.0 keV. These energies were chosen so that within the energy
range spanned by the beam in the target chamber no resonance of the 22Ne(p,γ)23Na
reaction was excited.

At the lowest beam energy E ini
p = 188.0 keV (see Fig. 4.25), the beam-induced

background is almost exclusively due to the 11B(p,γ)12C reaction. Apart from the
full energy add-back peak at 16.1 MeV, the 11.6 MeV and 4.4 MeV gammas from the
R → 4438 → 0 transition, and 6.5 MeV peak from the R → 9641 → 0 transition are
also visible. The wide peak around 7.5 MeV is possibly due to a minor contribution
from 14N(p,γ)15O. Based on its Q-value (Q = 7.551 MeV), the 13C(p,γ)14N reaction
is also a possible candidate .

Furthermore, it is worth to note, that for energies higher than 15 MeV, the
matching between the Ne and Ar spectra is less good. The full energy add-back
peak of the 11B(p,γ)12C reaction is somewhat wider for the Ne spectrum than for
the one measured in argon. This could suggest a change in the resolution or the
linearity of detector between the two measurements.

At E ini
p =205.2 keV, in addition to previously described signature from the

11B(p,γ)12C reaction, a peak at 8.2 MeV appears due to the well-known 18O(p,γ)19F
resonance at Elab

p =151 keV [57]. The fact that this resonance only becomes appar-
ent at higher beam energies, suggest that the contamination is not in the gas, but
implanted in either the collimator or the calorimeter. As can be seen in Fig. 4.26,
the region affected by the 18O(p,γ)19F reaction is very close to the 22Ne ROI.

With further increase in the beam energy, at E ini
p =250.1 keV (see Fig. 4.27),

the 19F(p, αγ)16O reaction [58] becomes the dominant source of beam induced back-
ground. Fluorine is a common component of heat conducting pastes, therefore the
19F is most likely localised on the calorimeter. Its resonance at E lab

p = 223.9 keV
populates the level at 13.086 MeV in 20Ne, from where the reaction proceeds with
emission of an α-particle to the 6.130 MeV excited level of 16O. Thus, differently
from the (p, γ) reactions, 19F(p, αγ)16O does not show up at its Q-value (8.114 MeV)
in the add-back spectrum, but registers at 6.1 MeV.
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For the experimental spectrum taken at Eini
p =310.0 keV (see Fig. 4.28), the

beam induced background is determined by the 19F(p, αγ)16O and the 14N(p, γ)15O
reactions. In case of the latter one, not all decays are summed into the add-back
peak and the individual γ-lines at 6.79 and 5.18 MeV are also visible.

As it was described in Sec. 4.1, the beam-induced background was studied in
natAr gas at the same beam energy as with 22Ne gas. However, in case of last
experiment at Eini

p =310.0 keV, the original background spectrum was showing con-
siderably higher levels of 18O contamination, affecting also the experimental ROI.
Therefore, the Ar spectrum had to be discarded. Unfortunately, due to beamtime
constraints the measurement could not be repeated.

On the other hand, it was found that the beam induced background in the
22Ne(p,γ)23Na ROI can be reliably approximated by using another spectrum taken
at E ini

p = 282.6 keV in natAr. This measurement has lower statistics, because it was
originally intended to study the nitrogen content of the natAr gas by exciting the
strong 14N(p, γ)15O resonances at E lab

p = 278 keV. Because of this, the add-back
peak of 14N(p, γ)15O is stronger in the background spectrum. On the other hand,
by looking at Fig. 4.28 it is evident that with respect to the 19F(p, αγ)16O and
11B(p,γ)12C regions the two spectra are properly matched. Moreover, at the higher
edge of the 22Ne(p,γ)23Na ROI a good agreement is achieved between the trend in
the background and 22Ne spectra.

With respect to the low energy edge of the ROI, however, one has to be more
careful, because the 14N(p, γ)15O peak is not properly matched in case of the two
spectra. Consequently, the trend seen in the Ar spectrum might not properly de-
scribe the actual background inside the ROI. Therefore, the number of background
events inside the ROI was also calculated by assuming a constant background based
on the average counting rate on the right hand side of the ROI. The difference be-
tween the two background approximation methods was taken as uncertainty on the
background rate.

The NET counting rates within the 22Ne(p,γ)23Na ROI were used to determine
the corresponding S-factors. Furthermore, one can extend the information on direct
capture to lower energies, by using the results from Sec. 4.2.1 and 4.2.2: Since no
clear evidence was found for the tentative 71 and 105 keV resonances, the yields
can be also interpreted as results of a non-resonant process (direct capture or tail
contribution from wide resonances). In this sense, the obtained upper limits on the
counting rate were used to determine upper limits for the S-factor at the correspond-
ing beam energies. The results are summarized in Table 4.13.

It is important to note, that measured non-resonant yields can be affected by the
tails of broad resonances. Therefore, the contribution of these resonances has to be
subtracted in order to obtain the ”pure” direct capture S-factor. In this respect, the
importance of the Ex = 8664 keV (Ecm

res = −130keV, sub-threshold resonance) and
Ex = 8664 keV (Ecm

res = 35 keV) levels were already pointed out by Görres et al. [40].

Their contribution to the non-resonant cross section was calculated using the
single-level Breit-Wigner formula (see Eq. 1.18), where the energy dependence of
the partial proton Γp and gamma Γγ widths was taken into account and s-wave
resonant capture was assumed. The adopted input parameters are summarised in
Table 4.14. For more details, refer to Appendix A.

Since both states are known to have 1/2+ spin and parity [32,43], the total cross
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Figure 4.25: Experimental spectrum at E ini
p = 188.0 keV
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Figure 4.26: Experimental spectrum at E ini
p = 205.0 keV
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Figure 4.27: Experimental spectrum at Eini
p = 250.0 keV
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Figure 4.28: Experimental spectrum at Eini
p = 310.0 keV. The beam induced back-

ground was taken at Eini
p = 282.6 keV.
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Table 4.13: 22Ne(p,γ)23Na non-resonant S-factor

E ini
p Elab

eff S-factor [keV b]
[keV] [keV] Present, experimental Predicted*

72.1 68.4+3.7
−5.8 ≤ 751674 650 ± 270

74.0 70.2+3.8
−5.8 ≤ 81983 615 ± 250

76.0 72.1+3.9
−5.8 ≤ 87238 580 ± 230

80.3 76.2+4.0
−5.8 ≤ 97779 520 ± 200

105.5 100.8+4.6
−5.2 ≤ 686 320 ± 100

110.5 105.6+4.8
−5.3 ≤ 380 295 ± 90

115.5 110.6+4.9
−5.1 ≤ 186 275 ± 85

188.0 182.9+5.1
−4.5 [104.5 ± 7.6stat ± 8.5sys] 124 ± 32

205.2 200.2+5.0
−4.3 [85.9 ± 3.8stat ± 6.9sys] 108 ± 28

250.1 245.3+4.8
−4.0 [70.1 ± 0.8stat ± 5.6sys] 76 ± 18

310.0 305.5+4.5
−3.6 [53.6 ± 4.8stat ± 4.3sys] 52 ± 12

* based on previous information on broad resonances (Table 4.14)

Table 4.14: Parameters of the resonances near the proton threshold

Ecm
res Görres et al. [40] Assumed here Ref.

-130 keV

Jπ 1
2

+ 1
2

+
[32]

Γγ 4.7± 1.0 eV 5.1± 0.6 eV [32]
C2S 0.30± 0.04 0.58 [59]
θ2 (1)a) 0.68 [60]

35 keV
Jπ 1

2

+ 1
2

+
[32]

Γγ 0.5 eV b) 2.2± 1.0 eV [41]
Γp 6.8× 10−15 eV (3.1± 1.2)× 10−15 eV [41]

a) assumed
b) Γγ0 , with 36± 10 % of the transitions to the ground state
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section was calculated considering interference effects:

σ(E) = σ1(E) + σ2(E) + 2
√
σ1(E)σ2(E) cos(δ1 − δ2) (4.23)

where the quantity δi represents phase of resonance i, determined by its resonance
energy ERi and total width Γi.

δi = arctan
( Γi

2(E − ERi)

)
(4.24)

In Fig. 4.29, the experimentally measured data points are consistent with the
predicted trend of the S-factor within their error bars. The upper limits obtained
around 71 and 105 keV are also in agreement with the predictions. The only ex-
ception is the point corresponding to E lab

eff = 110.6 keV, where the calculated upper
limit is lower then the tail contribution from two low energy resonance discussed
here. This is due to the background issue already discussed in Sec. 4.2.2.

In the measurements by Görres et al. [40] it was found that the observed S(E)
values are nearly energy independent. The data were extrapolated to zero energy
based on the DC model, and a constant S = 62 keV b was suggested. The recent
measurement by Kelly et al. [37] is consistent with this assumption.

The present data are, however, in disagreement with the results by both authors:
The observed non-resonant yields are consistent with the expected tail contribution
from the broad resonances near and under the proton threshold (Ecm

res = 35 and
-130 keV). Therefore, no evidence was found for a direct capture process in the
investigated energy range.

Still, the non-resonant contribution to the total experimental yield from these
broad resonances had to be taken into account during the study of the resonant
yields. Instead of using the predicted total S-factor curve from Fig. 4.29, the ex-
perimental points were fitted with a linear function (see Fig. 4.30). In this way,
the estimation of non-resonant S-factor at different energies relies only on the ex-
perimental results, and no additional uncertainty is introduced due to theoretical
considerations. The ωγ values in Sec. 4.2 have been corrected for the non-resonant
contribution using the following parametrisation:

S = [−0.35± 0.06] + [158.7± 15.7]Ep (4.25)

The necessary correction amounted typically 2% of the observed yield for resonances
at E lab

p = 156.2 , 189.5 and 259.7 keV. In case of the two putative resonances at
E lab

p = 71 and 105 keV, no correction was applied in order to obtain more conser-
vative upper limits on ωγ.
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Figure 4.29: Contributions to the non-resonant S-factor from broad resonances near
the proton threshold. The red curve shows the total contribution from these two
resonances, while the shaded area corresponds to the uncertainty. The recent mea-
surement by Kelly et al. [37] is also shown.
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4.4 Astrophysical reaction rate

In order to fully judge the astrophysical impact of the here derived new upper limits
on the strength of the two tentative resonances at E lab

p = 71 and 105 keV, as well
as the redetermined ωγ of the resonances at Elab

p = 156.2, 189.5 and 259.7 keV, and
last but not least, the new information on the direct capture process, a recalculation
of the thermonuclear reaction rate of 22Ne(p,γ)23Na was necessary. For the higher
energy resonances not discussed here, the most recent ωγ values were adopted from
the literature [30, 34, 35, 39, 41] with preference for direct measurements [34] when-
ever it was possible. A summary of the resonances included in the reaction rate
calculation can be found in Table 4.15.

When studying nuclear fusion reactions, one should consider the fact that in the
laboratory the target nuclei are surrounded by their atomic electron cloud. The
negative charge of the electrons compensates to some degree the positive charge
of the nucleus, which leads to a reduction of the Coulomb barrier experienced by
the incident charged particle. This so called electron screening effect results in
an enhancement of the reaction cross section over the fusion scenario of ”bare”
nuclei [61].

A similar effect occurs in astrophysical scenarios, because reactions in a stellar
environment usually take place in plasma [62]. This results again in an enhancement
of the reaction rate over the ”bare” scenario. Thus, after correcting the experimental
cross sections for the screening of atomic electrons, one has to apply a second (stellar)
correction depending on the electron density of the plasma. The latter quantity
is, however, strongly dependent on the astrophysical scenario used, and thus not
a property of the nuclear reaction. Therefore, only the unscreened thermonuclear
reaction rates are provided as input for stellar model calculations [21,39]. The stellar
enhancement correction is then to be applied by the stellar modeler.

The atomic screening effect is characterised by the screening potential Ue. In the
adiabatic limit [61], Ue is given by the difference between the total electron binding
energy of neutral 22Ne and onefold ionised 23Na. Based on the tabulated electron
binding energies for neutral atoms [63] and the first ionisation energy of 23Na [64],
the screening potenial is estimated to be

Ue = 0.903 keV (4.26)

From Eq. 4.2 it is evident, that at astrophysical energies ωγ is directly propor-
tional to the partial proton width Γp, which depends on the penetrability of the
Coulomb barrier. This latter quantity, for a given energy E and angular momentum
l, is characterised by the penetration factor Pl(E). (For more detail see Appendix A).

The screening potential Ue can be interpreted as a small shift to the original
collision energy E in the centre-of-mass frame, therefore the enhancement of the
resonance strength can be expressed as follows:

f =
ωγmeasured

ωγbare
=

Pl(E + Ue)

E
(4.27)

For low energies, where usually only the l = 0 case plays a role, f can be
approximated as [62]

f =

(
E

E + Ue

)1/2

exp

[
− 2πη(E + Ue) + 2πη(E)

]
(4.28)
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Table 4.15: Input for 22Ne(p,γ)23Na reaction rate calculation. In case of the reso-
nances at E lab

p = 71 and 105 keV, a direct Monte Carlo sampling of the experimental
data was used.

E lab
res Adopted strength ωγ Screening

[keV] [keV b] Ref. factor f

29 ± 3 ≤ 2.6× 10−25 [41]
37 ± 0.7 (3.1± 1.2)× 10−15 [41]
71 ± 5 ≤ 4.5× 10−11 present 1.270
105 ± 5 ≤ 4.8× 10−11 present 1.142
156.2 ± 0.7 (1.84± 0.09)× 10−7 present 1.075
189.5 ± 0.7 (2.28± 0.10)× 10−6 present 1.056
215 ± 10 ≤ 2.8× 10−8 [33] 1.046
259.7 ± 0.5 (8.74± 0.39)× 10−6 present 1.034
291 ± 3 ≤ 2.2× 10−6 [35]
323 ± 3 ≤ 2.2× 10−6 [35]
334 ± 3 ≤ 3.0× 10−6 [35]
369 ± 5 ≤ 6.0× 10−4 [30]
394 ± 3 ≤ 6.0× 10−4 [30]
436 ± 0.8 0.0079± 0.006 [34] 1.015
479 ± 1 0.594± 0.038 [34] 1.013
629.3 ± 0.3 0.03± 0.01 [39]
638.5 ± 0.5 2.45± 0.18 [34] 1.008
660.1 ± 0.5 0.032± 0.017 [34]
724.8 ± 0.8 0.15± 0.05 [39]
850.7 ± 0.2 8.2± 3.0 [39]
896.3 ± 1.0 2.1± 1.1 [39]
900.2 ± 1.0 1.22± 0.59 [39]
919.5 ± 1.0 0.93± 0.31 [39]
928.6 ± 0.4 0.41± 0.12 [39]
947.5 ± 1.0 7.0± 2.4 [39]
980.5 ± 0.13 0.47± 0.13 [39]
1004.6 ± 1.0 2.8± 0.9 [39]
1067.4 ± 0.4 1.0± 0.3 [39]
1088.0 ± 1.0 2.50± 0.69 [39]
1103.2 ± 0.5 2.50± 0.69 [39]
1145.9 ± 0.6 1.7± 0.5 [39]
1173.2 ± 0.6 0.7± 0.19 [39]
1263.4 ± 0.6 1.28± 0.37 [39]
1277.4 ± 0.4 12.2± 1.7 [39]
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One should note that the above equation is not applicable for indirect measure-
ments, therefore in Table 4.15 the parameter f is only quoted for ωγ values which
were obtained in direct experiments. In order to calculate the bare (unscreened)
resonance strengths one has to divide the listed ωγ by f .

Then, the thermonuclear reaction rate of the 22Ne(p,γ)23Na was determined by
a Monte Carlo based approach. The input parameters of the calculation were ran-
domly sampled, where both the resonance energy and strength were assumed to
have a Gaussian distribution except for the putative resonances at 71 and 105 keV.

In case of these two supposed resonances, the triple Poisson approach described
in Sec. 4.2.1 was implemented, instead of directly using the upper limits on ωγ.
Thus, the distribution of the corresponding resonance strengths was determined
based on the observed counting rates. As a second step, these histograms were
randomly sampled to calculate the reaction rate.

In principle, it would have been more conservative to adopt the upper limits
based on the Rolke approach [54] (see Tables 4.5 and 4.7). However, this would have
made the random sampling of the input parameters problematic for the resonances
at 71 and 105 keV, because the Rolke upper limit does not provide any information
on the uncertainty of the ωγ.

For each temperature the sampling was repeated 10000 times, and the total
resonant reaction rate NA〈σv〉R was calculated using the formula from [21]

NA〈σv〉R =
1.5399× 105

(μT9)3/2

∑
i

ωγi exp

[
− 11.605

Eres
i (cm)

T9

]
(4.29)

where T9 is the temperature in GK, μ reduced mass in atomic mass units, Eres
i (cm)

the resonance energy in MeV of resonance i, and ωγi the corresponding resonance
strength in eV, after correction for electron screening in the laboratory as described
above.

Since in the previous chapter it was found that the direct capture contribution
to the total cross section is negligible at low energies, the non-resonant part of
the reaction rate NA〈σv〉NR was estimated based on the sub-threshold resonance at
Ecm

R = −130 keV (blue curve in Fig. 4.29). It is important to note, that the contribu-
tion to the S-factor due to the tail of the resonance at Ecm

R = 35 keV (E lab
p = 37 keV)

is not considered here, because it is included as a resonance in the reaction rate.
NA〈σv〉NR was then determined using the following numerical expression from

[40]

NA〈σv〉NR = 17.083× 109S(E0)T
−2/3
9 exp

[
− 19.478T

−1/3
9

]
(4.30)

where the integration over the Gamow peak is already done. Therefore, the S-factor
has to be evaluated for each temperature T9 at the corresponding E0 Gamow-energy
(see Eq. 1.15). As a conservative estimate ±40% uncertainty was assigned to the
S-factor, following the approach of [30, 38, 39].

The resulting total reaction rate NA〈σv〉 = NA〈σv〉R +NA〈σv〉NR is shown in
Fig. 4.31. For each temperature, low, median and high rate values were determined
based on the 0.16, 0.50 and 0.84 quantiles of the probability density function for the
total rate. Following the approach used in the determination of the LUNA-HPGe
reaction rate [38], the low rate for the tentative resonances at Elab

p = 71, 105 and
215 keV was set to zero with uncertainty zero. This assumption is also consistent
with the STARLIB-2013 compilation [39].
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In Fig. 4.32, the obtained reaction rate is shown normalised to the recommended
rate from STARLIB-2013 [39]. The individual contributions to the total reaction
rate are also shown separately: At the lowest temperatures, the rate and its un-
certainty are determined by the resonance at E lab

p = 37 keV. The considerable in-
crease in the rate uncertainty for the temperatures 0.04 ≤ T9 ≤ 0.1 is due to the
71 keV resonance, while the contribution of the 105 keV resonance is nearly neg-
ligible. The non-resonant rate due to the presence of the sub-threshold resonance
Ecm

res = −130 keV also peaks around 0.8 GK, followed by a decreasing trend towards
higher temperatures.

The following temperature region 0.1 ≤ T9 ≤ 0.2 is determined by the resonances
at 156.2 and 189.5 keV. Interestingly, the 259.7 keV resonance, which is the strongest
among the here measured resonance, has only a moderate contribution. At even
higher temperatures, resonances at 436, 479 and 638.5 keV play the major role.
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Figure 4.31: 22Ne(p, γ)23Na thermonuclear reaction rate calculated with the reso-
nance strengths listed in Table 4.15
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4.5 Error analysis

In this section the various uncertainties propagating into the final resonance strength
(Eq. 4.2) and S-factor values (Eq. 4.17) are discussed. Statistical and systematic
sources of uncertainty are considered separately during the analysis, and a summary
is given in Table 4.16 and 4.17.

4.5.1 Statistical uncertainties

As it is evident from Eq. 4.2 and 4.17, the yield is the directly measured quantity in
case of the resonant and non-resonant capture reactions. Therefore, the statistical
uncertainties are concentrated in the yield.

1. Peak area

The uncertainty on the integrated number of events in the experimental ROI
was estimated based on Poisson statistics. In case of the beam induced back-
ground, the uncertainty of the normalisation to spectra taken in 22Ne was also
included in the error budget. This later quantity was estimated based on the
integrated number of counts in ROI 11-18 MeV in the spectra. (In the special
case of the 71 and 105 keV resonances, only upper limits were derived on the
counting rate, therefore this uncertainty is not applicable, see Sec. 4.2.1).

2. Charge / Beam current

Due to the calorimetric measurement method adopted, the beam current is
determined according to Eq. 3.3. Its uncertainty depends on the following
three underlying quantities:

• The deposited beam power Wbeam = W0 − WI was assigned a 0.2 Watt
uncertainty, conservatively reflecting twice the statistical fluctuations af-
fecting the measurements of W0 and WI .

• The precision of the beam energy at the calorimeter Ecal = Eini
p −ΔE is

mainly limited by the uncertainty on the energy loss ΔE in the target
gas, since the energy spread of the initial beam energy E ini

p amounts
less than 0.1 keV. The calculation of the energy loss with respect to
the current measurement was based on Eq. 3.2.3. The reference target
density and the effective target length were considered with 1.4% and
3.4% uncertainties respectively. Last but not least, the stopping power
values from SRIM [56] have 1.7% uncertainty. Considering all theses
components in quadrature, the beam energy loss ΔE was known at 4%
level of precision. The total relative uncertainty of Ecal was about 1%
depending on the beam energy.

• Uncertainty due to the calorimeter calibration is considered systematic,
see below.

The statistical uncertainty of the charge / beam current was less than 2%,
with exception of the resonance at 71 keV.
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4.5.2 Systematic uncertainties

In case of the systematic uncertainties, one should differentiate between the ωγ and
S-factor measurement, however, the first two sources of uncertainty were common
for both cases:

1. Calorimeter calibration

Due to the calibration of the calorimeter (see Eq. 3.2.2), there was an addi-
tional 1% systematic uncertainty in the integrated charge.

2. Add-back efficiency

The uncertainty of the detector efficiency originates from two sources: The
modelling of the BGO detector, and the branching ratios which are adopted
for the determination of the add-back efficiency.

• The simulation was able to reproduce the efficiency measurement with
point-like sources (see Fig. 3.16). The overall agreement was on the level
of 4%.

• The uncertainty of the simulated add-back detection efficiency due to the
decay scheme of the level under study was estimated based on different
sets of branching ratios (see Tables 4.4, 4.8, 4.9, 4.10, and 4.12). This
contribution was mainly important for the putative resonances at 71 and
105 eV, and direct capture process, amounting to 21%, 22%, and 5.7%
respectively. For resonances at 156.2, 189.5 and 259.7 keV, the uncer-
tainty in detection efficiency due to the branching ratios was less than
1.5%.

3. Stopping power

The stopping powers were adopted from the SRIM compilation [56], thus their
1.7% uncertainty was considered as systematic uncertainty in the calculation
of ωγ.

4. Resonance energy

The uncertainty of the resonance energy also affects the final value of ωγ via
the de Broglie-wave length λr in Eq. 4.2. In case of the known resonances
at 156.2, 189.5, and 259.7 keV, the resonance energies and their uncertainties
were adopted from LUNA-HPGe phase [38, 50].

5. Beam energy

The initial beam energy represents the upper limit of the non-resonant yield
integration (Eq. 4.17). The systematic uncertainty of the beam energy was
0.3 keV, while the statistical uncertainty due to the beam spread was about
0.1 keV [46], adding up to a total 0.3 keV uncertainty. The non-resonant yield
was thus also evaluated for the nominal beam energy ±0.3 keV, and the half
of the difference between the two values was taken as beam energy dependent
uncertainty in the final S-factor.
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6. Density profile

The adopted density profile along the path of the beam plays an important
role, because in case of non-resonant capture, the reaction can occur not only
inside the target chamber, but also in the collimator and in the interconnection
tube. The sensitivity of the S-factor on the density profile was tested by
successively adopting three different density profiles. Moreover, one has to
take into account variations in the room temperature, which result in a shift
of the overall density profile. The overall uncertainty was estimated to be
3.4%.

7. Beam heating correction

The beam heating effect plays an important role in the proper determination
of the non-resonant yield. The uncertainty associated with the necessary beam
heating correction (Eq. 3.2.4) amounted to 1.1− 1.3%

Table 4.16: Overview of the statistical and systematic uncertainties for the resonance
strengths

Statistical Systematic
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Total

71 - 4.0% 1.0% 21.0% 1.7% 7.0% 22.9%
105 - 1.4% 1.0% 22.0% 1.7% 4.8% 22.8%
156.2 1.9% 1.0% 1.0% 4.2% 1.7% 0.4% 5.1%
189.5 0.3% 0.9% 1.0% 4.0% 1.7% 0.4% 4.6%
259.7 0.1% 0.4% 1.0% 4.0% 1.7% 0.2% 4.5%
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Table 4.17: Overview of the statistical and systematic uncertainties for the derived
S-factors

Statistical Systematic
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Total

182.8 7.2% 0.7% 1.0% 7.0% 1.7% 3.4% 1.1% 10.9%
200.1 4.3% 1.0% 1.0% 7.0% 1.5% 3.4% 1.3% 9.3%
245.2 1.1% 0.5% 1.0% 7.0% 1.1% 3.4% 1.2% 8.1%
305.6 9.0% 0.4% 1.0% 7.0% 0.8% 3.4% 1.1% 12.0%
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Chapter 5

Study of the pp-chain with the
help of solar neutrinos

The Sun serves as the primary source of general information on all stars. Without
a correct description of our own Sun, we cannot hope to achieve a general under-
standing of the stellar nucleosynthesis and energy generation.

Being a G-type main sequence star with effective surface temperature of approx-
imately 6000 K, the Sun sustains itself against gravitational collapse by converting
hydrogen into helium in its core. As it was already mentioned in the Chapter 1,
there are two different modes of hydrogen burning: the pp-chain and the CNO-cycle
(see Fig. 1.3 and 1.4). In case of our Sun, the presence of heavier elements in the
solar interior makes in principle both processes possible. However, due to the mod-
erate core temperature of Tc = 16× 106 K (or T9 = 0.016 as it will be denoted here)
the CNO-cycle is highly inefficient in the Sun. Therefore, approximately 99% of
hydrogen fusion takes place via the pp-chain.

On the other hand, the astrophysical relevance of the pp-chain extends beyond
the scope of stellar nucleosynthesis: some of the same reactions which allow a rela-
tively slow conversion of hydrogen into helium in stars were also active during the
Big Bang, setting the primordial abundances of the light elements.

Despite their paramount importance, a direct experimental study of these reac-
tions is not feasible at energies relevant to the Sun. Thus, one has to extrapolate
the trend of the astrophysical S-factor to the solar Gamow peak based on the data
obtained at higher energies. Unfortunately, such extrapolations are not without am-
biguities, often leading to considerable uncertainties in the resulting thermonuclear
reaction rate.

Fortunately, neutrino astronomy opened up new possibilities to gather informa-
tion on the solar interior. Both pp-chain and CNO-cycle give rise to several branches
of solar neutrinos (see Fig. 5.1), providing a way to probe our understanding of the
Sun, and the underlying nuclear processes. Based on this idea, in late 1960s Davis
built an ambitious experiment in the Homestake Gold Mine (South Dakota, USA).
The detection of solar neutrinos was based on their capture process on the 37Cl
isotope:

νe + 37Cl → 37Ar + e− (5.1)

At first it seemed, that something is completely wrong, because the theoretical
description of our Sun developed by Bahcall, known as the standard solar model [65]
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Figure 5.1: Energy spectrum of solar neutrinos from the SSM - adopted from
arXiv:1405.7919

predicted approximately three times higher flux for the neutrinos [66] than it was
actually observed by Davis [67] in the experiment. This puzzling finding became
known as the solar neutrino problem. The solution for the missing neutrinos was
provided by the discovery of neutrino flavour oscillations.

Since the 1960s, a number of new neutrino experiments has been built around the
globe, and great precision has been reached in the detection of neutrinos originating
from the decay of 7Be and 8B isotopes produced in the pp-chain. The Sudbury
Neutrino Observatory (SNO) reports a 8B solar neutrino flux of

φexp
B = 5.25± 0.16 (stat)+0.11

−0.13 (sys)× 106cm−2s−1 (5.2)

taking into account the loss in the amount of electron neutrinos due to the mixing
among the neutrino families [68]. This is equivalent to 3.9% precision (systematic
and statistical uncertainties combined in quadrature) and consistent with the deter-
mination made by Super-Kamiokande [69].

The flux of 7Be neutrinos was measured by BOREXINO [70], resulting in a value
of

φexp
Be = 4.75+0.26

−0.22 × 109cm−2s−1 (5.3)

with 5.5% total uncertainty.
With this level of precision, the experimental fluxes of 7Be and 8B neutrinos

can be used to directly constrain the S-factor of the underlying 3He(α,γ)7Be and
7Be(p, γ)8B reactions.

5.1 S-factor of the 3He(α,γ)7Be reaction

A number of recent determinations are available considering the S-factor of the
3He(α,γ)7Be reaction (denoted as S34(E) hereafter) at E > 0.3MeV [71–76]. How-
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3He+ 4He→ 7Be+γ

7Be+ e- → 7Li+υe
7Be+ p→ 8B+γ

7Li+ p→ 2 4He 8B→ 8Be* + e+ +υe

8Be→ 2 4He

99.89 % 0.11 % 

pp-II pp-III 

Figure 5.2: The 3He(α,γ)7Be reaction and resulting two branches of solar neutrinos

ever, as it is evident from Fig. 5.3, this abundance of recent experimental data covers
only the upper third of the relevant energy range. At lower energy, the exceedingly
low cross section is a challenge for experimentalists. As a consequence, recent data
for E ≤ 0.3MeV are available only from one experiment [77], performed by the
LUNA collaboration.

It should be noted that S34(E) data reported in the period from the 1950s to
the 1980s [78–84] are omitted from the present discussion, following the approach of
a recent review [85]. These data [78–84] are usually less well documented than the
more recent works [71–77] and have larger error bars.

The pressing need for low-energy data on S34(E) is addressed here based on the
fact that actually the solar Gamow peak is rather narrow (see Fig. 5.3). This allows
the determination of S34(E

Sun
Gamow) from NA〈σv〉34(T Sun) considering the latest solar

neutrino data. The new data point then can be used to constrain the trend of the
S-factor at energies corresponding to the BBN, thus place a better estimate on the
primordial 7Li production. A related idea has previously been explored by Cyburt
et al. a decade ago [87]. That work was based on the neutrino data available
at the time from the Sudbury Neutrino Observatory (SNO), and on the WMAP
cosmological survey.

5.1.1 Determination of S34 at the solar core temperature

The approach presented here has the advantage that it does not require detailed solar
model calculations. Instead, the already mentioned standard solar model developed
by John Bahcall and co-workers is used, hereafter called SSM. The SSM uses a
number of input parameters, including the solar age, luminosity, opacity, diffusion
rate, the key thermonuclear reaction rates (herein called Ri, where i denotes the
nuclear reaction under study), and the zero-age abundance of important elements
(He, C, N, O, Ne, Mg, Si, S, Ar, Fe).

A change in one or several of these input parameters may cause a change in the
predicted neutrino fluxes. The sensitivity of flux φi for a variation in an arbitrary
parameter βj can be expressed by the logarithmic partial derivatives α(i, j) given
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Figure 5.3: Experimental cross section of the 3He(α,γ)7Be reaction, parameterized
as the astrophysical S-factor. The present new data point (red triangle) is plotted
together with previous experimental data [71–77]. The previous theoretical curve
(dashed blue curve, [86]), and the present new extrapolation (red curve, shaded
area for the uncertainty) are shown. The solar Gamow peak and the relevant energy
range for BBN are displayed at the lower end of the plot.
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by the following relation:

α(i, j) =
∂ln[φi/φ

SSM
i ]

∂ln[βj/βSSM
j ]

(5.4)

where φSSM
i and βSSM

j represent the best theoretical values from the SSM. The partial
derivatives for the various SSM input parameters are available in tabulated form in
the most recent SSM publication by Serenelli et al. [88] (see Table 5.1).

With help of these logarithmic partial derivatives one can approximate relatively
small changes in the neutrino flux as a simple power law:

φi

φSSM
i

=
N∏
j

( βj

βSSM
j

)α(i,j)

(5.5)

The parameter of interest in the present work is the thermonuclear reaction rate
of the 3He(α, γ)7Be reaction, here denoted as R34. Its strong effect on the 7Be and
8B neutrino fluxes is clearly reflected in partial derivatives that are close to unity:
α(Be, S34) ≈ α(B, S34) ≈ 0.8.

Now, by fixing all parameters except for R34 at their SSM best-fit value, Eq. (5.5)
is shortened to:

φexp
Be

φSSM
Be

=

(
Rν,Be

34

RSSM
34

)α(Be,SSSM
34 )

(5.6)

when using the experimental flux of 7Be neutrinos φexp
Be . An analogous relation can

be obtained based on the 8B neutrino flux φexp
B .

Solving for the thermonuclear reaction rate R
ν,Be/B
34 , the following two relations

are obtained:

Rν,Be
34 =

( φexp
Be

φSSM
Be

)α−1(Be,S34)

RSSM
34 (5.7)

Rν,B
34 =

( φexp
B

φSSM
B

)α−1(B,S34)

RSSM
34 (5.8)

It is important to note, that the nuclear reaction rate R34 used for Equations (5.6-
5.8) applies to a certain range of temperatures. The emission of 7Be neutrinos is
known to originate from a narrow burning zone at the center of the Sun, at radii
below 0.15R� (where R� is the solar radius), with a temperature T9 = 0.011-0.016,
close to the nominal central temperature. The 8B neutrino emission originates from
an even narrower burning zone, below 0.10R�.

Therefore, it can be assumed that to good approximation the relevant tempera-
ture for the 3He(α,γ)7Be reaction is the central temperature of the Sun, T9 = 0.016.
Thus, equations (5.6-5.8) apply to the nuclear reaction rate in the energy range of
the solar Gamow peak (Fig. 5.3). The value of the reaction rate at energies that lie
outside the Gamow peak does not affect solar fusion.

Table 5.1 lists the most important logarithmic partial derivatives α(Be/B, j) dis-
cussed here. In addition, the table also includes the contribution of each parameter
to the SSM error budget. Values and errors are taken from the recent SSM paper
by Serenelli et al. [88]. Two parameters merit a more detailed discussion:

First is the elemental composition of the Sun. It has undergone a significant
revision from the GS98 [89] to the AGSS09 [90] abundance compilations. The
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Table 5.1: Logarithmic partial derivatives α(Be, j) and α(B, j), as defined by
Eq. (5.4) and their contributions to the total uncertainty of the predicted SSM
flux. Values and uncertainties are taken from [88], except for the solar composition
(see text).

Parameter α(φBe, j)
ΔφBe

φBe
(%) α(φB, j)

ΔφB

φB
(%)

Luminosity 3.434 1.4 6.914 2.8
Opacity 1.210 3.0 2.611 6.5
Age 0.760 0.3 1.345 0.6
Diffusion 0.126 1.9 0.267 4.0
R11 - p+p -1.024 1.0 -2.651 2.6
R33 - 3He +3He -0.428 2.2 -0.405 2.1
R34 - 3He +4He 0.853 (4.6) 0.806 (4.3)
R17 - p +7Be - - 1.000 7.7
Re7 - e +7Be - - -1.000 2.0
Composition* - 4.6 - 9.7

Total uncertainty 6.5 15.3

determination of the abundance of a given element requires the modelling of the
related absorption lines in the solar spectrum thus modelling the solar atmosphere.
In the time interval from 1998 to 2005/2009, the modelling of the solar atmosphere
was updated from a one-dimensional, time-independent, hydrostatic [89] to a three-
dimensional, time-dependent hydrodynamical model [90].

The adoption of three-dimensional modeling in AGSS09, however, led to a sig-
nificant downward revision of the abundances of the so-called ”metals” - the name
given in solar physics to all elements that are heavier than helium. The mass frac-
tion Z for ”metals” in the Sun changed from 0.0169 [89] to 0.0134 [90]. The carbon
and nitrogen abundances decreased by 19%, and the oxygen abundance even by 28%
from GS98 to AGSS09.

These significant revisions in the abundances of important elements lead to a con-
tradiction between SSM predictions and helioseismological observations [91], when
the new abundances are incorporated in the SSM. For the present purposes, the
problem of the elemental abundances must be set aside. This is accomplished by
adopting the average of the two different SSM predictions (the first one based on
GS98, the second one based on AGSS09) as value, and half the difference as uncer-
tainty (Table 5.2). In this manner, within their 1σ error bars the present conclusions
apply to both the GS98 and AGSS09 elemental abundances.

Second is the astrophysical reaction rate of the 3He(α,γ)7Be reaction, R34. The
value of R34 taken in the SSM calculations followed here [88] is the recommended
curve by the ”Solar Fusion cross sections II” review [85]. However, in order to avoid
double counting, the uncertainty of R34 is left out when computing the total uncer-
tainty (Table 5.1). Instead, this parameter and its uncertainty are re-determined
here based on all the other parameters.

With these two modifications, the total uncertainty of the flux prediction is 6.5%
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Table 5.2: Predicted solar neutrino fluxes from the SSM for two different elemental
abundances, taken from [88]. The average adopted here includes both results with
its error bar.

Elemental comp. φ(7Be) φ(8B) Ref.

GS98 [89] 5.00 5.58 [92]
AGSS09 [90] 4.56 4.59 [92]
Average 4.78 ± 0.22 5.09 ± 0.49 Adopted here

for φSSM
Be and 15.3% for φSSM

B . If one were to select just one of the two solar elemental
compositions, the total error would decrease to 4.5% and 11.9%, respectively.

The thermonuclear reaction rate R34 is directly proportional to the astrophysical
S-factor S34 (Eq. 1.14) in the relevant energy range. Therefore, one can express the
same equation (see Eq. 5.7 and 5.8) also with S34. As the best SSM recommendation
for the S-factor, the ”Solar Fusion II” parametrization was accepted [85]. The new
S34(Egamow) is found to be

S
7Be
34 (23+6

−5 keV) = 0.548± 0.054 keV b (5.9)

S
8B
34 (23

+6
−5 keV) = 0.58± 0.11 keV b (5.10)

The two data points are in good agreement with each other. Most of the contri-
butions to the error budget that are common to both data points are from factors
such as the elemental abundances that affect both the 7Be and 8B fluxes in the
same direction, and at the same time affect the 8B-based result more strongly than
the 7Be-based one. Therefore, an averaging of the two numbers actually leads to
a higher total uncertainty than the error bar of the 7Be-based value. Therefore,
S

7Be
34 (23+6

−5 keV) is adopted as the final result here.

5.1.2 Implications for the BBN reaction rate and produc-
tion of 7Li

As can bee seen in Fig. 5.3, the S
7Be
34 (23+6

−5 keV) value confirms that the shape of the
”Solar Fusion II” recommended S-factor curve is correct at low energy . However,
the present new data point cannot be directly compared to the theory curve by Neff,
which does not extend to such low energies for numerical reasons [86].

As a next step, the combined analysis of all experimental data points is car-
ried out, repeating the approach of ”Solar Fusion II” but adding the present new
neutrino-based data point and the new data set from the University of Notre Dame
that became available in the meantime [76]. The same analytical function as in
”Solar Fusion II” is again used here, namely

S34(E) = S34(0) exp(−0.580E)(1− 0.4054E2 + 0.577E3 − 0.1353E4) (5.11)

This curve is based on the microscopic model by Nollett (Kim A potential) [95]
and was already used for fitting the experimental data [85]. For the analysis, each
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Table 5.3: Determination of S34(0) from recent experimental data, using Eq. (5.11)
as fit function. See text for details.

Reference S34(0) [keV b] Inflation factor

Weizmann [71] 0.538±0.015 1.00
LUNA [77,93,94] 0.550±0.017 1.06
Seattle [72] 0.598±0.019 1.15
ERNA [73] 0.582±0.029 1.03
Notre Dame [76] 0.593±0.048 1.00
Present work 0.556±0.055 1.00

Combined result 0.561±0.011 1.32

experimental data set [71–73,76,77, present] was fitted with this analytical function
(5.11) in the energy range 0≤ E ≤1.002 MeV, and a value of S34(0) is then found
for this particular data set.

The data from Madrid and from ATOMKI [74, 75] are excluded, because for
those two cases all of the data points fall outside the energy range of applicability
of Eq. (5.11). However, these data [74, 75] are in good agreement with other data
sets which include data points both in the Madrid/ATOMKI energy range and in
the range of applicability of the fit [73, 76]. Therefore, no bias is introduced by the
necessary omission of Refs. [74, 75]. For each fitted data set, an inflation factor is
determined from the goodness of the fit to the data, again following ref. [85].

The resulting S34(0) values for each data set are then again fitted together in
order to obtain one combined value. As it can be seen, all the previous experimental
data [71–73,76,77] lie near the recommended new curve (Fig. 5.3) with

S34(0) = 0.561± 0.014stat keV b (5.12)

where the uncertainty was obtained by multiplying the raw uncertainty resulting
from the fit with the inflation factor. This can be compared with the ”Solar Fusion
II” result of S(0) = (0.56± 0.02stat ± 0.02syst) keVb [85].

In ”Solar Fusion II”, the systematic uncertainty results from the extrapolation
from the energies where many different experiments are available to the solar Gamow
peak. For the purposes of BBN, instead of an extrapolation only an interpolation is
needed (Fig. 5.3). Therefore, this latter error bar can be omitted here.

This result is lower than S34(0) = 0.580±0.043 keVb, the previously evalu-
ated value by [96] that has been used in several BBN calculations [97–99]. When
converting to the peak of the BBN sensitivity range, from the present work a
value of S34(226 keV) = 0.485±0.012 keVb is found, very close to the previous
0.487±0.036 keVb [96] but more precise.

The increase in precision is due to three factors. First, the adoption of the ”Solar
Fusion II” approach that gives prominence to the fact that S34(E) has been measured
in a number of independent precision experiments, with mutually consistent results.
Second, the addition of new data points, including the present one, since 2008.
Third, the theory error used in ”Solar Fusion II” is not applicable here, as no
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Figure 5.4: Thermonuclear reaction rate of the 3He(α, γ)7Be reaction, relative to the
present rate, by Kontos et al. (black dashed curve, [76]) and by Cyburt et al. (blue
dot-dashed curve, [96]). The analytical fit function from Eq. (C.1) is also shown
(red full curve).

extrapolation is needed.

The S-factor curve resulting from the combined fit described in the previous
section (Fig. 5.3) has subsequently been used to compute the thermonuclear reaction
rate R34 for its range of applicability, i.e. for 0.001 ≤ T9 ≤ 1.0, which includes the
relevant temperature range for BBN (see Fig. 5.4). The range is estimated here by
measuring the effect of a small change in the assumed S-factor at one given energy
on the final 7Li abundance at the end of BBN, following the approach of Nollett and
Burles [100]. The relevant energy range is found to be E = 0.1-0.5 MeV (Fig. 5.3),
which is consistent with the previous result [100]. Subsequently, also the relevant
temperature range for 7Be production in BBN is determined by arbitrarily setting
R34 to zero above a certain temperature, resulting in T9=0.30-0.65, if a relevant
effect is defined as a 2.5% contribution on the 7Be yield. When converting these
temperatures to Gamow energies, the resultant relevant energy range is consistent
with the one based on the Nollett and Burles [100] approach, adopted here.

For higher temperatures T9 > 1.0, the conclusions depend on the slope of the
excitation function above 1MeV. Different theoretical papers give different slopes
for E > 1MeV [86, 95, 101, 102]. However, this temperature range is irrelevant for
BBN, and thus excluded from consideration here. The tabulated reaction rate and
an analytical fitting function can be found in the Appendix C.

The new rate was then used as input in the PArthENoPE BBN code [103].
Among publicly available codes [103, 104], PArthENoPE incorporates the most re-
cent reaction rate data. Besides the rate of the 3He(α, γ)7Be reaction, the baryonic
density (Ωbh

2), and the lifetime of the neutron (τn) are also important parameters.
Therefore, the PArthENoPE code was updated based on the most recent measure-
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ments by the Planck mission [105]

Ωbh
2 = 0.02205± 0.00028 (5.13)

and the latest recommendation from the Particle Data Group [106]

τn = 880.3± 1.1 s (5.14)

It is worth to note, that the lifetime of the neutron varied considerably (878-885 s)
in the last years. Fortunately, the primordial 7Li abundance is far more sensitive for
changes in the other two parameters.

With these parameters the resulting BBN lithium abundance was found to be

7Li/H = 5.0× 10−10 (5.15)

By repeating the BBN calculation with the upper and lower limits given by the
error on R34, it is found that the present 2.5% error for R34 contributes just 2.4%
uncertainty to the error budget of 7Li/H. This value is to be compared with a
previous contribution of 5.3% that can be estimated by using the previous R34

error [96] and the previous correlation coefficient [99]. The total uncertainty of
7Li/H has previously been estimated to be 8% [99]. When subtracting the previous
R34 contribution in quadrature and adding the present, new R34 contribution, a new
total relative uncertainty of 6% can be estimated for 7Li/H, leading to a final value
of 7Li/H = (5.0± 0.3)× 10−10. However, this estimated total uncertainty still needs
to be borne out in a full BBN calculation re-analysing in detail also the error budget
contributions by parameters other than R34.

The present 7Li/H value is well above the so-called Spite plateau of lithium
abundances [107], and even further above the lithium values or limits found in
extremely metal-poor stars [108, e.g.]. The recent predicted lithium isotopic ratio
[109] does not change outside the error bar with the present new 7Li/H result, it
remains 6Li/7Li = (1.5±0.3)×10−5.

5.2 S-factor of the 7Be(p, γ)8B reaction

The 7Be(p, γ)8B reaction is the leading reaction of the pp-III branch of hydrogen
burning in the Sun [85]. Its contribution to the total 4He and energy production is
very small, but a branch of solar neutrinos emerges from the decay of 8B [110–112].
The flux of these neutrinos is well-measured (see Eq. 5.2). Moreover, a number of
recent experimental determinations of S17(E) are available at E > 100 keV [113–122]
(see Fig. 5.5). However, the energy of the solar Gamow window, which lies near 20
keV, was not reached by any of the experiments.

The lack of experimental data in the low-energy region can be addressed with the
help of the experimentally measured flux of solar neutrinos, taking advantage of the
fact that the 7Be(p, γ)8B reaction governs the production of the 8B solar neutrinos.
In the previous chapter, the aim was to constrain the primordial production of 7Li
by determining the thermonuclear reaction rate of 3He(α,γ)7Be at energies relevant
to the BBN. From this reason the exact knowledge of the central temperature of
the Sun played a less important role in the analysis, and it was assumed to be
T9 = 0.016.
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Figure 5.5: Experimental cross sections of the 7Be(p, γ)8B reaction, parametrized as
the astrophysical S-factor.

In contrast to this, the present chapter provides an evaluation of the S-factor
of the 7Be(p, γ)8B reaction with emphasis on the Sun. Consequently, the question
of the solar core temperature requires a more careful treatment. With respect to
the SSM, Tc is not an input parameter, but a result of the calculation, determined
by more fundamental parameters of the model. Nevertheless, its value is strongly
correlated with other output parameters of the model calculation, such as the solar
neutrino fluxes [123]:

φ(7Be) ∝ T 11
c (5.16)

φ(8B) ∝ T 25
c (5.17)

As it can be seen, the correlation is significantly stronger for 8B, than for 7Be.
From this reason, instead of adopting the method used in the previous chapter, a
modified approach, proposed by Serenelli et al. [88], is used here.

The easiest way to decrease this strong (φi ∝ Tc
ai) dependence on the Tc is to

take Eq. (5.5) for two different branches of solar neutrinos and form a weighted ratio
of them: φ1/φ

b
2, where the exponent b can be approximated as b ≈ a1/a2. However,

one has to take into account the correlations between the neutrino fluxes φ1 and
φ2 [88]. Therefore, b is to be determined by minimizing the dependence of the flux
ratio on the net logarithmic derivatives instead [124].

The parameter of interest in the present work is the S-factor of the 7Be(p, γ)8B
reaction, here denoted as S17. By using the corresponding logarithmic partial deriva-
tives from Table 5.4, one finds the following relation (where all S-factors are con-
sidered as normalized to their SF-II recommended value):
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φexp
Be

φSSM
Be

/[
φexp
B

φSSM
B

]0.465
=
[
L0.219O0.002A0.135D−0.004]
× [

S0.209
11 S−0.24033 S0.478

34 S−0.46517 S0.465
e7 S−0.004114

]
× [

x−0.011C x−0.002N x−0.003O x0.004
Nr x0.007

Mg x0.015
Si x0.011

S x0.003
Ar x−0.026Fe

]
(5.18)

The right hand side of the equation is dominated by the nuclear input parameters,
while the influence of the solar elemental composition was effectively eliminated.
Solving for the astrophysical S-factor S17, the following relation is obtained

S17 = S1.028
34 Se7

[
S0.449
11

S0.516
33

]
F 2.151
SSM

φexp
B

φSSM
B

/[
φexp
Be

φSSM
Be

]2.151
(5.19)

where the remaining contributions from non-nuclear parameters were collected into
FSSM

FSSM =
[
L0.219O0.002A0.135D−0.004]
× [

x−0.011C x−0.002N x−0.003O x0.004
Nr x0.007

Mg x0.015
Si x0.011

S x0.003
Ar x−0.026Fe

]
(5.20)

and the negligible dependence on S114 was disregarded.
With respect to the nuclear input in Eq. 5.19, the S-factors of the 3He(α, γ)7Be

and 3He(3He,2p)4He reactions come with the largest uncertainties. However, due
to the difference in their exponent, the nuclear error budget is dominated by S34.
Originally this uncertainty was estimated 5.4% by [88], however, this value can be
reduced by extending the compilation of ’Solar Fusion II” [85] with the most recent
experimental data from the University of Notre Dame [76]. Unfortunately, the result
from the previous chapter cannot be used, because it would introduce a circular logic
into the evaluation.

By following the same fitting approach as in [85] to obtain S34(0) , one finds:

S34(0) = 0.561± 0.014expt ± 0.02theor (5.21)

where the experimental error includes both statistical and systematic uncertainties
related to the experiments, while the theoretical error arises from the fact the ex-
perimental results had to be extrapolated to the solar Gamow peak with the help
of a theoretical model. This means that the total uncertainty on S34 is reduced to
4.3%. Adding this value in quadrature to the uncertainty of S11, S33 and Se7, the
total nuclear contribution to the error budget amounts to 5.6%.

Last, one has to take into account the solar neutrino flux observations. At the
first, one may expect that this part of the total error budget is mainly governed by
the 8B neutrino flux, due to its direct link to the 7Be(p, γ)8B reaction. In reality
however, the dominant role is played by the 7Be neutrino flux via the preceding
3He(α, γ)7Be reaction. This is reflected in its exponent of 2.151, which consider-
ably inflates the 5.5% uncertainty of 7Be neutrino flux. Therefore, this part of the
equation will contribute 12.5% towards the total error.

107



Table 5.4: Estimated 1σ uncertainties of SSM model parameters and computed
logarithmic partial derivatives for the φBe/φ

0.465
B ratio as defined by Eq. (5.4). The

logarithmic partial derivatives for φBe and φB (listed in Table 5.1) are repeated
here. The values are taken from [88], except for the uncertainty of S34, which was
calculated based on Table 5.3. See the text for details.

Parameter βj
Δβj

βj
(%) α(φBe, j) α(φB, j) α( φBe

φ0.465
B

, j)

Luminosity 0.4 3.434 6.914 0.219
Opacity 2.5 1.210 2.611 0.002
Age 0.44 0.760 1.345 0.135
Diffusion 15.0 0.126 0.267 -0.004
S11 - p+p 1.0 -1.024 -2.651 0.209
S33 - 3He +3He 5.2 -0.428 -0.405 -0.240
S34 - 3He +4He 4.3* 0.853 0.806 0.478
S17 - p +7Be 7.7 0.000 1.000 -0.465
Se7 - e +7Be 2.0 0.000 -1.000 0.465
S114 - p +14N 7.5 -0.001 0.007 -0.004
C 24.6 0.002 0.027 -0.011
N 24.6 0.001 0.007 -0.002
O 35.0 0.062 0.139 -0.003
Ne 45.3 0.055 0.109 0.004
Mg 11.8 0.050 0.092 0.007
Si 11.8 0.104 0.192 0.015
S 13.8 0.076 0.140 0.011
Ar 34.9 0.019 0.035 0.003
Fe 11.8 0.207 0.502 -0.026
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Summing up the contributions of all three main sources of error, one finds that
the method followed here provides an estimate on S17 with total uncertainty of
13.7%.

Despite the fact the most of the dependence on the solar elemental abundance
was removed from Eq. 5.19, the result is still slightly influenced by the choice of
neutrino flux prediction: GS98 suggest an upward revision of 5.1% compared to the
’Solar Fusion II” recommendation, while AGSS09 values result in a correction of
4.8%. As a conservative assumption, the average of the two flux recommendations
(see Table 5.2) was used.

The S-factor of the 7Be(p, γ)8B reaction was then redetermined in the solar
Gamow peak by accepting the previous ”Solar Fusion II” recommendation [85], and
rescaling according to Eq. 5.19:

S17(19
+6
−5) = 21.2± 2.9 eV b (5.22)

Following the ”Solar Fusion II” approach, the energy dependence of the S-factor was
assumed to be described by the ”Minnesota” calculation by Descouvemont [125]. By
fitting the ”Minnesota” curve to the current new data point (red curve in Fig. 5.5),
S17(0) was found to be

S17(0) = 21.8± 3.0 eV b (5.23)

As it can be seen from Table 5.5, the resulting S17(0) is in good agreement
with the previously reported values. However, it is worth to note, that the rescaled
”Minnesota” curve seems to favour the results by Junghans et al. [120–122] (Fig. 5.5),
which are systematically higher than the values observed in other experiments [113–
119].

As a next step, an analysis of all experimental data points was carried out in-
cluding the new data point using again the ”Minnesota” fit. The resulting combined
average was

S17(0) = 20.8± 0.6stat eV b (5.24)

where the uncertainty was obtained by multiplying the raw uncertainty of the fitting
approach with the inflation factor reported in Table 5.5.

Compared to the previous ”Solar Fusion II” value of 20.8± 0.7expt ± 1.4theor eV b
for E ≤ 475 keV, it is evident that the uncertainty is greatly reduced. This is due
to the fact, that the current approach directly estimates the S-factor of 7Be(p, γ)8B
in the relevant astrophysical energy range (solar Gamow window), thus there is no
need for extrapolation. Consequently, the corresponding error bar (±1.4theor eV b)
can be omitted. The precision of this solar neutrino based approach is expected to
increase in the future with more precise measurements of the solar 7Be flux [126].
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Table 5.5: Determination of S17(0) from recent experimental data, using the Min-
nesota calculation by Descouvemont [125] as fit function.

Reference S17(0) [eV b] Inflation factor

Filippone [113] 19.4 ± 2.4
Hammache [114,115] 19.3 ± 1.1
Strieder [116] 17.2 ± 1.7
Baby [117–119] 20.2 ± 1.4
Junghans [120–122] 21.6 ± 0.5
Present work 21.8 ± 3.0

Combined result 20.8 ± 0.6 1.48
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Chapter 6

Discussion

6.1 Discussion of the present new LUNA results

The resonance strengths obtained in the BGO phase of the LUNA 22Ne(p, γ)23Na
experiment are listed in Table 6.1 along with their values from the literature.

The newly obtained upper limits on the putative resonances at E lab
p = 71 and

105 keV are in a good agreement both with the data from indirect [30], and direct
measurements [35, 38]. Compared to the previous upper limits reported by LUNA
[38], a two orders of magnitude reduction was achieved owing to the greatly increased
sensitivity of the BGO detector over the previous HPGe based setup.

The agreement between the new data and the previous direct upper limits form
Görres et al. [35] is reasonably good for the three higher energy resonances discussed
here. The observed strength of the resonance at E lab

p = 259.7 keV is somewhat
higher than expected, but the LUNA-HPGe results also suggested a higher ωγ value
[38].

In case of the indirect upper limits by Hale et al. [30], the agreement is not
good: For the resonance at E lab

p = 156.2 keV (Ex = 8943.5 keV), the indirect mea-
surement predict an ωγ which is at least two orders of magnitude lower than the
one observed in the present (and also in the previous) LUNA experiment. How-
ever, the indirect upper limit was based purely on the spin/parity assignment
(Ex = 8945 keV, 7/2−) [30], since the resonance was not actually observed. On
the other hand, the experiment by Jenkins et al. [31] suggests the existence of a
doublet state instead of one level at the excitation energy of Ex = 8944 keV, with
tentative spin/parity assignments of 3/2+ and 7/2− respectively (see Fig. 2.2).

Therefore, it is likely that the present resonance strength and the upper limit
by Hale et al. are actually derived for different members of the doublet: For the
low proton energies used here, the population of the low spin 3/2+ level is much
more probable due to the angular momentum barrier. The derived decay scheme of
the level (both from the BGO and HPGe phase) is in a good agreement with the
branching reported for 3/2+ [31], while none of the γ-transitions assigned to the
7/2− level were observed (see Table 6.2).

In case of the resonance at Elab
p = 189.5 keV (Ex = 8975.3 keV), the present

measured resonance strength is in agreement with the previous indirect upper limit
[30]. The agreement may be explained by the fact, that this level was found to be
a single level with 5/2+ [31]. On the other hand, in Ref. [31], only the transition
R→ 2982 was considered. This is in contradiction both with the current experiment
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and the latest direct data from the literature [37,38], which suggest a more detailed
decay scheme. The partial resonance strength observed in the present experiment
for the R→ 2982 transition is 7.2× 10−8 eV, which is two orders of magnitude lower
than indirect upper limit [30].

Similar to the first resonance, the Ex = 9042.4 keV level corresponding to the
resonance at E lab

p = 259.7 keV is again believed to be part of a doublet [31], which
might explain the discrepancy between the direct ωγ values and the indirect upper
limits by [30]. As can be seen in Table 6.2, neither of the LUNA experiments could
observe the transitions assigned to the 15/2+ doublet member. On the other hand,
the transitions to 440 and 2076 keV levels were both detected, suggesting that in the
present experiment the level with 7/2+ (or 9/2+) was populated. This assumption is
again further supported by the high angular momentum barrier in case of the 15/2+

level. The branching ratios from [31] do not seem to reflect properly the actual
decay scheme.

Considering only the data from direct measurements, it is evident that there is
tension between the LUNA-HPGe and LUNA-BGO data (Table 6.1 and Fig. 6.1).
The new resonance strengths for all three resonances are higher than the previously
reported ones. Moreover, in case of the 156.2 keV and 189.5 keV resonances, the
branching ratios observed in the present experiment are different from the ones that
had been found in the LUNA-HPGe phase (see Table 6.2).

The 156 keV resonance seems to have 5% decay probability to the ground state,
which transition was not detected previously due to the limited efficiency of the
HPGe detector for high energy photons. Similarly, in case of the 189 keV resonance,
the 2.2% contribution from the transition to the Ex = 3678 keV state was not ob-
served in the previous phase. The determination of the resonance strength with a
HPGe detector is based on the individual detection of each primary γ-transitions
from the excited state, and the precise knowledge of their branching ratios. In con-
trast to this, the measurements with the summing BGO detector are based on the
detection of the add-back peak in the spectrum, thus the resulting ωγ value is less
sensitive to the branching ratios. The difference in the branching ratios can partly
account for the observed discrepancy in the strength of the resonances at 156.2 and
189.5 keV. In case of the resonance at 259.7 keV, the present experiment confirmed
the previous decay scheme.

The discrepancy HPGe-BGO can be also due to systematic differences in the
detector type and data acquisition mode used: While in most cases the high ef-
ficiency and large volume of the BGO detector is advantageous, it can also have
certain drawbacks. For example random summing events in the detector can create
an additional background contribution to the experimental ROI. Moreover, it is also
possible that add-back peaks of contaminant reactions with similar Q-value as the
22Ne(p,γ)23Na reaction, such as the 18O(p,γ)19F (Q=7.993 MeV) or 22Na(p,γ)23Mg
(Q=7.580 MeV) reactions, are not resolved properly and partly summed into the
ROI. However, no contaminant peaks were found in the gated single sum spectra
created from add-back events remaining in the ROI after background subtraction.
Therefore, it is believed that the beam induced background was properly estimated
by the in-beam spectra measured in argon at the same beam energy.

The previous LUNA phase using two HPGe detectors at different angles (90◦

and 55◦) observed an isotropic distribution of γ-rays emitted during the resonant
capture reactions [38]. Nevertheless, if there is some angular correlation, which is
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uncorrected for, the ωγ values derived in the HPGe-phase would be more sensitive
to it than the present ones, since the BGO detector covers a near 4π solid angle.

The new ωγ values for resonances at 156.2 and 189.5 keV are in fact closer
to data obtained by Kelly et al. [37]. However, the reported branching ratios fit
the present BGO-phase data worse, than the previous recommendation by LUNA.
Similarly to the LUNA-HPGe data, no ground state transition was observed by
Kelly et al. for the 156.2 keV resonance. However, in this case the inclusion of the
missing strength increases the discrepancy to LUNA-BGO, since the ωγ values from
TUNL are generally higher than the ones seen in the present experiment.

Unfortunately, the TUNL group did not report any strength for the resonance at
259.7 keV. Thus, the only available information is from the two consecutive phases of
the LUNA experiment. The ωγ value is 27% higher than the previous one, however,
the values are consistent with each other on 2σ level. In this case, no considerable
difference was seen between the branching ratios observed in BGO and the HPGe
phases. The difference in the observed strengths has to originate from an other
reason.

Nevertheless, by comparing the quoted uncertainties for the experiments (TUNL,
LUNA-HPGe, LUNA-BGO), the advantage of the LUNA approach is clearly visible:
Due to its exposed location, the measurements at TUNL had to rely on an active
muon veto to reduce the background generated by cosmic muons. In LUNA, the
muon induced background is passively reduced by six orders of magnitude [45] due
to the 1400m rock overburden. This not only allows a less complicated experimental
design, but also offers an increase in counting statistics, since the use of an active
veto inevitably leads to losses also in valuable events. While in the LUNA-BGO
experiment even the weaker transitions from the decay of the three here discussed
resonances could be directly identified in the spectra, the TUNL group had to rely
on a more complex method in order to evaluate their spectra: for each possible
γ-transition a Monte Carlo generated templates was created. These templates were
then included in a complicated Markov-chain based fitting procedure to reproduce
the experimental spectra. This approach is in principle feasible, but can also have
its pitfalls: the strength of the 156.2 keV was originally estimated three times higher
in Kelly’s PhD thesis [36] than it was reported in the final publication [37].

With respect to the non-resonant S-factor, the present experiment did not find
any evidence for a direct capture process for E ini

p ≤ 310 keV. The observed non-
resonant yields are consistent with the expected tail contribution from the broad
resonances near and under the proton threshold (Ecm

res = 35 and -130 keV). Thus,
the present results did not confirm the previous S = const = 62 keV b value, which
was suggested by Görres et al. [40].

The impact of the new data on the thermonuclear reaction rate is illustrated in
the Figures 6.2, 6.3 and 6.4. Compared only to the LUNA-HPGe rate (Fig. 6.2), the
effect of the new upper limits on resonance 71 and 105 keV is evident: the median
rate is decreased for 0.04 ≤ T9 ≤ 0.15. The rate uncertainty is also considerably
reduced. On the other hand, the somewhat higher ωγ values for the resonances at
156.2, 189.5 and 259.7 keV leads to an almost negligible increase in the rate for
temperatures around 0.2 GK. The rate uncertainty at low energies is determined by
the resonances at 37 and 71 keV.

The improvement granted by the higher luminosity of the BGO is clearly reflected
in the new reaction rate in case of the resonances at 71 and 105 keV. The new upper
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Table 6.2: Branching ratios for the resonances at E lab
p = 156.2, 189.5, and 259.7 keV

Elab
res Jπres γ-transition

Branching [%]
Jenkins et al. [31] Kelly et al. [37] LUNA-HPGe [38] Present

1
5
6
.2

k
e
V

3/2+ R→ 0 5 (1)
7/2− R→ 2076 47 (4)
7/2− R→ 2703 12 (2)
3/2+ R→ 2391 39 (6) 20 (4) 23 (4) 32 (3)
3/2+ R→ 3914 61 (30) 80 (6) 77 (4) 63 (3)
7/2− R→ 6353 10 (2)
7/2− R→ 7125 31 (2)

1
8
9
.5

k
e
V

5/2+ R→ 0 5.3 (1.4)
5/2+ R→ 440 37.7 (1.5) 42.8 (0.9) 38.0 (0.9)
5/2+ R→ 2076 39.8 (1.3) 47.9 (0.9) 50.6 (0.9)
5/2+ R→ 2982 100 5.0 (0.8) 3.7 (0.5) 3.2 (0.5)
5/2+ R→ 3678 2.2 (0.8) 2.2 (0.2)
5/2+ R→ 3914 3.1 (0.6) 1.1 (0.3) 2.0 (0.5)
5/2+ R→ 4775 ≤ 3.0 1.8 (0.2) 1.6 (0.2)
5/2+ R→ 6618 4.7 (0.9) 2.7 (0.2) 2.4 (0.2)

2
5
9
.7

k
e
V

7/2+ 9/2+ R→ 440 16 (4) 45.4 (0.9) 46.0 (0.9)
7/2+ 9/2+ R→ 2076 84 (4) 18.7 (0.6) 18.9 (0.6)
7/2+ 9/2+ R→ 2704 10.9 (0.5) 11.0 (0.5)
7/2+ 9/2+ R→ 3848 13.3 (0.5) 13.5 (0.5)
7/2+ 9/2+ R→ 3914 1.8 (0.4) 1.8 (0.4)
15/2+ R→ 5533 12 (2)

7/2+ 9/2+ R→ 5927 3.6 (0.2) 3.0 (0.2)
7/2+ 9/2+ R→ 6042 2.6 (0.2) 2.0 (0.2)
7/2+ 9/2+ R→ 6355 1.5 (0.2) 1.5 (0.2)
7/2+ 9/2+ R→ 6820 2.2 (0.2) 2.2 (0.2)
15/2+ R→ 6234 76 (5)
15/2+ R→ 7267 12 (5)
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Figure 6.1: Comparison of the experimental resonances strengths for the resonances
at Elab

p = 156.2, 189.5 and 260 keV including data from TUNL [37], the previous,
HPGe based [38], and the present, BGO based experiments at LUNA. The red line
corresponds to a simple average of the LUNA ωγ values.

limits compared to the ones from the HPGe phase are more robust against small
statistical fluctuations in the counting rate.

As can be seen in Fig. 6.3, the median of the new reaction rate is almost identical
to the one by TUNL [37]. The LUNA-BGO rate however, is slightly lower for
temperatures 0.1 ≤ T9, due to the differences in the strengths of the resonances at
156.2 and 189.5 keV. Similar to the STARLIB-2013 [39] rate, the new TUNL rate
does not consider the resonances at 71 and 105 keV. Their strength is simply set
to zero, along with the associated uncertainty. This explains why, the LUNA rate
have significant uncertainty below 0.1 GK.

Last, but not least, Fig. 6.4 compares the present and all available other rate
compilations from the literature [21,37,38], normalised to STARLIB-2013 [39]. Com-
pared to NACRE [21], the rate is decreased by more than two orders of magnitude
in the temperature range 0.03 ≤ T9 ≤ 0.3, which can be seen as a success of under-
ground nuclear astrophysics. The enhancement over the STARLIB-2013 rate in the
same energy range is due to the resonances at 156.2 and 189.5 keV. In STARLIB-
2013, the resonance at 156.2 keV is still considered with the strength from the
indirect measurement of Hale et al. [30], while in case of the resonance at 189.5 keV
the upper limit provided by Görres et al. [40] is used.
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6.2 Discussion of solar neutrino based results

As it was demonstrated in Chapter 5, the flux measurement of the solar 7Be and
8B neutrinos reached such precision, that they can provide additional information
on the underlying nuclear reactions of the solar hydrogen-burning. In contrast to
the ”classical” experimental approach, the solar neutrino based determination of
the S-factor has the advantage that the deduced values of S34 or S17 per definition
correspond to the astrophysically relevant energies. Therefore, no extrapolation is
necessary to the solar Gamow peak in contrast to the experimental data obtained
at higher energies.

However, both versions of the method used here rely on the assumption, that
the standard solar model (SSM) is correct. This assumption has the disadvantage
that the measured fluxes cannot be used at the same time to check the validity of
the description of the Sun. Furthermore, the results considering S34 cannot be taken
into account during the determination of S17, and vice versa.

Last, but not least, the on-going discussion regarding the elemental composition
of the Sun affects the predictive power of the SSM, and thus the uncertainty on the
S-factor, until the contradiction between the GS98 [89] and AGSS09 [90] elemental
abundances is resolved.
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Chapter 7

Summary

The 22Ne(p, γ)23Na reaction has been studied with a direct experiment at LUNA
in the energy range relevant to AGB stars and classical novae. As a follow up to
the previous LUNA experiment [38], the aim of the present work was to investigate
the tentative resonances at Elab

p = 71 and 105 keV, and to study the direct capture
component of the reaction rate below 400 keV.

The experimental setup was based on a differentially pumped, windowless gas-
target system circulating enriched 22Ne gas. The detection of γ-rays was done by a
large, segmented bismuth germanate (BGO) detector surrounding the target cham-
ber. The signals from each segment were read out separately and recorded in list-
mode by a CAEN V1724 digitizer card. The intense proton beam necessary for the
experiment was provided by the LUNA-400 electrostatic accelerator located deep
underground.

The density profile of the target gas was determined by measuring the temper-
ature and the pressure inside the target chamber as function of the position. The
efficiency of the BGO detector was studied with point-like radioactive sources and
the well-known 14N(p,γ)15O resonance at Elab

p = 278 keV. The data were used to
validate the GEANT4 simulation of the detector, which was, in turn, later used to
calculate the add-back detection efficiency.

Much effort was devoted to the study of the resonances at E lab
p = 71 and 105 keV,

by collecting statistics at several beam energies near their nominal energy. No clear
signature of a resonance was observed. However, owing to the improved sensitiv-
ity, the upper limits by the previous LUNA phase were reduced by two orders of
magnitude, to the 10−11 eV level.

Furthermore, the strengths of resonances at Elab
p = 156.2, 189.5 and 259.7 keV

were remeasured, and the decay schemes of the corresponding levels were studied.
The new strengths were found to be 20% higher than the values previously reported
by the LUNA-HPGe phase. Possible origins of this discrepancy have been discussed.

The direct capture process was studied atEini
p = 188.0, 205.2, 250.1, and 310.0 keV.

The obtained S-factors were consistent with the non-resonant contribution from
the sub-threshold resonance at Ecm

res = −130 keV, and from the low energy reso-
nance at Ecm

res = 35 keV. Therefore, in contrast to the previous measurement by
Görres et al. [40], the present experiment did not confirm the existence of a separate
direct capture component at all.

Based on the new results, the thermonuclear reaction rate of 22Ne(p, γ)23Na was
redetermined. The new rate is consistent with the previous LUNA-HPGe rate, but
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its uncertainty was greatly reduced for temperatures from 0.04 to 0.2 GK, because
of the new upper limits. The rate is also consistent with the recent determination
from the TUNL group [37].

In addition to the experimental work at LUNA, the 3He(α,γ)7Be and 7Be(p, γ)8B
reactions of the pp-chain hydrogen-burning were studied using the most recent solar
neutrino flux data from the Borexino [70] and SNO experiments [68]. Based on the
standard solar model [65], and the experimentally measured flux of the 7Be and 8B
branches of solar neutrinos, the corresponding S-factors S34 and S17 were obtained
at energies of the solar Gamow peak.
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Appendix A

Tail contributions to the
non-resonant S-factor

The following formalism was developed based on the corresponding chapters of [1],
considering single-level, s-wave resonances of Breit-Wigner shape for (p, γ) reactions,
where only two reactions channels are open.

A.1 Breit-Wigner cross section for sub-threshold

resonances

σBW (E) = πλ2 2J + 1

(2jp + 1)(2jt + 1)
(1 + δ12)

Γp(E)Γγ(E)

(E − ER −Δ)2 + (Γ(E)/2)2
(A.1)

where λ is the de Broglie wavelength and jp, jt, J are the spins of the bombarding
proton, the target nucleus, and resonant state respectively.

In case of s-wave protons (jp = 0), the energy dependence of the gamma-width
Γγ(E) is given by the following expression

Γγ(E) =

[
E +Q

ER +Q

]3

Γγ(ER) (A.2)

where Q is the Q-value of the reaction and Γγ(ER) the value of the gamma width
at the resonance energy ER.

The energy dependence of the proton width is determined by the s-wave pene-
tration factor Pl=0(E)

Γp(E) = 2Pl=0(E)γ2
p,l=0 (A.3)

where the reduced proton width γ2
p,l=0 can be expressed as function of the spectro-

scopic factor C2S and the single particle proton width θ2l=0

γ2
p,l=0 =

h̄2

μR2
C2Sθ2l=0 (A.4)

with μ as the rudced mass of the target-projectile system, and R interaction radius.
The energy dependence of the total width is simply given by Γ(E) = Γp(E)+Γγ(E):

Last, but not least the shift correction Δ to the resonance energy can be calcu-
lated from the reduced proton width γ2

p,l=0 and the shift factor Sl=0(E)

Δ = −
[
Sl=0(E)− Sl=0(ER)

]
γ2
p,l=0 (A.5)
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A.2 Breit-Wigner cross section for broad reso-

nances above the Coulomb threshold

σBW (E) = πλ2 2J + 1

(2jp + 1)(2jt + 1)
(1 + δ12)

Γp(E)Γγ(E)

(E − ER)2 + (Γ(E)/2)2
(A.6)

Γγ(E) =

[
E +Q

ER +Q

]3

Γγ(ER) (A.7)

Γp(E) =
Pl=0(E)

Pl=0(ER)
ΓpER (A.8)

where Γp(ER) the value of the proton width at the resonance energy.

A.3 Determination of Pl(E) and Sl(E)

The penetration Pl(E) and shift Sl(E) can be determined with help of the regular
Fl(E) and irregular Gl(E) Coulomb wave-functions

Pl(E) = R

(
k

Fl(E)2 +Gl(E)2

)
r=R

(A.9)

Sl(E) = R

(
Fl(E)∂Fl(E)

∂r
+Gl(E)∂Gl(E)

∂r

Fl(E)2 +Gl(E)2

)
r=R

(A.10)

where k is the wave-number. In both expressions, Fl(E) and Gl(E) have to be
evaluated at radius R

R = 1.25fm
(
A

1/3
t +A1/3

p

)
(A.11)

where Ap and At are the atomic mass of projectile and target.
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Appendix B

22Ne(p, γ)23Na reaction rate
(tabulated)

T9 NA〈σv〉 [cm3s−1mole−1]
Low rate Median rate High rate

0.01 2.86× 10−25 7.01× 10−25 1.67× 10−24

0.011 1.10× 10−23 2.55× 10−23 5.68× 10−23

0.012 2.28× 10−22 5.03× 10−22 1.07× 10−21

0.013 2.92× 10−21 6.22× 10−21 1.26× 10−20

0.014 2.59× 10−20 5.31× 10−20 1.04× 10−19

0.015 1.71× 10−19 3.39× 10−19 6.41× 10−19

0.016 8.86× 10−19 1.70× 10−18 3.15× 10−18

0.018 1.34× 10−17 2.47× 10−17 4.40× 10−17

0.02 1.15× 10−16 2.07× 10−16 3.55× 10−16

0.025 5.24× 10−15 9.06× 10−15 1.48× 10−14

0.03 6.36× 10−14 1.07× 10−13 1.75× 10−13

0.04 1.30× 10−12 2.16× 10−12 4.96× 10−12

0.05 7.60× 10−12 1.24× 10−11 8.57× 10−11

0.06 2.83× 10−11 4.26× 10−11 7.66× 10−10

0.07 1.31× 10−10 1.62× 10−10 3.77× 10−09

0.08 9.61× 10−10 1.04× 10−09 1.28× 10−08

0.09 6.83× 10−09 7.35× 10−09 3.64× 10−08

0.1 3.85× 10−08 4.14× 10−08 1.01× 10−07

0.11 1.68× 10−07 1.80× 10−07 2.85× 10−07

0.12 5.87× 10−07 6.27× 10−07 8.01× 10−07

0.13 1.72× 10−06 1.83× 10−06 2.12× 10−06

0.14 4.36× 10−06 4.62× 10−06 5.11× 10−06

0.15 9.80× 10−06 1.04× 10−05 1.12× 10−05

0.16 2.00× 10−05 2.11× 10−05 2.26× 10−05

0.18 6.67× 10−05 7.01× 10−05 7.42× 10−05

0.2 1.81× 10−04 1.90× 10−04 1.99× 10−04

0.25 1.85× 10−03 1.91× 10−03 1.99× 10−03

0.3 2.21× 10−02 2.32× 10−02 2.43× 10−02

0.35 1.81× 10−01 1.90× 10−01 2.00× 10−01

0.4 9.22× 10−01 9.72× 10−01 1.02× 1000

125



T9 NA〈σv〉 [cm3s−1mole−1]
Low rate Median rate High rate

0.45 3.30× 1000 3.48× 1000 3.66× 1000

0.5 9.20× 1000 9.68× 1000 1.02× 1001

0.6 4.29× 1001 4.51× 1001 4.72× 1001

0.7 1.31× 1002 1.37× 1002 1.43× 1002

0.8 3.06× 1002 3.20× 1002 3.34× 1002

0.9 6.01× 1002 6.31× 1002 6.61× 1002

1 1.05× 1003 1.10× 1003 1.16× 1003

1.2 2.95× 1003 3.17× 1003 3.39× 1003

1.5 6.11× 1003 6.69× 1003 7.27× 1003

1.8 1.04× 1004 1.16× 1004 1.27× 1004

2 1.57× 1004 1.75× 1004 1.94× 1004

2.5 2.77× 1004 3.11× 1004 3.45× 1004

3 3.97× 1004 4.46× 1004 4.96× 1004

3.5 5.02× 1004 5.65× 1004 6.29× 1004

4 5.89× 1004 6.62× 1004 7.36× 1004
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Appendix C

3He(α, γ)7Be reaction rate
(tabulated)

The reaction rate (Table C.1) is reproduced within ±0.5% for 0.01 < T9 < 1.0
(Fig. 5.4) by the following analytical function:

R34 = p1T9
− 2

3 exp(p2T9
− 1

3 )× (C.1)

(1 + p3T9 + p4T
2
9 + p5T

3
9 + p6T

4
9 )

p1 = 5.497 ×106

p2 = -1.281 ×101

p3 = -2.335 ×10−1

p4 = 5.108 ×10−2

p5 = -1.672 ×10−3

p6 = -4.724 ×10−4
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Table C.1: 3He(α, γ)7Be reaction rate in cm3s−1mole−1.

T9 Reaction rate T9 Reaction rate

0.001 1.339× 10−47 0.07 1.013× 10−6

0.002 2.475× 10−36 0.08 3.581× 10−6

0.003 7.147× 10−31 0.09 1.038× 10−5

0.004 1.975× 10−27 0.10 2.589× 10−5

0.005 5.518× 10−25 0.11 5.747× 10−5

0.006 4.040× 10−23 0.12 1.162× 10−4

0.007 1.243× 10−21 0.13 2.178× 10−4

0.008 2.096× 10−20 0.14 3.832× 10−4

0.009 2.279× 10−19 0.15 6.398× 10−4

0.010 1.778× 10−18 0.16 1.021× 10−3

0.011 1.071× 10−17 0.18 2.331× 10−3

0.012 5.240× 10−17 0.20 4.731× 10−3

0.013 2.166× 10−16 0.25 1.936× 10−2

0.014 7.789× 10−16 0.30 5.619× 10−2

0.015 2.490× 10−15 0.35 1.306× 10−1

0.016 7.203× 10−15 0.40 2.606× 10−1

0.018 4.712× 10−14 0.45 4.652× 10−1

0.020 2.372× 10−13 0.50 7.636× 10−1

0.025 6.018× 10−12 0.60 1.714× 100

0.03 7.019× 10−11 0.70 3.243× 100

0.04 2.515× 10−9 0.80 5.454× 100

0.05 3.177× 10−8 0.90 8.422× 100

0.06 2.184× 10−7 1.00 1.220× 101
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Appendix D

Certificate of the 22Ne target gas
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